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Abstract

Objectives. Population-level measures of seropositivity are critical
for understanding the epidemiology of an emerging pathogen,
yet most antibody tests apply a strict cutoff for seropositivity that
is not learnt in a data-driven manner, leading to uncertainty when
classifying low-titer responses. To improve upon this, we evaluated
cutoff-independent methods for their ability to assign likelihood
of SARS-CoV-2 seropositivity to individual samples. Methods. Using
robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-
binding domain (RBD), we profiled antibody responses in a group
of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we
trained probabilistic learners to assign likelihood of seropositivity
to test samples of unknown serostatus (n = 5100), identifying a
support vector machines-linear discriminant analysis learner (SVM-
LDA) suited for this purpose. Results. In the training data from
confirmed ancestral SARS-CoV-2 infections, 99% of participants
had detectable anti-S and -RBD IgG in the circulation, with titers
differing > 1000-fold between persons. In data of otherwise
healthy individuals, 7.2% (n = 367) of samples were of uncertain
serostatus, with values in the range of 3-6SD from the mean of
pre-pandemic negative controls (n = 595). In contrast, SVM-LDA
classified 6.4% (n = 328) of test samples as having a high
likelihood (> 99% chance) of past infection, 4.5% (n = 230) to
have a 50–99% likelihood, and 4.0% (n = 203) to have a 10–49%
likelihood. As different probabilistic approaches were more
consistent with each other than conventional SD-based methods,
such tools allow for more statistically-sound seropositivity
estimates in large cohorts. Conclusion. Probabilistic antibody
testing frameworks can improve seropositivity estimates in
populations with large titer variability.
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INTRODUCTION

The SARS-CoV-2 pandemic has illustrated the
importance of antibody (Ab) testing, clinically,
epidemiologically, and to guide public health
measures.1 However, a common problem for Ab
tests is the correct classification of seropositivity as
negative control values overlap true positive low-
titer values, impacting estimates of past infection.

Most Ab tests apply a strict cutoff to determine
seropositivity,2–4 such as the ratio between known
positive and negative serum calibrators, or 3 or 6
standard deviations (SD) from the mean of
negative controls. This is a conservative approach
that tries to avoid misclassifying any true
negatives as positive, although it may as a result
miss a proportion of true positives, and through a
statistically costly dichotomization, leads to a loss
of information. Although 6 SD often serves well
for an assay to achieve high specificity, the metric
is not learnt in any formal data-driven manner
and is highly dependent on the nature and
number of negative control samples used to
determine the cutoff, which have their own
variability. Indeed, the optimal cutoff may depend
upon use of the assay. A 6 SD threshold may favor
specificity, whilst a 3 SD threshold is likely to be
more sensitive. This dependence on a threshold is
problematic because, while some samples with
extremely high or low readouts and are easily
classifiable, many measurements may be close to
the threshold and their classification changes
according to small changes in the threshold, for
example, a different assay batch, serum calibrator,
or low numbers of negative controls.

This is especially pertinent for SARS-CoV-2, as
most infections follow a mild clinical course that
typically engenders lower Ab titers than do
infections characterized by severe disease.5–9 A
similarly wide range of Ab titers has been
observed after COVID-19 vaccination.10–12 As Ab
responses decline from peak levels over time, this
implies that most previously infected/vaccinated
persons will eventually have Ab titers difficult to
detect and classify, in the absence of re-
infection/vaccination. As many common Ab tests
used in clinical, research, and public health
practice have low sensitivity (e.g. lateral flow

tests) compared to laboratory-based methods, the
problem is compounded.

The goal of a serology study could be to
estimate the seroprevalence in a sampled
population. We argue that this goal is better
achieved by using a probabilistic classification
framework, which estimates the probability (%
chance) that a sample is positive or negative,
rather than the individual binary classification
supported by SD-based cutoffs. We reasoned that
cutoff-independent frameworks trained on real-
world data would better consider the wide range
of the response and resolve some of this
uncertainty. To this end, we first developed highly
sensitive and specific anti-SARS-CoV-2-Spike and -
RBD ELISA assays based on native-like antigens,
and then used them in tandem to explore how
isotype-level anti-SARS-CoV-2 Ab responses varied
with disease severity and duration; in n = 138 RT-
PCR-confirmed COVID-19 cases distributed across
the clinical spectrum. The IgG information, and
the responses from a large number (n = 595) of
pre-pandemic negative controls, were then used
to train suitable probabilistic learners to assign
likelihood of seropositivity to test samples of
unknown serostatus, in this case samples collected
from blood donors and pregnant women
(n = 5100) during community transmission in
Stockholm, Sweden throughout 2020 and early
2021.13

We chose to study spike (S)-directed Abs as
these are robustly induced by SARS-CoV-2
infection at the population level (e.g. IgG is
estimated to be present in > 91.1% of RT-PCR-
positive adult cases after infection with the
ancestral strain14), and a subset of S-directed
antibodies (primarily RBD binders) mediate virus
neutralizing activity.14,15 Indeed, all currently-
approved COVID-19 vaccines are based on S, with
the aim of inducing neutralizing Abs that block
viral entry into ACE2-expressing target cells.11,16

Therefore, anti-S and -RBD responses are also the
best available correlates of vaccine protection. As
both infection- and vaccination-induced anti-S
titers vary between individuals and decline with
time, probabilistic methods to determine
seropositivity could improve clinical and
epidemiological investigations.
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RESULTS

Study samples are detailed in Table 1 and
Supplementary table 1.

SARS-CoV-2 Ab test development

Highly sensitive and specific ELISA assays to profile
IgM, IgG and IgA responses against ancestral
SARS-CoV-2 pre-fusion-stabilized spike (S)
glycoprotein trimers, the RBD, or the nucleocapsid
(N), were developed alongside a diagnostic clinical
laboratory responsible for monitoring
seroprevalence during the pandemic. Samples
were collected between March 2020 and January
2021, and therefore represent responses to the

ancestral SARS-CoV-2 strain. The spike trimers17

were produced in-house and their quality was
confirmed by cryo-EM.18 A representative subset
of study samples was used for assay development
(Table 1), and we did not observe reproducible
IgG reactivity to S or RBD across the 595 historical
negative controls collected before the pandemic.

Responses to S and the RBD were highly
correlated in RT-PCR-confirmed COVID-19 cases
(n = 138), and our assay revealed a greater than
1000-fold inter-personal differences in anti-viral
IgG titers between Ab-positive individuals when
examining serially diluted sera. One individual
had detectable anti-nucleocapsid IgG at 1:200 000
serum dilution (Supplementary figure 1a). In RT-
PCR+ individuals, anti-viral IgG titers were
comparable for S (EC50 = 3064; 95% CI [1197–
3626]) and N (EC50 = 2945; 95% CI [543–3936])
and slightly lower for RBD [EC50 = 1751; 95% CI
966–1595]. We noted that a subset (~10%) of
SARS-CoV-2-confirmed individuals did not have
detectable IgG responses against the SARS-CoV-2
nucleocapsid protein (Supplementary figure 1a),
as previously reported.19 Therefore, we did not
explore responses to the nucleocapsid protein
further in this study.

Anti-spike Ab titers and neutralizing
responses are positively correlated with
disease severity

We initially examined Ab responses in relation to
clinical severity using a 6 SD assay cutoff. To arrive
at this cutoff, we repeatedly analyzed a large
number (n = 595) of SARS-CoV-2-negative controls
(pre-pandemic blood donor samples collected
during the Spring of 2019) alongside test samples
throughout the study. This number enabled us to
generate accurate estimates of mean values and
their variation in a non-exposed population.

Using this 6 SD cutoff, we detected potent IgG
responses against S and RBD in 100% and 99% of
RT-PCR-confirmed infections (n = 138), respectively,
supporting that natural infection with ancestral
SARS-CoV-2 provoked a robust B cell response in
the majority of cases, as reported.20,21 IgM and IgA
responses were generally weaker, more variable
between individuals, and spread over a larger titer
range (Figure 1a).

To examine isotype-level responses further, RT-
PCR+ COVID-19 patients (n = 105, excluding
Karolinska University Hospital employees) were
grouped according to their clinical status, as non-

Table 1. Study samples

Sample groups

Sample numbers,

age ranges and

collection dates

SARS-CoV-2 RT-PCR+ individualsa n = 105

Females 44 (41.9%)

Males 61 (58.1%)

Age range (years) 18–80

Mean age (years)

Females 53.0

Males 55.0

Non-hospitalized (Category 1) n = 53

Females, Males (mean age, years) 28, 25 (51.5)

Hospitalized (Category 2) n = 31

Females, Males (mean age, years) 12, 17 (54.4)

Intensive care (Category 3) n = 21

Females, Males (mean age, years) 3, 17 (60.4)

Sample collection March–May 2020

SARS-CoV-2 RT-PCR+ hospital employeesb n = 33

Sample collection July 2020

Vaccinated individualsb n = 30

Sample collection April–October 2021

Blood donorsb n = 2600

Sample collection March 2020–January

2021

Pregnant womenb n = 2500

Sample collection March 2020–January

2021

Historical (pre-pandemic) blood donorsb n = 595

Sample collection March–June 2019

Endemic CoV+ donorsb n = 20

Sample collection July–December 2019

Sample subset used for assay development

Pre-pandemic controls n = 100

RT-PCR+ individuals (random subseta) n = 38

Blood donor samples (March) n = 100

Endemic coronavirus RT-PCR+ donors n = 20

a

Individuals under the care of Karolinska University Hospital.
b

No additional metadata was available.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. Anti-SARS-CoV-2 Ab responses in RT-PCR+ and vaccinated individuals are spread over a wide titer range. (a) IgM, IgG and IgA anti-S

and –RBD responses in individuals RT-PCR+ for SARS-CoV-2 RNA (COVID-19 patients and hospital staff, n = 138). A small number of healthy

controls (HC, pre-pandemic samples) are shown for each assay and isotype. (b) Anti-S isotype-level responses according to COVID-19 clinical

status. Cat 1: mild/asymptomatic. Cat 2: hospitalized. Cat 3: Intensive care. (c) Anti-RBD isotype-level responses according to COVID-19 clinical

status. (d) Anti-S responses in RT-PCR+ cases (n = 105), RT-PCR+ hospital staff (HS, n = 33), blood donor (n = 1000) and pregnant women

(n = 1000) serum samples collected during the first three months of the pandemic. 3 and 6 SD cutoffs calculated from n = 595 historical control

samples are shown by dashed and solid red lines, respectively. (e) Neutralizing ID50 titers in RT-PCR+ individuals and a subset of healthy donors

(n = 56) collected during the first three months of the pandemic. (f) Anti-S and -RBD IgG responses 3 months post-boost in individuals

vaccinated with either BNT162b2 (n = 10), mRNA-1273 (n = 10) or ChAdOx1 (n = 10) COVID-19 vaccines. 3 and 6 SD cutoffs are shown by

dashed and solid red lines, respectively. Error bars represent the geometric mean with 95% CIs.
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hospitalized (Category 1, mild/asymptomatic; 49.5%
of total), hospitalized (Category 2; 29.5%), or
intensive care patients (Category 3; 20%). To validate
our clinical classification, we measured serum IL-6
levels in a random subset of RT-PCR+ individuals from
each of the 3 categories (n = 64) and found that
these were particularly high in Category 3 (intensive
care) individuals (Supplementary figure 1b).

Multivariate analysis, accounting for the effects
of age, sex and days from symptom onset/date of
RT-PCR test, revealed that increased anti-viral IgM,
IgG and IgA titers were associated with disease
severity (Figure 1b and c, Supplementary table 2)
within the three months of infection/RT-PCR date.
IgA isotypes were most strongly associated with
worsening disease, although IgM and IgA titers
declined with time from symptom onset, in
agreement with their t½ in the circulation after
viral clearance (Supplementary table 2). Taken
together, these results support that anti-S and -
RBD IgG responses are better indicators of past
SARS-CoV-2 infection at the population level than
are IgM or IgA, or anti-nucleocapsid Abs.

We next characterized the in vitro virus
neutralizing antibody response of RT-PCR+
individuals using an established pseudotyped virus
neutralization assay13,18,22 and detected
neutralizing antibodies in the serum of all SARS-
CoV-2 RT-PCR+ individuals screened (n = 48), while
neutralizing responses were not seen in samples
before seroconversion or negative controls (ID50

cutoff = 45) (Supplementary figure 1c). As
observed in the binding assay, a large range of
neutralizing ID50 titers was apparent in the
samples, with binding and virus neutralization
being highly correlated (Supplementary table 2).
In agreement with the binding data, the strongest
neutralizing responses were observed in samples
from patients who required intensive care,
Category 3 (g.mean ID50 = 5058; 95% CI [2422–
10 564]). Mild infections, Category 1, had ID50

neutralization titers averaging about 770, similar
to first-generation COVID-19 vaccines.11

Anti-SARS-CoV-2 Ab responses in healthy
individuals of unknown serostatus

Compared to RT-PCR+ samples collected within
the first 63 days of symptom onset, anti-viral Ab
titers were lower in seropositive samples from
otherwise healthy blood donors and pregnant
women collected during the first three months of
community transmission in Stockholm. Titers in

healthy donor samples were similar to those
observed in RT-PCR+ hospital employees (n = 33)
also sampled within three months post-infection
who were not hospitalized for COVID-19
(Figure 1d). The same trend between RT-PCR+ and
healthy donor samples (collected in the first
3 months of the pandemic) was observed in terms
of neutralizing Ab responses (Figure 1e).

Furthermore, although we observed generally
robust anti-Spike IgG responses after two doses of
COVID-19 vaccines (BNT162b2, mRNA-1273 or
ChAdOx-1, n = 30 in total), these were also spread
over a large titer range (Figure 1f, Supplementary
table 3). According to a 6SD cutoff, 10% of the
individuals surveyed did not have detectable RBD
responses by 3 months post-dose two, while a
further 10% of RBD measurements were below 9
standard deviations from the mean of negative
controls. Therefore, as vaccine-induced titers have
been reported to decline over time,23–25 a greater
proportion of vaccinated individuals are predicted
to have responses that are difficult to classify by
6, 9 or 12 months-post vaccination.

As expected, given the predominance of mild
infections and greater cohort heterogeneity at the
population level, many values for blood donor
and pregnant women samples (from n = 5100)
scored close to or between conventional 3 and 6
SD cutoffs for the S or RBD assays (Figure 2a),
complicating their classification using a hard
boundary. There is no single standard multiple for
SD-based thresholds, which typically range from 3
to 6 SD above the mean observed in negative
controls, and it is not clear how to combine
inferences when responses to different antigens
are measured simultaneously. For example, we
found 6.5% healthy individual samples to be
classified differently by anti-S or anti-RBD IgG
responses, and a further 0.7% to be classified
differently depending on whether a 3 SD or 6 SD
cutoff was chosen (Figure 2b). We concluded that
binary calls could not adequately combine
information from the two antigens nor represent
the uncertainty in classification for points near
SD-based cutoffs, where OD values overlap for
true seronegative and seropositive samples.

Probabilistic tools for estimating
SARS-CoV-2 seropositivity

The 3 SD or 6 SD classifiers learn their positivity
thresholds using training data from known
negative samples. However, more flexible
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alternatives exist which can exploit information
from both known negative and positive samples
and provide not just a binary seropositive or
seronegative call, but an estimate of the
probability that a sample is from a seropositive
individual, which can capture uncertainty in
inference where appropriate. They are also
adapted to learn from multiple measures
simultaneously and can exploit correlation
between them, as exists here between anti-S and
anti-RBD. They can be used for the same purposes
as binary classifiers, albeit with adapted
methodology (Table 2).

There are a plethora of supervised learning
methods available. Some are based on standard
statistical methods, such as logistic regression,
while others attempt to define linear or nonlinear
boundaries, such as support vector machines
(SVM), which can be extended to return
probabilities using methods such as Platt scaling.
The linear methods are expected to produce a
monotonic gradient across the plane defined by
the two measures, yet others attempt to learn

local classification rules which are unlikely to be
monotonic.

We compared different approaches to 3 SD and
6 SD cutoffs (Supplementary figure 2a). Of the SD-
based boundaries (which are, by definition,
composed of horizontal or vertical lines), the 6 SD
anti-spike IgG classifier perfectly separates the
training data, but there are many control and test
sample datapoints lying very close to the
boundary (Figure 2a). We found that logistic
regression learnt an almost identical boundary to
Spike 6 SD. The other methods exploited both
anti-RBD and anti-S measurements, predicting
seropositivity when either anti-S and anti-RBD
were high or when both were moderately high,
although the shape of the decision boundaries
varied, with linear discriminant analysis finding a
narrow boundary, and SVM (linear or quadratic) a
much wider region in which samples had
uncertain classification. Interestingly, when we
applied these methods, and equal-weighted
ensemble learners, to the test data from blood
donors and pregnant women, we found much
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Figure 2. Low-titer responses are difficult to classify using conventional assay thresholds. (a) Anti-S and RBD- IgG responses in pre-pandemic

negative controls (n = 595) and blood donor and pregnant women test data (n = 5100). 3 and 6 SD cutoffs based on all negative control values

are shown by dashed and solid red lines, respectively. (b) Anti-S vs. -RBD IgG responses. 10% of samples were seropositive against both antigens

at 6 SD, while 7.2% of values were of uncertain serostatus, depending on the assay and cutoff used.

Table 2. Seropositivity inferences by binary and probabilistic classifiers

Inference Binary classifier Probabilistic classifier

Form of results for each individual i Yi = 0, 1 if the individual is predicted

to be positive or negative

0 ≤ Pi ≤ 1, the estimated probability an individual

is positive or negative

Estimate seropositive fraction of

sampled population

The mean of Yi The mean of Pi
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greater similarity between the different
probabilistic methods than between the SD-based
approaches, and greater similarity between the
probabilistic methods applied to augmented
rather than observed data. Furthermore, the
learners balanced the extreme sensitivity and
specificity behaviors of 3 and 6 SD (Supplementary
figure 2b), supporting that these tools provide
more statistically sound estimates than do SD-
based methods for population seroprevalence
studies.

For example, we applied the equal-weighted
ensemble learner of linear discriminant analysis
and SVM (SVM-LDA, Figure 3a and b) to our
healthy donor population data. We chose to
apply this learner as it appeared to combine the
benefits of the parent methods, having an
average sensitivity > 99.3% and specificity >
99.8%. In samples of unknown serostatus, the
learner found n = 328 (6.4%) samples to have
a > 99% chance of infection, while n = 4399
(86.3%) samples had < 0.9% chance (Figure 3c). A

(a)

(c) (d)

(b)

Figure 3. Likelihood of past SARS-CoV-2 infection at the individual level in blood donors and pregnant women test data. (a) Schematic

representation of the probabilistic learner strategy for estimating probability of seropositivity. Training data consisted of n = 138 RT-PCR cases

and n = 595 pre-pandemic negative controls. (b) Individual probability of past infection in blood donor and pregnant women test data

(n = 5100) according to the SVM-LDA learner. (c) Number of samples per % chance interval in the test data according to SVM-LDA. (d) For test

samples with > 50% chance of past infection, the proportion in different intervals according to SVM-LDA.
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toal of 230 samples (4.5%) had between a 50 and
99% chance of being seropositive, while n = 203
(4.0%) samples had between a 1 and 49% chance.
Amongst test samples with > 50% likelihood of
past infection (n = 558), 58.8% had > 99%
likelihood of seropositivity, 28.3% had between
90 and 99%, and 6.3% scored between 80 and
89% (Figure 3d). This contrasted with SD cutoffs,
which identified n = 657 samples (12.9%) to be
seropositive against both antigens at 3 SD, and
n = 509 (10.0%) samples to remain so at 6 SD
(Supplementary table 4). Therefore, when using a
6 SD cutoff compared to 3 SD, an additional 95
samples (1.9%) with a 2–41% chance of past
infection, and 53 (1%) samples with a 50–97%
chance, were classified as seronegative, further
highlighting the need for closer scrutiny of values
in the low end of the range.

DISCUSSION

Our ELISA data illustrated that all confirmed
SARS-CoV-2 RT-PCR+ individuals surveyed
developed detectable antibodies against the
ancestral SARS-CoV-2 spike glycoprotein, and
mounted a neutralizing response capable of
preventing S-mediated cell entry, albeit at widely
different titers. In addition, all but two of the
healthy donor samples screened (n = 56) had
detectable neutralizing titers, although these
were lower than in samples from confirmed
infections. These data support that ancestral
SARS-CoV-2 infection provoked a functional B cell
response in the majority of those infected,20 and
these data serve as a useful comparator to titers
engendered by vaccination. In our study of adult
RT-PCR+ cases, conducted before the roll-out of
vaccines, disease severity was the primary driver of
Ab levels. The first generation of COVID-19
vaccines have been reported to generate
neutralizing antibody titers comparable to those
we observed in the samples from individuals who
had mild (non-hospitalized) infection, also from
the Stockholm area.11,13,16

For epidemiological reasons, it is critical to be
able to accurately determine the frequency of
seropositivity in different population groups.
However, this is complicated by differences in
antibody levels between age groups,26,27 for
example, and low-titer values, which in some
cases – and increasingly with time since infection
or vaccination28,29 – can overlap outlier values
amongst negative controls. Test samples with true

low anti-viral titers fall into the low-end of the
range, highlighting the need to better understand
the assay boundary as the Ab response contracts.
For example, improvements in this area could
improve estimates of vaccine response duration,
as well as seroprevalence. Indeed, we show that
vaccine-induced anti-RBD titers can be difficult to
classify within 3 months of the second vaccine
dose in a subset of individuals.

Here, we propose that probabilistic approaches
may be more suitable than SD-based approaches to
Ab testing because decisions are made on the basis
of both positive and negative training data rather
than thresholds based on negative training data
alone, and they can infer information from multiple
antigens simultaneously. We also emphasize,
however, that evaluating optimal decision rules in a
developing pandemic is complicated by the nature
of training data available, which should be
representative of the true range observed in the
population. In our training data, 65% of the cohort
was classified as having a mild (or non-hospitalized)
infection, while it is also possible that those who
sought participation in research studies as hospital
employees suspected a past infection, e.g.
compared to an asymptomatic person. The
numerous large cohorts collected during the
pandemic serve as a useful resource, in this regard.

Such methods, and the implementation
presented, provide a framework for the analysis
of data from different assay platforms to assess
immunity after SARS-CoV-2 infection or spike-
based vaccination. They also facilitate longitudinal
studies to address the durability of immunity and
comparisons of responses in different cohorts in
relation to clinical features. Furthermore,
although not intended as the main application
here, such methods have the potential to
communicate more nuanced information to
individuals after an Ab test. If applied on an
individual basis, the communication of probability
needs to be approached with care in the clinical
setting to ensure that what is described matches
what an individual interprets.

METHODS

Study samples are defined in Table 1.

Human samples and ethical declaration

Samples from SARS-CoV-2 RT-PCR-positive individuals and
admitted COVID-19 patients (n = 105) were collected by the
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attending clinicians and processed through the
Departments of Medicine and Clinical Microbiology at the
Karolinska University Hospital. Samples were used in
accordance with approval by the Swedish Ethical Review
Authority (registration no. 2020-02811). All personal
identifiers were pseudo-anonymized, and all clinical feature
data were blinded to the researchers carrying out
experiments until data generation was complete. RT-PCR
testing for SARS-CoV-2 RNA was by upper respiratory tract
sampling at Karolinska University Hospital and was carried
out using different accredited RT-PCR platforms. Although
cycle threshold (Ct) values provide a semi-quantitative
measure, as Ct values were determined using different
platforms, these could not be directly compared. SARS-CoV-
2 RT-PCR+ individuals (n = 105) were questioned about the
date of symptom onset at their initial consultation and
followed-up for serology during their care, up to 2 months
post-diagnosis. Serum from SARS-CoV-2 RT-PCR+ individuals
was collected 6–63 days after diagnosis, with the median
time from symptom onset to RT-PCR testing being 5 days.

Hospital workers at Karolinska University Hospital were
invited to test for the presence of SARS-CoV-2 RNA in
throat swabs in April 2020 and virus-specific IgG in serum in
July 2020. We screened an additional n = 33 RT-PCR+
individuals to provide additional training data for machine
learning approaches. All participants provided written
informed consent. The study was approved by the National
Ethical Review Agency of Sweden (2020-01620) and the
work was performed accordingly.

Sampling of individuals post-vaccination was approved
by the Swedish Ethics Review Authority (Dnr 2021-00055).
All individuals were included in the study after informed
consent (n = 30). Ten individuals received two doses of
BNT162b2 (Pfizer), 10 received two doses of mRNA-1273
(Moderna), and 10 received two doses of ChAdOx-1
(AstraZeneca).

Anonymized samples from blood donors (n = 100/week)
and pregnant women (n = 100/week) were randomly
selected by the department of Clinical Microbiology,
Karolinska University Hospital. No metadata, such as age or
sex information were available for these anonymized
samples. Pregnant women were sampled as part of routine
infectious diseases screening during the first trimester of
pregnancy. Blood donors (n = 595) collected through the
same channels a year previously were randomly selected for
use as negative controls. Serum samples from individuals
testing RT-PCR+ for endemic coronaviruses (CoVs), 229E,
HKU1, NL63, OC43 (n = 20, ECV+) in the prior 2–6 months,
were used as additional negative controls during assay
development. The use of study samples was approved by
the Swedish Ethical Review Authority (registration no. 2020-
01807).

Serum sample processing

Blood samples were collected by the attending clinical team
and serum isolated by the Department of Clinical
Microbiology following standard protocols. Samples were
barcoded and stored at �20°C until use. Serum samples
from vaccinated individuals were processed at Ume�a
Universitet as previously described,30 and stored at �80°C
until use. Serum samples were not heat-inactivated for

ELISA protocols but were heat-inactivated at 56°C for
60 min for in vitro neutralization experiments.

SARS-CoV-2 antigen generation

The plasmid for expression of the SARS-CoV-2 prefusion-
stabilized spike ectodomain with a C-terminal T4 fibritin
trimerization motif was obtained from Wrapp et al.17 The
plasmid was used to transiently transfect FreeStyle 293F
cells using FreeStyle MAX reagent (Thermo Fisher Scientific).
The ectodomain was purified from filtered supernatant on
Streptactin XT resin (IBA Lifesciences), followed by size-
exclusion chromatography on a Superdex 200 in 5 mM Tris
pH 8, 200 mM NaCl.

The RBD domain (RVQ – QFG) of SARS-CoV-2 was cloned
upstream of a Sortase A recognition site (LPETG) and a
6xHIS tag, and expressed in 293F cells as described above.
RBD-HIS was purified from filtered supernatant on His-Pur
Ni-NTA resin (Thermo Fisher Scientific), followed by size-
exclusion chromatography on a Superdex 200. The
nucleocapsid was purchased from Sino Biological and was
not used beyond assay development.

Anti-SARS-CoV-2 ELISA

96-well ELISA plates (Nunc MaxiSorp) were coated with
SARS-CoV-2 S trimers, RBD or nucleocapsid (100 ng per
well) in PBS overnight at 4°C. Plates were washed six times
with PBS-Tween-20 (0.05%) and blocked using PBS-5% no-
fat milk. Human serum samples were thawed at room
temperature, diluted (1:100 unless otherwise indicated), and
incubated in blocking buffer for 1 h (with vortexing) before
plating. Serum samples were incubated overnight at 4°C
before washing, as before. Secondary HRP-conjugated anti-
human antibodies were diluted in blocking buffer and
incubated with samples for 1 h at room temperature. Plates
were washed a final time before development with TMB
Stabilized Chromogen (Invitrogen). The reaction was
stopped using 1 M sulphuric acid and optical density (OD)
values were measured at 450 nm using an Asys Expert 96
ELISA reader (Biochrom Ltd.). Secondary antibodies (all
from Southern Biotech) and dilutions used: goat anti-
human IgG (2014–05) at 1:10 000; goat anti-human IgM
(2020–05) at 1:1000; goat anti-human IgA (2050–05) at
1:6000. All assays of the same antigen and isotype were
developed for their fixed time and samples were
randomized and run together on the same day when
comparing binding between RT-PCR+ individuals. Negative
control samples were run alongside test samples in all
assays and raw data were log transformed for statistical
analyses.

Our S and RBD ELISA assays had the following sensitivity
& specificity at fixed SD thresholds:

Spike 3SD: 100% (95% CI [97.5–100.0]) & 99.0% (95% CI
[98.6–99.0]).
Spike 6SD: 100% (95% CI [97.5–100.0]) & 99.9% (95% CI
[99.6–100.0]).
RBD 3SD: 100% (95% CI [97.5–100.0]) & 99.0% (95% CI
[98.4–99.4]).
RBD 6SD: 98.0% (95% CI [94.2–99.3]) & 99.9% (95% CI
[99.6–100.0]).
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In vitro virus neutralization assay

Pseudotyped viruses were generated by the co-transfection
of HEK293T cells with plasmids encoding the SARS-CoV-2
spike protein harboring an 18 amino acid truncation of the
cytoplasmic tail17; a plasmid encoding firefly luciferase; a
lentiviral packaging plasmid (8455, Addgene) using
Lipofectamine 3000 (Invitrogen). Media was changed 12–
16 h post-transfection and pseudotyped viruses harvested at
48 and 72 h, filtered through a 0.45 µm filter and stored at
�80°C until use. Pseudotyped neutralization assays were
adapted from protocols validated to characterize the
neutralization of HIV, but with the use of HEK293T-ACE2
cells. Briefly, pseudotyped viruses sufficient to generate
~100 000 RLUs were incubated with serial dilutions of heat-
inactivated serum for 60 min at 37°C. Approximately 15 000
HEK293T-ACE2 cells were then added to each well and the
plates incubated at 37°C for 48 h. Luminescence was
measured using Bright-Glo (Promega) according to the
manufacturer’s instructions on a GM-2000 luminometer
(Promega) with an integration time of 0.3 s. The limit of
detection was at a 1:45 serum dilution.

IL-6 cytometric bead array

Serum IL-6 levels were measured in a subset of RT-PCR+
serum samples (n = 64) using an enhanced sensitivity
cytometric bead array against human IL-6 from BD
Biosciences. Protocols were carried out according to the
manufacturer’s recommendations and data acquired using a
BD Celesta flow cytometer.

Statistical analysis of SARS-CoV-2 RT-PCR+
data

All univariate comparisons were performed using non-
parametric analyses (Kruskal-Wallis, stratified Mann-
Whitney, hypergeometric exact tests and Spearman rank
correlation) as indicated, while multivariate comparisons
were performed using linear regression of log-transformed
measures and Wald tests. For multivariate tests, all
biochemical measures (IL-6, PSV ID50 neut., IgG, IgA, IgM)
were log-transformed to improve the symmetry of the
distribution. As “days since first symptom” and ”days since
RT-PCR+ test” were highly correlated, we did not include
both in any single analysis. Instead, we show results for
one, then the other (Supplementary table 2).

Probabilistic algorithms for classifying
antibody positivity

Prior to analysis, each sample OD was standardized by
dividing by the mean OD of “no sample controls” on that
plate or other plates run on the same day. This resulted in
more similar distributions for 2019 blood donor samples
with 2020 blood donors and pregnant women, as well as
smaller coefficients of variation amongst RT-PCR+ COVID
patients for both Spike and RBD.

Our probabilistic learning approach consisted of
evaluating different algorithms suited to ELISA data, which

we compared through ten-fold cross-validation: logistic
regression (LOG), linear discriminant analysis (LDA), support
vector machines (SVM) with a linear kernel, and quadratic
SVM (SVM2). Logistic regression models the log odds of a
sample being seropositive as a linear equation with a
resulting linear decision boundary, while LDA finds a linear
boundary by maximizing the ratio of the within-group to
between-group sum of squares. When applied to new data,
both logistic regression and LDA can provide an estimate of
the probability of each new sample being seropositive.
Support vector machines (SVM) is an altogether different
approach that constructs a boundary that maximally
separates the classes (i.e. the margin between the closest
member of any class and the boundary is as wide as
possible), hence points lying far away from their respective
class boundaries do not play an important role in shaping
it. SVM thus puts more weight on points closest to the class
boundary, which in our case is far from being clear. Linear
SVM has one tuning parameter C, a cost, with larger values
resulting in narrower margins. We tuned C on a vector of
values (0.001, 0.01, 0.5, 1, 2, 5, 10) via an internal 5-fold
cross validation with 5 repeats (with the winning parameter
used for the final model for the main cross validation
iteration). We also note that the natural output of SVM are
class labels rather than class probabilities, so the latter are
obtained via the method of Platt.31

We evaluated these methods using cross-validation,
according to three strategies: i) random: individuals were
sampled into folds at random, ii) stratified: individuals were
sampled into folds at random, subject to ensuring the
balance of cases: controls remained fixed and iii) unbalanced:
individuals were sampled into folds such that each fold was
deliberately skewed to under or over-represent cases
compared to the total sample. We sought a method with
performance that was consistently good across all cross-
validation sampling schemes, because the true proportion of
cases in the test data is unknown, and we want a method
that is not overly sensitive to the proportion of cases in the
training data. We chose to assess performance using
sensitivity and specificity, as well as consistency.

Given the good performance of all learners, we considered
the prediction surface associated with each SVM, LDA, SVM-
LDA ensemble, and the standard 3-SD, 6-SD hard decision
boundaries. Note that while methods trained on both
proteins can draw decision contours at any angle, SD
methods are limited to vertical or horizontal lines. We can
see that success, or failure, of the SD cut-offs depends on
how many positive and negative cases overlap for a given
measure (S or RBD) in the training sample. In the training
data, the two classes are nearly linearly separable when each
protein is considered on its own, which explains good
performance of 3-SD and 6-SD thresholds. However, the test
data contain many more points in the mid-range of S-RBD, in
line with milder infections in most adults, which makes hard
cut-offs a problematic choice for classifying test samples.

We trained the learners on all 733 training samples and
used these to predict the probability of anti-SARS-CoV-2
IgG in blood donors and pregnant volunteers sampled in
2020-2021. We inferred the proportion of the sampled
population with positive antibody status each week using
multiple imputation. We repeatedly (1000 times) imputed
antibody status for each individual randomly according to
the ensemble prediction, and then analyzed each of the
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1000 datasets in parallel, combining inference using Rubin’s
rules, derived for the Wilson binomial proportion
confidence interval.32 To compute confidence intervals for
sensitivity and specificity, we dichotomized predictions of
seropositivity at P > 0.5 or ≤ 0.5 and computed average
sensitivity, specificity, and 95% confidence intervals for
each fold in the cross validation via Wilson’s method before
averaging over all folds.
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