Skip to main content
. 2022 Feb 17;12:813460. doi: 10.3389/fpsyt.2021.813460

Table 3.

Results of the classification performed by the RF, the proposed deep learning model, and the ensemble learning method.

Model Features Accuracy Precision Recall Specificity AUC-ROC
RF 10 0.69 ± 0.10 0.70 ± 0.15 0.70 ± 0.17 0.69 ± 0.14 0.70 ± 0.10
RF 18 0.70 ± 0.11 0.71 ± 0.14 0.70 ± 0.17 0.71 ± 0.15 0.70 ± 0.11
RF 33 0.73 ± 0.13 0.73 ± 0.15 0.70 ± 0.17 0.76 ± 0.13 0.73 ± 0.13
Proposed 0.78 ± 0.08 0.82 ± 0.13 0.77 ± 0.15 0.79 ± 0.17 0.78 ± 0.08
Ensemble 0.80 ± 0.08 0.82 ± 0.14 0.82 ± 0.14 0.78 ± 0.18 0.80 ± 0.08