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Abstract

Aims: Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are
secreted from and interact with various types of immune cells to manipulate host body’s immune cell physiology for a
counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii)
resistance from host immune response.

Methods and results: The published data on aspect of host (murine and human) immune response against T. gondii was
taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune
response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-
inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory
equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow
balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of
resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to
tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma.
Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the
cellular component, make the host susceptible to toxoplasmosis especially in pregnant women.

Conclusion: The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure
with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic in-
terventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to
sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosup-
pression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for
graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to
launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue
cysts.
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Introduction

Toxoplasmosis is a zoonotic infectious disease caused by an
intracellular protozoon pathogen called Toxoplasma gondii (T.
gondii). It causes the abortion or congenital abnormalities
(hydrocephalus and retinochoroiditis) in pregnant women
which aremore susceptible toToxoplasma infection.1Generally,
the immune system of immunocompetent individuals builds a
protective immune response upon the interaction of antigenwith
antigen-presenting cells (APC) which induces the translocation
of nuclear factor kappa (NF-κB) to initiate production of pro-
inflammatory cytokines (IL1b, IL12, IL18, and IFNγ).2,3 The
host lymphocytes and myeloid cells not only secrete a network
of cytokines for signaling pathways upon exposure to antigen
but also up-regulate certain chemokines (CXC, C, and CX3C)
and toll-like receptors (TLR) on their surfaces for acting as
signal-recipients against any antigen.3,4 In response to specific
intracellular signals, various pro-inflammatory (IL1β, IL12,
IL18, TNFα, IFNγ) and anti-inflammatory (IL4, IL10, TGFβ)
cytokines (Table 1) give rise to a cytokinome that acts for
specific immunological stimulus to develop immune response
for susceptibility or resistance (Figure 1) to toxoplasmosis.4–7

Immunological studies on human infections have clearly
concluded that cell-mediated immunity and IFNγ are par-
amount in the control of any infection particularly caused by
the intracellular pathogen (T. gondii).8 The inability of the
humoral response alone (antibodies) to prevent Toxoplasma
reactivation is evident by the fact that most of the HIV-
infected people lack effective immunity hence exhibit
symptoms of T. gondii infection and reactivation, even in the
presence of high titers of specific IgG.9

Pro-inflammatory cytokines are among the key factors to
initiate and maintain innate as well as acquired immunity to
restrict proliferation of Toxoplasma. A variety of cytokines are
produced upon activation of APCs and cells of the adaptive
immune system (B and Tcells). The differences in cytokinome
can be speculated at the different stages of infection, due to
intra- or extra-cellular nature of pathogens as well as due to
diversity of the host genetic makeup.10 The indirect role of
cytokines against T. gondii in leading to either resistance or
susceptibility also depends upon the stage of parasite in the
host and the induction and modulation of pro-inflammatory
cytokines driven by the particular parasite strain as well as
the robustness of the host’s immune profile. Different typical
and atypical strains of T. gondii exist globally, and have been
specifically studied in America and Europe. This parasite is
identified having three distinct genotypic lineages in hu-
mans: type I strain (RH-88), type II strain (ME49, andDEG),
and type III strains (CEP and VEG).11 The genetic moieties

in these strains result into a highly varied level of
virulence7,12 which inflicts diverse pathological effects in
host by a variety of cytokine pathways as well as owing to
the wide range of interactions through a vast diversity of host
and parasite molecules interacting each other, with some
known and some unknown footprints. The known footprints
include but not limited to inherent-oxidative stress,13 a di-
versity of IRGs (Immunity Related GTPases)12 of host with
a locus on chromosome 11,14 Z-DNA binding protein 1
(ZBP1), receptor-interacting serine/threonine-protein kinase
3 (RIPK3) of host.15 Likewise, the wide range of parasite
molecules includes a diversity of rhoptry proteins (e.g.
ROP5, ROP18),12,16 dense granule proteins (e.g., GRA5,
GRA12, GRA16, GRA24)17; small GTPase immunity-
associated proteins (GIMAPs 4, 5 & 6)18 of T. gondii.
This review describes the cytokinome (Table 1) in
toxoplasmosis and their interactive role for development
of host’s susceptibility and resistance toward T. gondii
infection.

Database search

A search was conducted on Science Direct (https://www.
sciencedirect.com/science/search) and PubMed (https://
www.ncbi.nlm.nih.gov/pubmed) using “host immune re-
sponse and resistance of toxoplasmosis” to achieve the
relevant literature for this study. The searched period
ranged from 1980 until 15 September 2021, yield 649
publications. The literature having mechanism of immune
response and pathogen resistance were included in this
study. Whereas for the last 5 years, the data were searched
from PubMed using the same key words as mentioned
above and majority of the articles with novel insights into
the immune response mechanism as well as host parasite
interactions were included in this review. Although max-
imum efforts have been done to review the literature on
“host immune response and resistance of toxoplasmosis”,
certainly there are limitations of this review. Hence, this
should not be considered a review encompassing all the
new literature on ‘Toxoplasma gondii” and “Toxoplasmosis”.
This is because of the fact that 24,912 and 13,928 results are
retrieved from Science Direct and PubMed, respectively,
while using a key word “Toxoplasmosis”with the same time
period as mentioned above. Likewise, 23,158 and 15,750
results are displayed from Science Direct and PubMed,
respectively, with a key word “Toxoplasma gondii” for the
same time period. Similarly, slightly modified key words,
that is, “host immune response of toxoplasmosis” displays
almost 7000 (6969) results in Science Direct.
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1) Virulence of T. gondii strains

In humans, the regulatory cytokines profile depends on
the T. gondii strain. Among three notable strains (type I, II
and III) of T. gondii, the type I is more virulent as compared
to type II and type III strains. In type I (RH strain) infected
cells, the translocation of NF-κB does not take place re-
sulting in the production of anti-inflammatory (IL10, IL27,
and TGFβ1) cytokines which are higher as compared to
uninfected cells.19–23 These anti-inflammatory cytokines
enhance the proliferation of T. gondii. It was found that
with a significantly high level of TGFβ1 in the blood as
well as in the aqueous humor of the acutely intraocular
Toxoplasma-infected host, it may adversely interfere with
the effective cellular immune response leading to an in-
creased mortality and extensive ocular tissue damage with
tachyzoites observed in the pigment epithelium layers.24

Consequently, Th2 and Treg responses are enhanced in
comparison with a primary ocular infection.25 ME49 is a
type II strain that induces the translocation of NF-κB-light-
chain-enhancer from the cytoplasm to the nucleus of ac-
tivated B cells, splenocytes26 and bone marrow–derived
MΦ27 which induce the production of pro-inflammatory
cytokines (IL1β, IL12, IL18, TNFα, IFNγ, and IL12p40) by
thioglycolated MΦ/cell lines19,28. Whereas, the production
of anti-inflammatory cytokines are lower in ME49-infected
cells than that of uninfected cells21 speculating CD36-
mediated engagement of low virulence strains, with
macrophages.29 Recent evidence also demonstrates the
role of Toxoplasma’s parasitophorous vacuole-mem-
brane–associate dense granule proteins in modulating
parasitic virulence while interacting the host body’s
resistance mechanisms like GRA12 of Toxoplasma was
identified as a major virulence factor to counter the host’s
IFNγ.30

Host immune response

A) Innate immune response

In early stages of infection, dendritic cells (DC), mac-
rophages (MΦ), natural killer (NK), and neutrophils (Np)
interact in a coordinated way to provide the first line of
defense in the form of innate immune response leading to
develop adaptive immunity.31-33 The innate immune re-
sponse is elicited against toxoplasmosis in the form of IL12
production upon interaction with antigen (Ag). The release
of IL12 from MΦ, DCs, and Np is essential for the release
of IFNγ from NK cells (innate immune response) and T
lymphocytes (adaptive immune response) via antigen
presentation.34 IFNγ has been shown to induce guanylate
binding proteins (GBPs) in a murine model of toxoplas-
mosis, thereby, these GBPs accumulate on the surface of
intracellular parasites potentially causing parasitic

destruction, thus displaying an active role of intracellular
autonomous immunity.35 The increased susceptibility to-
ward T. gondii infection is due to the depletion of NK cells,
MΦ, or DCs which have a significant involvement for
innate immune response against the infection.36 The
mechanism of innate immune response initiate upon in-
teraction of toll-like receptors (TLRs) with ligands ex-
pressed on T. gondii surface, thereby starting intracellular
signaling pathways through engagement of the myeloid
differentiation domain-88 (MyD88). These are the uni-
versal adaptor proteins involved in signaling of all TLRs
except TLR-3. The study on MyD88 deficient mice model
was impaired to induce primary protection in acute in-
fection of T. gondii (RH strain).37 Studies on mouse with
targeted inactivation of MyD88 showed that DCs work as
antigen-presenting cells (APC) and are responsible for the
increased susceptibility to T. gondii infection. However,
there was no effect on MΦ and Np. The MyD88 deficient
mice masked the production of IL12 fromDCs and IFNγ by
NKs to initiate innate immune response. It explains a central
role of DCs in the coordination of innate immune response
against T. gondii infection and predicts the increased sus-
ceptibility towards infection if DCs are recognized defective
in early encounter of T. gondii infection.38

B) Cellular immune response

In T. gondii infection, the strong resistance to re-infection
aswell as the hindrance to reactivation of chronic infection is
based on the host’s cell-mediated immunity.39,40 The syn-
ergistic role of CD4+ and CD8+ T cells for the development
of acquired immunity was understood from targeted ex-
periments on C57BL/6 mice vaccinated with temperature
sensitive mutant strain of T. gondii (ME49).41,42 The de-
velopment of complete immunity against a virulent strain
(type I) is dependent on IFNγ synthesis fromNK and Tcells.
The immunocompetent host activates either T cells or NK
cells for encountering parasitic invasion. In a previous study,
the MHC I (lack of CD8+ cell stimulation) impaired mice
(beta 2m-deficient mice) surprisingly showed high resis-
tance against T. gondii following vaccination. This enhanced
immunological response in the absence of CD8+ cells
showed the involvement of NK cells activated by IL12 upon
parasitic invasion.43

Generally, the CD8+ Tcells are the major source of IFNγ
production against most of the T. gondii strain.44 The c-Rel
expression regulated by NF-κB is widely dominant in
hematopoietic cells,45 which play a critical role in the
development of resistance against T. gondii (ME49) in-
fection.46 The role of c-Rel in influencing the CD8+ cell
response was investigated in mice model (c-Rel–/– mice)
with a special infection of T. gondii strain (replication-
deficient strain) in C57BL/6, CD45.1, and Thy1.1 mice.
The CD8+ cells impair to replicate in the absence/
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deficiency of c-Rel. Likewise, the c-Rel deficient mice
remained unable to survive during infection with the
replicating pathogen.47,48

CD8+ T immune cells having a TCR Vβ8.1, 8.2+
phenotype produce protection against tissue cyst devel-
opment in mouse model. Transfer of CD8+ cells induced by
N-terminal of dense granule protein-6 (GRA6Nt) of par-
asite has been shown to clear T. gondii cysts from the brains
of infected mice that were deficient in T cells (Sa et al.49

2017), further highlighting the role of cytotoxic T cells in
the induction of protective immunity against T. gondii. A
genetically resistant strain of mice having a H-2d haplotype
helped discover these specific type of cytotoxic T cells,
whereas H-2Ld was found as a major antigen-presenting
molecule to CD8+ T cells to achieve this objective of tissue
cyst elimination.

The immune response of CD8+ cells is more dominant
alike effector cells than CD4+ cells. Nevertheless, CD4+

helper T cells are direly required for an effective functioning
of CD8+ cells.50,51 The correlation of CD4+ and CD8+ `cells
proved to be themain scaffold of cytokine trafficking inmice
host.

Regulatory T (T reg) cells are required for the main-
tenance of immunological self-tolerance and immune ho-
meostasis by actively suppressing the pathological and
physiological immune responses.52,53 An IL2 knocked-out
mouse model orally infected with lethal dose of T. gondii,
showed highly Th1 cell type-polarized mucosal immune
response. Such effect contributed to the incapacity of T reg
cells to perform effector responses and consequently led to
immuno-pathogenesis.54,55 Besides this, T reg cells of
infected mice expressed lower levels of Bcl-2 and increased
levels of apoptotic markers than that of naive mice. It is
suggested that de-regulation in the T reg cells is a con-
sequence of these impaired cells turnover.54 Besides this,
there was found a gradual weight loss and significant
delayed mortality in T reg-transferred toxoplasmosis-
infected mice associated with lower level of IFNγ and
TNFα. Additionally, higher cyst number and parasite load
in brain of those mice were observed.56 Furthermore, ac-
tivity of T reg cells results in the death of proliferating T
cells which favors the multiplication of pathogen in the
murine model.57 In a pregnant T. gondii-infected mouse
model, numbers of splenic CD4+CD25+-T reg cells and
placental Foxp3+ cells decreased synchronously. During
infection, the reduction of splenic CD4+CD25+-T reg cells
was associated with apoptosis (Bcl-2) induced by prolifer-
ating T cells.58 Additionally, injection of pregnant mice with
excretory–secretory antigens (ESA) of T. gondii also causes
fetal death associated with apoptosis of CD4+CD25+ T reg
cells by down-regulating their Bcl-2 expressions and Bcl-2/
Bax ratio. It could be partly prevented by adoptive transfer of
CD4+CD25+ T reg cells from normal to infected pregnant
mice.59

The high level of Th1 cytokines (IL2 and IFNγ) were
reported to be produced by CD4+ cells upon interaction
with tachyzoite.50 It is found that MyD88 is effectively
involved in the development of Th1 response.60 Generally,
the Th1 cell-mediated immunity builds the resistance
against the T. gondii infection by IFNγ production via Th1
effector cells.61 The role of Th1 cytokines (IFNγ, IL12, and
TNFα) for susceptibility to toxoplasmosis has been wit-
nessed with the absence of any of these pro-inflammatory
mediators as previously studied.42,62 Moreover, other cy-
tokines like IL2, IL6, IL7, IL15, IL18, and IL23 are also
associated with the development of strong immunogenic
response.60 Recent evidence demonstrates TLR-11–inde-
pendent activation of inflammasome for driving CD4+

T-cell–derived IFNγ-mediated host resistance to T. gondii.7

GRA24-driven protective immunity mediated through p38
MAPK activation, IL12 production, and independent of
MyD88 pathway has been evidenced, recently, through use
of bicistronic IL12YFP reporter mice on MyD88+/+ and
MyD88-/- genetic backgrounds, MyD88+/+ and MyD88-/-
bone marrow–derived macrophages as well as exploiting
parasites species named as uracil auxotrophic Type-I stain
of T. gondii cps1-1 and cps1-1:Δgra24.63

In contrast, various experiments have demonstrated that
the cytokines involved in Th2 response also play a detri-
mental role for enhancing the susceptibility to T. gondii
infection.64 The modulation of Th2 response is mainly carried
out by IL4 and IL10. Both cytokines increase the host
susceptibility to T. gondii in early infection.103 Nevertheless,
the regulatory function of Th2 cytokines has been unveiled.
The evidence from T. gondii infection (Type II stain) to the
IL4-knockout mice resulted in less susceptibility to toxo-
plasmosis.65 Shoot-up levels of inflammatory cytokines
were detected in IL10 knockout mice causing early resis-
tance to Toxoplasma.64,66

C) Cytokines and other inflammatory mediators
playing a role against T. gondii

Interferon-γ: Interferon-γ (IFNγ) is reckoned as the
main pillar of cytokines induced by T cells (CD4+ and
CD8+), γδT cells, and NK cells as protective immunity
against either the acute or chronic phase of T. gondii
infection.42,67,68 The neutralization of INFγ (anti-INFγ
antibodies) in in vivo makes the mice (Swiss-Webster)
susceptible to the primary infection (acute infection) and
reactivate parasite (ME49 strain) in chronic infection.69

The IFNγ is produced from activated MΦs to exhibit its
specific immunological functions against T. gondii (C56
strain).70 The latest evidence demonstrating the CD4+,
CD8+, γδT cells, and NK cells as the main producers of
IFNγ during toxoplasmosis was based on the use of a newly
developed mouse line named as “GREVEN” an IFNγ
reporter mouse having a fusion protein of Venus and
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NanoLuc to analyze IFNγ producing cells.67 Likewise, the
Lck-Cre/Ifngfl/fl mice were found highly susceptible to
toxoplasmosis, further strengthening the role of T-cell-
IFNγ in protection against toxoplasmosis.67 At the site of
infection, the maintenance of IFR8+ inflammatory DCs is
essential provision of host resistance against intracellular T.
gondii, whereas this requires the production of IFNγ by
ILC1 and NK cells through T-bet involvement.68 The
extensive role of IFNγ was partly dependent on the release
of TNFα by activatedMΦs.71 In the host, most documented
immunological pathway against T. gondii (virulent RH
strain) is nitric oxide–dependent.22 It involves the collec-
tive role of IFNγ and TNFα for the production of nitric
oxide that curtails the development of microbial patho-
gens.72 IFNγ is involved in an alternative mechanism via
inducing Ag-specific CD8+ (CTL) cells-dependent im-
munity.73 INFγ directs the antimicrobial response such as
STAT-1, TNFα, IL1β, and CD40L by activating the tran-
scription factor (NF-κβ) signaling pathway.74,75 This sig-
naling pathway has been believed to rely mainly through
involvement of inducible nitric oxide synthase (iNOS) and
immunity related GTPase (IRGs) which make grounds to
resist T. gondii (ME49) infection,76 the nitric oxide-
independent intracellular resistance mechanism has been
evidenced recently through use of IFNγ-stimulated bone
marrow–derived macrophages (BMDM).77 Likewise, re-
cent evidence has shown IFNγ as an inducing agent of
guanylate binding proteins (GBP) that accumulate on
surface of intracellular stage of T. gondii; thus, mediating
the role of an intracellular check on the excessive growth of
this parasite that may become lethal to mouse host in the
absence of GBP as has been demonstrated by the early
death of the mice deficient in murine guanylate binding
protein-7 (mGBP7), by T. gondii infection.35 The intra-
cellular pathogen (T. gondii) has been highly adapted for
combating host immune response by interfering with NF-κβ
signaling pathway.78,79 It also has the ability to inhibit IFNγ
signaling by curtailing the function of STAT-1 and by
augmenting the levels of IFNγ signaling suppressor mole-
cules, named as suppressor of cytokine signaling molecule-1
(SOCs1).80–82 Most of the Th2 cytokines function antago-
nistically to IFNγ.

Tumor necrosis factor-α (TNFα): TNFα is a pyrogenic
factor, produced by MΦs, T lymphocytes and basophils,
found to be responsible for the production of acute inflam-
matory response. It has the ability for microbicidal activity in
MΦs via the production of IFNγ from NK cells.83 TNFα
functions synergistically with IFNγ for the development of
resistance against T. gondii (C56 strain) infection.71,84 Hence,
it is suggested to have a crucial role in the protective immunity
against toxoplasmosis. However, certain researchers ex-
plained the role of TNFα to be doubtful. TNFα has also been
reported to elicit cerebral and hepatic autoimmunity.85,86 It
has also been found to assist in intra-cerebral dissemination

of T. gondii (ts-4 strain and virulent RH) in mice ((TNF(-/-),
LTalpha(-/-), and TNF/LTalpha(-/-)).87

Interleukin-1: It is an acute phase response mediator
cytokine that plays a synergistic role with TNFα enhancing
inflammation during infection with T. gondii.90,91 TNFα
has been found to be associated with IL1β in regulating
endothelial cells for the immunological and inflammatory
role. In vitro studies elucidated an effect of these cytokines
in hindering the intracellular multiplication of T. gondii in
murine peritoneal MΦs or human fibroblast.71,90 However,
in vivo studies on mice showed the protective role of re-
combinant TNFα and/or recombinant IL1β during infection
with tachyzoites of T. gondii (C56 strain and RH strain).71

In female mouse models (BALB/c, and Swiss-Webster),
IFNγ induced the anti-toxoplasmic activity by augmenting
the production of TNFα when treated with recombinant
cytokines (TNFα and IL1β).

Interleukin-2: Interleukin-2 is exclusively produced by
CD4+ T cells. It is initially regarded as the primary T cell
growth factor having significant role in the proliferation as
well as in the development of antigen stimulated CD8+ T
cells.91 Various studies carried out on viral infections re-
vealed an indispensable role of IL2 during primary re-
sponse of T cells via effector cytotoxic T cell development
and restoration of CD8+ memory T cells.92,95 IL2 has also
been found to induce T cells proliferation for IFN-γ pro-
duction during the infection with T. gondii (virgin).96–98

Whereas, the role of IL2 in secondary immune response to
T. gondii (ME49) was disclosed by Sa et al., (2013) on CD8+

T cell hybridoma clones from the spleens of chronically
infected female mice (BALB/c, BALB/c-background
Rag1�/�, and Swiss-Webster). They found an increased
production of INFγ with exogenous input of IL2 to CD8+ T
cell hybridomas.99 Various studies onmurinemodels proved
the protective role of IL2 against the infection with T. gondii.
Increased survival rates and reduced number of cysts in the
brains of micewere observedwhen treated with recombinant
IL2.96 It also triggered the lytic activity of MΦs and NK
cells.100

Interleukin-4: Interleukin-4 is a Th type 2 cytokine that
down-regulates the effect of Th type 1 cytokines. The
progressive toxoplasmic encephalitis found to be linked
with the presence of mRNA transcripts in the brains of
infected mice (C57BL/10 ScSn).101 In acute infection of T.
gondii, IL4 exerted a protective role by antagonizing the
products of Th1 cells that reduced the number of mor-
talities. However, the prolonged exposure of IL4 made the
mice (IL-42/2) susceptible to chronic toxoplasmosis with
increased multiplication of parasite cysts in brain.102

Interleukin-6: Mainly, it is involved in early develop-
ment of acute phase response, maintenance of hematopoi-
esis103 and immune barriers in ocular104 as well as cerebral
Toxoplasmosis.105 It makes the NK cells to increment their
cytotoxic activity and is also involved in the maturation of
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antibody secreting B lymphocytes and the differentiation of
T lymphocytes.106 Different immune cells such as MΦs,
endothelial cells, monocytes, myelomatous, and fibroblasts
are involved in the production of IL6. This cytokine
functions synergistically with IL1β and TNFα. Hence, it is
regarded as a remarkable pyrogenic factor mediating
dominantly the production of hepatocyte based acute in-
flammatory proteins. The signaling pathway of IL6 is as-
sociatedwith gp130 signal transducing component that leads
toward the activation of STAT1 and STAT3 via the signaling
of JAK1, JAK2, and TYk2. This pathway is referred as
gp130-mediated JAK/STAT signaling pathway107 which is
most effectively regulated by socs-3 signaling.108,109 The
host transcription factor STAT3, antagonizes host response
and strengthens parasite survival which is activated by the
cytokines (IL6 and IL10) during infection with certain
intracellular pathogens.110–112 Interestingly, T. gondii

(ROP16-deficient type I) has been found to activate this
factor by phosphorylation caused by rhoptry
kinase.20,113 This event is accompanied with impaired
production of IL12p40 and TNFα response. To inves-
tigate the mechanism involved in the invasion of im-
mune strategies, it was found that socs-3 up-regulates
IL6 and IL10 which stimulate activation of STAT-3. The
role of IL6 is more critical as in normal defense
mechanism, socs-3 can curtail function of this cytokine
by formation of gp130/IL6 receptor complex.114 In the
work conducted by Whitmarsh et al., (2011), the mice
deletion with socs-3 in MΦs and neutrophils unex-
pectedly resulted in increased susceptibility to toxo-
plasmosis by reducing the levels of IL12 and IFN-γ.
This study suggested more pronounced anti-
inflammatory role of IL6 in MΦs particularly in the
absence of socs-3.115

Figure 1. Outcome of toxoplasmosis in case of resistance and susceptibility.
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Moreover, the gp130 transducing component has com-
mon structural features to IL6 and IL27.116 This IL27 is
critically involved in curtailing the infection induced in-
flammatory pathology and functions antagonistically to IL6.
The mice lacking gp130 signal transducer (gp130 Y757F
mice) upon infection with T. gondii (ME49), showed high
parasite burdens and increased mortality having low IL12
and IFNγ titer.117 IL6 is a cytokine that more pronouncedly
functions to resist the Toxoplasma-induced encephalitis in
murine model.118 Previously, the protective role of IL6 was
questioned in various studies that illustrated the role of IL6
in increased intracellular multiplication of T. gondii.110 Later
studies defined the critical role of IL6 in progression of T.
gondii infection as the IL6-deficient mice rapidly switched to
severe states of toxoplasmosis such as Toxoplasma en-
cephalitis119 (Figure 2).

Interleukin-7: It plays a crucial role for the develop-
ment of memory CD8+ T cells120 which are the key pro-
ducers of INF-γ in acquired immunity.41 The IL2, IL7, and
IL15 fall in the family of γ-chain cytokines that are in-
volved in building CD8+ memory T cell.121,122 The de-
velopment of memory cells in the form of CD8+ T cells has
been disclosed to be dependent on the significant role of
IL7 as well as IL15. The in vivo neutralization of IL15
affected CD8+ memory T cells productions which are more
susceptible to T. gondii (76K) re-infection.123 In memory
cells development process, IL7 is recruited to provide the
survival signals to naı̈ve and memory CD8+ T cells.124 In a
study conducted by Bhadra et al., (2010), the synergistic
role of IL7 and IL15 was explored. Their findings indicated
a severe impairment of memory cells in case of the absence
of both of these cytokines. However, the absence of any of
these cytokines resulted in minimal impact on the matu-
ration of splenic CD8+ T cells.125

Interleukin-10: It induces pleiotropic effect on cells and
is found to be a suppressive cytokine that is purely an anti-
inflammatory in its action.126 Immune cells including
MΦs, CD4+, B cells, DCs, and mastocytes are the source of
this cytokine.127–129 The rapid production of IL10 by lo-
calized MΦs was reported upon infection with high doses
of virulent (RH) strain in mice.130 However, it keeps a
check on the protective functioning of CD4+ Tcells in acute
phase infection.131,132 IL10 is also reported to be re-
sponsible for suppressive microbicidal activity of MΦs and
neutrophils by minimizing the function of nitric oxide (NO)
synthase enzyme, IFNγ and IL12. The NO inhibits the
production of O2 free radicals and prostaglandins.

133–135 The
simultaneous production of these antagonizing cytokines
may lead to demolish the defensive mechanism. Hence, it
was reported that the production of IL10 is supported by an
“activation signal” after the release of IL12. The IL12 lets
the production of IFNγ by Th1 cells not only triggering the
effector cells to play protective role but also passing a signal
for the reactivation of IL10 gene expression. The study

conducted by Gaddi et al.,136 (2007) explained the negative
feedback mechanism for the poised state of these pathogenic
and regulatory cytokines via CD4+ Tcell lineage. In themice
(BALB/c) susceptible to T. gondii, the increased levels of
IL10 were found in their lymph nodes and central nervous
system causing chronic toxoplasmic encephalitis.134 In a
study, the detrimental role of IL10 was disclosed as to
promote the development of intracellular tachyzoites by
inhibiting MΦ L–arginine-based killing.133 However,
making a comparison, severe combined immune-deficient
(SCID) IL10 knockout T. gondii (RH strain) infected mice
lived longer than the infected SCID mice.66

Interleukin-12: In innate immune response, certain cell
populations (DCs, MΦ, and Np) are reported to produce
IL12 in vitro against T. gondii (a virulent strain).130,137,138

It is the central inducer of IFNγ in developing the protective
immunity against T. gondii. It is evident from various ex-
periments that the complete absence of immunity in INFγ as
well as IL12p40, IL12p35, and STAT4 deficient mice leads
to deaths in early acute infection.139–141 The increased
mortalities were reported when diphtheria toxin were used to
deplete DCs in T. gondii (ME49 strain) infected organism
which abolish the production of IL12.142 The absence of p40
chain in IL12 heterodimer is responsible for the poor pro-
duction of IFNγ in mice (IL12-deficient).143 During chronic
Toxoplasmosis, the 12/15 lipoxygenase (12/15-LOX) is
involved in the oxidation of unsaturated fatty acids in MΦs
which deprives the production of IL12. In addition, the 12/
15-LOX deficient mice were enabled to produce comparable
levels of IL12 when stimulated with lipopolysaccharide
(LPS). This finding was explained by the involvement of
neutrophils and particularly DCs in inducing IL12 pro-
duction in acute phase infection.144

Interleukin-15: It belongs to Th1 immune response
and plays an effective role in enhancing the function and
development of CD8+ T cells.145 IL15 serves to play a
key role in the development of various lymphocyte
population more importantly NK, CD8+ T cells and in-
traepithelial lymphocytes (IELs).146 The memory (CD8+)
T cell response was found inadequate identified in IL15
knockout mice.147,148 However, a study conducted by
Lieberman et al., (2004) reported no role of IL15 for de-
velopment of memory immune response. They found the
mice deficient with this cytokine withstood the severe T.
gondii (ME49) infection.149

Interleukin-17: The IL17A, IL17F, and IL22 are se-
creted from Th17 cells reported by Wu et al., (2018). But a
variety of immune cells including CD8+,150,151 γδ,152 and
NK cells153,154 also secrete IL17. It is an inflammatory
cytokine that provides innate immunity from the recruit-
ment of neutrophils155 which make the host resistant
against T. gondii infection.156 A subset of CD4+ T cells has
been identified which produces IL6, IL17A, IL17F, and
TNF in response to IL23.157,158 In a study conducted by
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Kelly et al., (2005), IL17 knockout mice remained suc-
cessful in developing a normal acquired immunity against
T. gondii.152,161,162 A study carried out on T and B lym-
phocytes deficient mice revealed that NK cells are the
major IL17 producers. These cells are influenced to pro-
duce IL17 in the same manner as T cells are triggered. In
addition, the researchers revealed a key role of IL6 to target
NK cells for secretion of IL17.161 The IL17A neutralization
by antibodies had a partial protective effect against fatal T.
gondii–associated inflammation.162 Severe South Ameri-
can ocular toxoplasmosis is associated with decreased level
of intraocular IFNγ and IL17A.163 But in ocular toxo-
plasmosis (with less severe clinical presentation and in-
fected by non-virulent strains) in France, the IL17A level
was augmented in toxoplasmic uveitis.164 Neutralizing
IL17A decreased intraocular inflammation and parasite
load in mice (Swiss-Webster). It is suggested that the local
IL17A production by resident cells plays a central role in
the pathology of ocular toxoplasmosis.25 Finally, there was
observed a lower level of IL17 expressing CD4+ and CD8+

T lymphocytes in cells cultures from sero-negative and
seropositive pregnant and non-pregnant women, respec-
tively upon stimulation with tachyzoites.165 A recent study
demonstrates an essential role of T cells expressing class I-
restricted T cell-associated molecule (CRTAM), for IL17
production during toxoplasmosis.166 The study also high-
lights the importance of IL17 in regulating immunopa-
thology whereby deficiency of IL17 can cause dysbiosis
through the production of antimicrobial peptides as well as
through translocating gut-bacterial flora to spleen and
mesenteric lymph nodes.166 Overall, these results suggest
that IL17-mediated responses may be useful for both
protective and pathogenic effects.

Interleukin-18: It is a pleiotropic cytokine produced in
a non-specific manner. IL18 is a potent cytokine involved
in the production of IFNγ by NK cells and T lymphocytes.
Hence, it is involved in building innate as well as acquired
immune response against T. gondii infection. Attributable
to its identical role in developing resistance, IL18 is referred
as a potential enhancer of IL12 activity.167,168 Structurally, it
is closely related to IL1β cytokine family.169 Moreover,
similar to IL1β signaling pathway, IL18 precede the acti-
vation of NF-κβ170,171 that requires STAT4 factor for its
activation.172,173 The impaired role of IFNγ was observed in
IL18 deficient mice with intracellular infection.174–176 In-
terestingly, NK cell has certain receptors for IL18 which has
synergistic role with IL12 in developing innate immunity
against T. gondii infection.167,177–179 However, endogenous
role of IL18 on SCID mice was demonstrated to be trivial
having less influence on IFNγ production when the infected
mice were treated with anti-IL18. In contrary, the exogenous
role of IL18 was reported to increment the production of
IFNγ ultimately boosting the resistance against T. gondii.179

IL18 reported to be involved in the immunopathology of
intestine in mice accompanied by IL12.180

Interleukin-33: The host damage protein IL-33 has
recently been shown to play an important role in the im-
mune response by affecting the local environment of brain
in the favour of both host and parasite survival through
engagement of astrocytes via IL-33 Receptor. IL-33 is a
host damage protein that is produced locally in the brain
tissue from the oligodendrocytes and astrocytes. The ev-
idence to this effect is very strong as it is based on the use of
mice having IL:-33 receptor-deficient astrocytes.181

Transforming Growth Factor-β: Transforming growth
factor-β (TGFβ) is another immunosuppressant cytokine
that plays a critical role in antagonizing the action of TNFα,
TNFβ, IFNγ, and IL12.182,183 Moreover, it is considered to
be involved in limiting the immune-pathologies incited by
Th1 cytokines specifically in central nervous system (CNS)
as well as in intestine.184,185 TGFβ has been reported to
induce immunopathological effects on retinal cell line in an
in vitro study by increasing the replication of T. gondii.186

The intraepithelial lymphocytes are the main producers of
TGFβ that is involved in the down-regulation of pro-
inflammatory cytokines (IFNγ, TNFα, IL1β, IL12, IL15,
and IL18) in case of pathogenic lamina propria lymphocytes
(LPL) response (hyper-Th1 response). When wild type mice
were treated with active transfer of IELs, they showed no
sign of ileitis. This study revealed the modulating role of
IELs for LPL produced Th1 response in the intestine.187

In spite of gastrointestinal sites, TGFβ also has a dom-
inant role as an anti-inflammatory agent in brain and eyes.188

TGFβ signals the spleen cells to secrete anti-inflammatory
cytokine such as IL10 that is synergistically involved in
checking the pro-inflammatory secretions fromNK cells and
CD4+ T cells in these immune-privileged sites (eyes, brain,
and placenta).189 The production of IL6 by innate immune
response functions antagonistically to TGFβ and suspends
its protective role for immune privileged sites (eyes and
brain) susceptible to hyper-inflammation.190

CCL22: T. gondii induces expression of CCL22, a
chemokine that has been linked to Toxoplasma-induced ac-
tivation of Wnt/beta-catenin signaling pathway, for resisting
cellular check on parasite replication and favoring the parasite
survival within Toxoplasma-exposed naı̈ve BMDMs. This
cellular-check (induced by IFNγ and independent of nitric
oxide) significantly reduced intracellular parasite load when
Wnt/beta-catenin signaling pathway was chemically
antagonized using IWR-1-endo in naı̈ve BMDMs, thus
strengthening the hypothesis that Toxoplasma induces this
signaling pathway to survive intracellular anti-parasitic
immunity. This got further support when a significant re-
duction in the intracellular parasite load of RHASP5, a
mutant strain of T. gondii lacking ability to secrete dense
proteins into the host cell, was seen in naı̈ve BMDMs.

8 International Journal of Immunopathology and Pharmacology



Additionally, T. gondii invading the BMDMs pre-stimulated
with IFNγ, switched on its bradyzoite gene profile.77

2) Toxoplasmosis and pregnancy

Toxoplasmosis is more important in pregnant women
and immune compromised patients with respect to abor-
tion, hydrocephalus, and retinochoroiditis. In pregnancy,
Th2 immune response becomes activated which favors the
proliferation of Toxoplasma. Briefly, in acute phase of T.
gondii infection, certain cytokines (TGFβ1, TNFα, IL4, IL5
IL7, IL10, and IL17A) and chemokines (CXC, C, and
CX3C families) play an important role as protective immune
response.191,192 These pro-inflammatory cytokines down-
regulate anti-inflammatory cytokineswhich travel to immune-
privileged sites (brain, eyes, and placenta) to favor the ex-
istence of corpus luteum in the presence of low progesterone
and 17β estradiol in pregnant women.23 Apoptosis of pla-
cental cells may end up in fetal resorption, congenital
anomalies (hydrocephalus and retinochoroiditis), or abor-
tion191 (Figure 1). Briefly, toxoplasmosis with lymphadenitis
has been reported with higher levels of chemokines
(CXCL8/IL8, CXCL9, and CXCL10) in pregnant women.
Additionally, levels of VCAM1, CCL2, and CCL5 are lower
in pregnant than in non-pregnant women.193 The levels of
ICAM1, CXCL9, CXCL10, MCSF, and TNFβ were up-
regulated in acutely toxoplasmosis-infected Colombian
pregnant women.Whereas, the levels of Eotaxin (Et), TGFβ,
TNFα, IFNγ, IL2, IL4, IL15, CXCL1, and stem cell factor
(SCF) were down-regulated in pregnant American acute

cohorts.194 In congenital toxoplasmosis, it was found that
serum levels of IFNγ and IL5 were greatly increased during
active stage of retinochoroiditis. In contrast, IL10 production
was low during inflammatory stage and significantly higher
in patients with inactive lesions.195 The cytokine profile of
acute toxoplasmosis-infected patients varies with geograph-
ical localities.

4) Perspectives for immunomodulation, therapy,
vaccine, and other anti-parasitic challenges

The exploration of deep knowledge on the role of cyto-
kines in toxoplasmosis should open new avenues for ther-
apeutic measures based on immunomodulation. For instance,
the use of IL17A antagonist inhibited the ocular toxoplas-
mosis in European patients.196 Similarly, inhibition of parasite
kinases in South American toxoplasmosis patients enhances
the expression of IFNγ.163,197,198 This difference in inhibition
sites might be strain dependent. Recent analysis of the cy-
tokines profile in congenital toxoplasmosis199,200 indicates
that modulation of cytokines through immuno-modulatory
peptides could be assayed as immune adjuvants.201 Such
approaches need to be explored for the control of toxo-
plasmosis in humans. Etanercept (a soluble TNF-receptor
fusion protein), widely used to treat autoimmune disease,
activates the conversion of bradyzoites (chronic toxoplas-
mosis) to tachyzoites (acute toxoplasmosis) through down-
regulation of pro-inflammatory cytokines (TNF, IL-1beta,
and IL6).202 It would be interesting to try to achieve a
sterile immunity in an experimental model of chronic
toxoplasmosis, at first transforming bradyzoites to tachyzoites
through use of Etanercept but not too long after this, treating
the tachyzoites to eliminate the parasite from the host body.

A recently identified drug target for T. gondii is an
endonuclease named as cleavage and polyadenylation
specificity factor subunit-3 (CPSF3) that has a role inmRNA
processing in eukaryotes. This has been demonstrated by
strong in vitro anti-parasitic activity by use of benzoxaborole
(AN3661), a drug molecule that targets wild-type CPSF3.
The parasites that were found resistant to this drug molecule
displayed mutations in the TgCPSF3. Recapitulation of the
similar resistant phenotype of the parasite through genera-
tion of mutations in the wild-type CPSF3 while exploiting
CRISPR/Cas9, further strengthened the importance of this
new therapeutic target against T. gondii.203

One of the most exciting areas of research is to explore
the means and effects of intervention strategies on how
various strains of T. gondii can modulate host’s tran-
scriptome204 and non-coding RNAs including mircoRNA
and long non-coding RNA.205 Similarly, exploring how T.
gondii exploits exosomes in modulating host immune re-
sponse206 as well as how therapeutic interventions designed
for heme-deficient conditions affect infection outcome,207

remains interesting areas of research.

Figure 2. Pathways for host susceptibility and resistance in
human Toxoplasmosis, particularly as a result of IL6.
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Given the assumed fact that around one third population
of world is harboring Toxoplasma in chronic form, that is,
tissue cysts, why not to plan a vaccine to eliminate the tissue
cysts from human population and other hosts seropositive to
this infection, with a vaccine (based on GRA6Nt or other
similar antigens)49 that should be capable of eliminating
tissue cysts.

Conclusions

Different factors are responsible for the pathogenesis of
Toxoplasmosis and the survival of host. These factors
include versatile genetic makeup of different strains of T.
gondii, complicated immunological background of hosts,
biochemical interaction among certain cytokines, invasion

Table 1. This table illustrates the role of specific cytokines either in resistance or susceptibility against T. gondii. The cytokines’ source/s,
main function/s, synergistic, and antagonistic relations with other cytokines.

Name of
cytokine

Immunity
response Source Main functions

Synergistic
relationship

Antagonistic
relationship References

INFγ Resistant CD4+, CD8+, and NK
cells

Renders protection against T. gondii
by activation of MΦ, NO, and
GTPase signaling

TNFα and
IL1β

IL4 and IL10 [60]

TNFα Resistant MΦ, T cells, and
basophils

Involves in acute inflammatory
response

IFNγ and
IL12

IL4 and IL10 [59-61]

IL1β Resistant Endothelial cells Acute phase response mediator TNFα IL4 [57]
IL2 Resistant CD4+ cells Induces growth of T cells and the

release of IFNγ, involved in the
lytic activity of MΦ and NK cells

IFNγ IL4 [45]

IL4 Susceptible Basophils Antagonizes the products of Th1
cells, long exposure leads to
chronic toxoplasmosis

Th2
cytokines

Th1 cytokines [53]

IL5 Resistant
(chronic) and
susceptible
(acute)

Mast cells Plays a counter protective role in
acute toxoplasmosis and
protective role in chronic
toxoplasmosis

IL4 (acute
infection)

IL12 [94]

IL6 Resistant MΦ, endothelial cells,
monocytes,
fibroblasts,
myelomatous

Plays a pleotropic role in immunity;
builds barriers in early ocular
and encephalitis toxoplasmosis,
enhanced activities of NK cells,
and maturation of T and B cells

IL1β and
TNFα

IL12, IFNγ, and
IL27

[97,111]

IL7 Resistant DCs, hepatocytes,
endothelial cells

Plays a crucial role in the
development of memory CD8+

T cells

IL15 IL10 and IL4 [113]

IL10 Susceptible CD4+ cells, MΦ, B
cells, DCs,
mastocytes

Controls hyper-inflammation,
keeps check on protective
functioning of CD4+ cells, and
plays a suppressive microbicidal
function for MΦ and Np

IL6 IL12 and IFNγ [201,202]

IL12 Resistant DCs, MΦ, Np Central inducer of IFNγ TNFα IL4 and IL10 [24]
IL15 Resistant Mononuclear

phagocytes
Required for optimal role of NK
cells, CD8+ cells, and IELs

IL12 and IL7 IL10 and IL4 [61]

IL17A Resistant CD8+, γδT cells, NK
cells

Mainly involves in innate immunity
by the recruitment of Np

IL12, IFNγ,
and IL6

IL10 and IL4 [151,164]

IL18 Resistant MΦ and some other
cells

Involves in production of IFNγ by
NK cells and T cells

IL12 IL10 and IL6 [182]

IL23 Resistant MΦ and DCs Stimulates NK cells and T cells
more specifically in the absence
of IL-12

IL12 IL10, IL4 and IL6 [158,159)

TGFβ Susceptible Intraepithelial
lymphocyte

Anti-inflammatory role in brain,
eyes and intestine

IL10 TNFα, TNFβ,
IFNγ, IL6, and
IL12

[15]

IFN (Interferon), IL (Interleukin), TNF (Tumor Necrosis Factor), TGF (Transforming Growth Factor).
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strategies of parasite as well as the immunogenicity of
antigens encountered with host’s immune cells. The type of
cytokines production depends on the strain of Toxoplasma.
The IL10 and TGFβ1 production were higher in type I
strain and lower in type II and III strain of toxoplasmosis.
The production of IL12 was higher upon exposure of
pathogen to DCs, MΦ, Np, NK cells, and T cells which is
essential for the release of IFNγ. The production of IL12
switches the NK cells for release of IFNγ which develops
resistance against T. gondii infection in host. Impairment in
the production of IL12 may lead to demolish IFNγ resulting
to develop host sensitivity for T. gondii infection. More-
over, IL6 also has critical role for gp130 signaling pathway
for the up- and down-regulation of SOCS-gene which is
responsible for the susceptibility and resistance of toxo-
plasmosis (Figure 2). The basic switching of pro- and anti-
inflammatory cytokines in acute and chronic phases of
toxoplasmosis is direly required for understanding the
development of disease. Such cytokines are involved in the
development of resistance and susceptibility of Toxo-
plasma in host. Agonist and antagonist effect of host cy-
tokines network leads to the chronic condition of disease.
In vivo up- and down-regulation of desired cytokines
(IFNγ, IL6, IL12, and SOCS-3) could be helpful to boost
up the immune response of host for the control of toxo-
plasmosis. Moreover, the synergistic and antagonistic re-
lations among cytokines need to be comprehended on
molecular and biochemical basis. The most compelling
results are related with a Th2-deviated response associated
to virulent strains in South American patients. Type II strain
has the ability to translocate NF-κB in the nucleus of mouse
splenocytes and bone marrow–derived MΦ. It is the reason
that Toxoplasma type I strain survives from host immune
response rather than type II and III but the complete defeat
of host’s immune response is not in the favor of parasite’s
survival in the ecosystem. The survival of the host after
entry of T. gondii, is essential for ensuring existence of both
the host and the parasite as if parasite defeats the host’s
immune response, it not only marks the death of the host
but also of the parasite as parasite needs a viable host to
ensure its own survival as well as for its transmission to
next generations of the same host as well as to other host
species. The current review findings state that in vitro
harvesting of IL12 from DCs, Np and MΦ upon exposure
with T. gondii might be a source for therapeutic use in
toxoplasmosis. Current review suggests that therapeutic
interventions leading to up-regulation/supplementation of
SOCS-3, IL12, and IFNγ to the infected host could be a
solution to sterile immunity against T. gondii infection. This
would be of interest particularly in patients passing through
immunosuppression owing to any reason like the ones re-
ceiving anti-cancer therapy, the ones undergoing immuno-
suppressive therapy for graft/transplantation, the ones suffering
from immunodeficiency virus (HIV) or having AIDS.
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Appendix

Abbreviation

Ag Antigen
APC Antigen-presenting cells

BMDM bone marrow–derived macrophages
CNS Central nervous system

CPSF3 Cleavage and polyadenylation specificity
factor subunit-3

DCs Dendritic cells
ESA Excretory–secretory antigens
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GBPs Guanylate Binding Proteins
GIMAPs small GTPase immunity-associated proteins

HIV Human immune deficiency virus
IELs Intraepithelial lymphocyte
iNOS Inducible nitric oxide synthase
LPL Lamina propria lymphocytes
IRGs Immunity-related GTPases
LPS Lipopolysaccharide

MyD88 Myeloid differentiation domain-88
MΦ Macrophages
NK Natural killer
NP Neutrophils

RIPK3 receptor-interacting serine/threonine-protein
kinase 3

SCF Stem cell factor
SCID Severe combined immune-deficient

SOCs1 Suppressor of cytokine signaling molecule-1
T reg Regulatory T

T. gondii Toxoplasma gondii
TGFβ Transforming growth factor-β
Th2 T helper cell 2

Th17 T helper cell 17
TLR Toll-like receptors
ZBP1 Z-DNA binding protein-1
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