Table 3.
Results of the classification performed by the RF, the proposed deep learning model, and the ensemble learning method.
| Model | Features | Accuracy | Precision | Recall | Specificity | AUC-ROC |
|---|---|---|---|---|---|---|
| RF | 10 | 0.69 ± 0.10 | 0.70 ± 0.15 | 0.70 ± 0.17 | 0.69 ± 0.14 | 0.70 ± 0.10 |
| RF | 18 | 0.70 ± 0.11 | 0.71 ± 0.14 | 0.70 ± 0.17 | 0.71 ± 0.15 | 0.70 ± 0.11 |
| RF | 33 | 0.73 ± 0.13 | 0.73 ± 0.15 | 0.70 ± 0.17 | 0.76 ± 0.13 | 0.73 ± 0.13 |
| Proposed | 0.78 ± 0.08 | 0.82 ± 0.13 | 0.77 ± 0.15 | 0.79 ± 0.17 | 0.78 ± 0.08 | |
| Ensemble | 0.80 ± 0.08 | 0.82 ± 0.14 | 0.82 ± 0.14 | 0.78 ± 0.18 | 0.80 ± 0.08 |