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Hyperbolic lattices are a new form of synthetic quantum matter
in which particles effectively hop on a discrete tessellation of
two-dimensional (2D) hyperbolic space, a non-Euclidean space of
uniform negative curvature. To describe the single-particle eigen-
states and eigenenergies for hopping on such a lattice, a hyper-
bolic generalization of band theory was previously constructed,
based on ideas from algebraic geometry. In this hyperbolic band
theory, eigenstates are automorphic functions, and the Brillouin
zone is a higher-dimensional torus, the Jacobian of the compact-
ified unit cell understood as a higher-genus Riemann surface.
Three important questions were left unanswered: whether a band
theory can be expected to hold for a non-Euclidean lattice, where
translations do not generally commute; whether a formal Bloch
theorem can be rigorously established; and whether hyperbolic
band theory can describe finite lattices realized in an experiment.
In the present work, we address all three questions simulta-
neously. By formulating periodic boundary conditions for finite
but arbitrarily large lattices, we show that a generalized Bloch
theorem can be rigorously proved but may or may not involve
higher-dimensional irreducible representations (irreps) of the non-
abelian translation group, depending on the lattice geometry.
Higher-dimensional irreps correspond to points in a moduli space
of higher-rank stable holomorphic vector bundles, which further
generalizes the notion of Brillouin zone beyond the Jacobian.
For a large class of finite lattices, only 1D irreps appear, and the
hyperbolic band theory previously developed becomes exact.

hyperbolic lattices | band theory | Bloch theorem | quantum matter |
algebraic geometry

yperbolic lattices are a new form of synthetic quantum

matter whereby particles propagate coherently on the sites
of a regular structure that appears aperiodic from the vantage
point of Euclidean geometry but is periodic in two-dimensional
(2D) hyperbolic space—a non-Euclidean space of uniform
negative curvature (1). In the circuit quantum electrodynamics
(CQED) experiments of ref. 2, a lattice of microwave waveguide
resonators is engineered in such a way that the geometry sensed
by the photons as they hop on this lattice is mathematically
equivalent to that of a tessellation or tiling of the Poincaré
disk by regular hyperbolic polygons (3). By contrast, photons
or other quantum particles hopping on a conventional crystalline
lattice, like the 2D square lattice, register the geometry of a
tessellation of Euclidean space. This quantum hopping can also
be emulated using electric circuit networks, which have been used
in recent years for the simulation of topological band structures
(4-6) and are well suited to the implementation of nonstandard
lattice geometries. Very recently, Lenggenhager et al. (7) used
this technology to engineer a hyperbolic lattice and measure
distinct signatures of wave propagation in hyperbolic space.
Given these developments, one also anticipates implementations
of hyperbolic lattices using other metamaterial platforms such
as photonic crystals (8, 9). The above concrete realizations of
hyperbolic lattices in the laboratory open up vistas for the explo-
ration of quantum mechanics in (negatively) curved space, with
possibly far-reaching implications for fundamental physics in
the areas of string theory (10-12), quantum gravity (13-15), and
quantum information (16-21). In the long-wavelength limit, the
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Hamiltonian of a quantum particle on a hyperbolic lattice
reduces to the well-known Laplace-Beltrami operator on the
Poincaré disk (22, 23), whose spectrum is well understood.
However, when the de Broglie wavelength approaches the lattice
spacing, the geometry of the tessellation strongly affects both
the spectrum and wave functions (24-28). For Euclidean lattices,
periodicity leads to the formulation of Bloch band theory (29),
whereby energy levels and wave functions are characterized by
a well-defined crystal momentum quantum number. It is not a
priori obvious whether nor how band theory may be generalized
to hyperbolic lattices, due to the non-Euclidean nature of their
geometry.

In our previous work (30), a band theory of {4g, 4¢} hyperbolic
lattices was proposed, based on ideas from Riemann surface
theory and algebraic geometry. For each integer g > 1, the lattice
admits a Fuchsian group I'—a discrete but nonabelian group
that, for negatively curved surfaces, plays the role of the discrete,
abelian translation group of Euclidean lattices. The quotient
of the Poincaré disk by the action of I produces a compact
Riemann surface ¥, of genus g, which can be interpreted as
a compactified unit cell. The fluxes that can be threaded through
the 2g cycles of this compact surface form the components of a
hyperbolic crystal momentum k that lives in a 2g-dimensional,
toroidal hyperbolic Brillouin zone Jac(X,) 2 729, known in
algebraic geometry as the Jacobian of 3. (In the 2D Euclidean
case g = 1, the compactified unit cell and its Jacobian are both
2-tori, and one recovers the familiar Brillouin zone 2-torus.)
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Hyperbolic energy bands can be subsequently computed, using
an ansatz for Hamiltonian eigenstates as automorphic functions,
i.e., functions that acquire a k-dependent U(1) phase factor
under I'-translations. Such eigenstates were dubbed hyperbolic
Bloch eigenstates, and our overarching theoretical framework,
hyperbolic band theory. This framework was further developed
in ref. 31, where a comprehensive crystallography of hyperbolic
lattices was also constructed, and applied in ref. 32 to the
hyperbolic analog of the Hofstadter butterfly.

Ref. 30 left several important questions unanswered. First,
while an infinite family of solutions to the Schrodinger equation
was constructed, no proof was given that such solutions form
a complete set. In other words, ref. 30 constructed hyperbolic
Bloch eigenstates but did not prove a hyperbolic Bloch the-
orem stating that all eigenstates are necessarily of hyperbolic
Bloch form. Second, and as remarked in ref. 31, the Fuch-
sian group I' is a nonabelian group which may admit higher-
dimensional unitary irreducible representations (irreps®). The
hyperbolic Bloch eigenstates of ref. 30 acquire a U(1) phase
factor under I'-translations and thus belong to a 1D irrep of I". It
is conceivable that other irreps would appear in the spectrum of
a generic hyperbolic lattice Hamiltonian. Finally, ref. 30 studied
wave propagation on an infinite hyperbolic lattice but did not
address the problem of finite hyperbolic lattices. As in other
areas of condensed matter physics, only finite lattices can be
realized in the real world. Understanding whether the hyperbolic
band theory of ref. 30 can be useful to model finite hyperbolic
lattices realizable in the laboratory (2, 7) is a pressing question
in the field. Conversely, one can ask whether the spectrum and
eigenstates of a finite hyperbolic lattice have anything to do with
the hyperbolic band theory of infinite lattices.

In this work, we address all three questions simultaneously.
We show that as in conventional Bloch theory (29), a careful
consideration of finite (but arbitrarily large) hyperbolic lattices
allows us to formulate a rigorous Bloch theorem predicting
the possible form of all eigenstates of the Hamiltonian. In
addition to the U(1) hyperbolic Bloch eigenstates of ref. 30,
we find that eigenstates may in general transform according
to U(r) representations of the translation group I', where
r > 1 is the dimension of the representation and U(r) is the
group of unitary r x r matrices. Accordingly, the eigenstates
of hyperbolic lattice Hamiltonians are in general subject to a
nonabelian Bloch theorem, whereby the eigenstates belonging
to an r-fold degenerate multiplet mix under translations. The
first step in obtaining these results is to formulate boundary
conditions on finite hyperbolic lattices that are a suitable
generalization of the periodic or Born-von Kdrman boundary
conditions in conventional solid-state theory (29). By contrast
with the Euclidean case, this is already a nontrivial problem in
mathematics, which amounts to classifying all possible normal
subgroups of finite index N in I' (33). Physically, the index
N corresponds to the number of sites of a finite hyperbolic
lattice, which we will hercafter refer to as a cluster. We
show by explicit calculations on the regular {8,8} lattice that
those eigenstates of a cluster that belong to 1D irreps of I’
are precisely of the form predicted in ref. 30 but where the
allowed hyperbolic crystal momenta form a discrete set, with
components valued in 27Q (mod 27). We discover that for a
large fraction of clusters of size N < 25, the largest size we
are able to access computationally, all eigenstates belong to 1D
irreps, and the U(1) hyperbolic band theory of ref. 30 becomes
exact. As N increases, the set of allowed momenta forms an

*Since Wigner’s theorem in quantum mechanics requires representations of symmetry
groups on Hilbert space to be unitary or antiunitary, and antiunitary representations
are excluded here on physical grounds, we will here use “irrep” to refer exclusively to
unitary irreducible representations.
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increasingly fine discretization of the hyperbolic Brillouin zone
Jac(X,) = T?Y. More generally, eigenstates belonging to
r-dimensional irreps correspond to points in a classical object
in algebraic geometry: the moduli space M(X,, U(r)) of stable
holomorphic vector bundles of rank » and first Chern class 0 on
34, which generalizes the Jacobian to arbitrary r > 1. (Stability
refers here to a numerical restriction on the subbundles of a given
vector bundle.) A foundational result in algebro-differential
geometry, the Narasimhan-Seshadri theorem (34), indeed
establishes that M(X,, U(r)) is diffeomorphic to the space of
inequivalent r-dimensional irreps of I'. In contrast with Euclidean
lattices, a hyperbolic lattice is thus in general characterized not
by a single toroidal Brillouin zone but by multiple Brillouin
zones: the toroidal Jacobian in rank r =1 but also higher-
rank moduli spaces with r > 1. We demonstrate by explicit
calculation on the {8, 8} lattice the existence of nonabelian Bloch
eigenstates which belong to such higher-dimensional irreps and
outline a concrete proposal to realize abelian/nonabelian Bloch
eigenstates experimentally using CQED and/or electric circuit
networks.

Periodic Boundary Conditions for Hyperbolic Lattices

Standard proofs of Bloch’s theorem in conventional solid-state
physics (29) rely on the notion of Born—von Karman or periodic
boundary conditions (PBC). In what is often referred to as the
first proof of Bloch’s theorem, one begins by observing that the
infinite set of all translation operators { 7r} on Hilbert space,
where R € Z% is an arbitrary Bravais lattice vector, commute
mutually and thus can be simultaneously diagonalized. (We here
assume for simplicity a simple hypercubic lattice in d dimen-
sions with unit lattice spacing.) The collection of all resulting
eigenvalues for an arbitrary R can be expressed as {e ¥ %},
but at this point in the proof the crystal momentum k € C? is in
general complex-valued. One then considers a finite cluster with
N sites and imposes PBC, which requires that Tz must act as the
identity when R is a translation spanning the length of the cluster.
This forces e ~**# = 1 for such R, which in turn implies the key
features of reciprocal space: namely, that k is real, periodic (i.e.,
defined modulo a reciprocal lattice vector), and discrete. In the
second proof of Bloch’s theorem, one imposes PBC from the
start, expanding a trial eigenstate as a Fourier series involving
a sum over momenta k that obey those exact same conditions.

From a mathematical standpoint, the imposition of PBC
can be given two distinct interpretations: one algebraic and
one topological (or geometrical). Algebraically, imposing PBC
amounts to constructing a normal subgroup Gpsc of finite
index N in the translation group G of the infinite lattice.” For
example, a 1D chain with N sites z =1,..., N and PBC such
that the wave function satisfies ¢ (z — N) = ¢(z) corresponds
to G =1Z, the additive group of integers, and Gpgc = NZ =
{...,—2N,—N,0,N,2N,...}, the group of translations of x
that leave the wave function invariant. Although both G and
Gpgc are infinite, the factor group G/Gpgc =Z/NZ =7y is
a finite group—the residual group of translations on the finite
cluster, understood as a ring with N sites.

This purely algebraic construction can also be understood from
the point of view of covering theory in algebraic topology (35).
The minimal representation of the 1D infinite lattice is as the
quotient space X =R/G =R/Z = S', understood as a single
unit cell [0, 1] D z compactified under the action of G. Here we
identify G = 71 (X) as the fundamental group of this compacti-
fied unit cell. The length-N cluster can be similarly compactified

A normal subgroup H in a group G (denoted H < G) is a subgroup such that gHg~" = H
forall g € G; i.e,, itis invariant under conjugation by any element of G. The index of H
is the number of distinct (right) cosets of H in G; for a normal subgroup, left cosets and
right cosets are equivalent.
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by the action of Gppc and denoted by Yy =R/Gppc, Where
Gpec 2 m1(Yn). Although X and Yu are both homeomorphic
to the circle S, Yy is a (finite) N-sheeted cover of X, expressed
by the fact that X = Yy /Zn where Zy = w1 (X)/m1(Yn) is the
group of deck transformations of the cover. This cover is also
normal or Galois, meaning that the group of deck transforma-
tions acts transitively on the sheets of the cover (i.e., the N
copies of X in Yy). Spaces Yy whose fundamental group is a
normal subgroup of m1(X) form normal covers of X. Finally,
the cover in this case is also abelian, meaning that the group of
deck transformations is abelian. In 2D, an example of normal
subgroup of the translation group G = Z? is Gpec = N.Z x N,Z,
corresponding to a finite rectangular cluster with N = N, x N
sites. Both X =R?/G and Yy = R?/Gppc are homeomorphic to
the 2-torus 72, but the covering space Yy is a big torus tiled with
N square unit cells.

Hyperbolic Clusters and Normal Subgroups. From the algebraic
point of view mentioned above, the fact that Bloch’s theorem
is compatible with PBC can be understood as follows. Focusing
on our 1D example, the PBC condition ¢)(z — N) = % (z) is the
statement that 1 (gppe(2)) = (z) for any gpsc € Gegc. Bloch’s
theorem is the statement that eigenstates of the Hamiltonian
obey ¥(g *(z)) = x(g)¥(z) for all g € G where x(g) is the
Bloch phase factor associated to a translation by g. In particular,
choosing g = gpac € Gprc, We obtain the requirement on y that
X (gpBc) = 1. Now, consider a translation by ggpscg ™" with gpsc €
Gppc and g € G. By the Bloch condition, we have

V(ggescg " (z)) = x(ggpcg ™ )Y(2)

=x(9)x(gesc)X " (9)1(z)
=Y(z). 1]

This equality is ensured if ggepcg ™' = gppc € Grpc, Which is the
condition that Gpgc be a normal subgroup of G.

Before transposing these ideas to the hyperbolic context, we
give a brief introduction to hyperbolic lattices; a more detailed
discussion can be found in refs. 30 and 31. For our purposes, we
will define a hyperbolic lattice with translation group I' as the
discrete, infinite set of points { z, = v(0), v € I'} in 2D hyperbolic
space H, represented for concreteness by the Poincaré disk model
(1). This is the unit disk {|z] < 1} equipped with the Poincaré
metric,

4(dz? + dy?)
(=122’

in line-element form, with z = z 4 4y. With this metric, H is
a 2D noncompact manifold with uniform negative curvature,
whose full group of (orientation-preserving) isometries is the
nonabelian group PSU(1, 1) of Mébius transformations:

az+f 2 2
z»—>7(z)7ﬂ*z+a*,oz,,3€(c,|a| I8]° =1. [3]
The lattice translation group I' is a Fuchsian group (36), i.e.,
an infinite discrete subgroup of PSU(1,1), which we further
require to be strictly hyperbolic and cocompact. These latter two
conditions ensure 1) that elements in I" have no fixed points when
acting on H and can thus be interpreted as translations and 2) that
the unit cell is a compact region in H. For the rest of the paper,
and unless otherwise specified, we will focus for simplicity on the
regular {8, 8} lattice, for which I can be given the presentation

ds? =

[2]

U= (v1,72,78, 74 MY Ysva 91 evs ta), 4]

with one relation among four generators ~;, j = 1,...,4, whose
explicit PSU (1, 1) representation can be given as

a4 =14V2,8 =2+ V2)\V2—- 10707 5]
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in the notation of Eq. 3. The discrete set of points {z,} is the
collection of geometric centers of the hyperbolic regular octagons
that tile H under the action of I'; hereafter we denote by D the
octagon centered at z = 0. D or any of its copies is a fundamental
domain for the action of I on H (Fig. 1).

We now return to our discussion of the Bloch condition. In
analogy with the Euclidean case reviewed above, ref. 33 proposed
that a choice of PBC for a hyperbolic lattice with Fuchsian group
I corresponds to a choice of normal subgroup I'pgc. The first
result of our work is the simple observation that such a choice

of PBC is compatible with the automorphic Bloch condition,*

Py 7H(2) = x(MY(2), (6]

introduced in ref. 30. Indeed, the derivation in the paragraph
surrounding Eq. 1 above remains entirely valid if we replace
z € Rby z € H, G by I' (as well as the group element g by v € I),
and Gppc by I'pec (as well as the group element gppc by ypec €
I'ppc). Importantly, note that nothing in the derivation requires
G or Gppc to be abelian. Furthermore, and anticipating our in-
troduction of a nonabelian Bloch theorem later, the compatibility
holds even if the factor of automorphy y is generalized to higher-
dimensional, nonabelian representations of I'.

If we further consider normal subgroups I'pgc of finite index
N in T, as done implicitly in ref. 33, the factor group I'/T'ppc
is a finite group of order N. To each such normal subgroup
corresponds a finite portion of hyperbolic lattice, or cluster, with
N sites. From the point of view of covering theory, the minimal
representation of the infinite {8, 8} lattice is the quotient X =
H/T", a compact Riemann surface of genus 2 known as the Bolza
surface (30, 39). The Fuchsian group I" is thus isomorphic to the
fundamental group of a genus-2 surface, which can indeed be
given the presentation [4]. In general, if Yy is an N-sheeted cover
of a topological space X, then the Euler characteristic of Yy is N
times that of X (35). If X is a surface of genus g, Yy = H/T'ppc

Fig. 1. The Bolza or regular {8, 8} lattice and the side-pairing generators
Y1, Y2, ¥3, 74 Of its Fuchsian group T".

tBy contrast with the convention ¢ (v(z)) = x(v)%¥(z) used in the analytic number
theory literature (e.g., ref. 37) and in our previous work, we utilize here a convention
more standard in physics (38) and more natural from a representation theoretic
standpoint.
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will be a surface of genus givenby 2 — 2h = N (2 — 2g) and thus
h = N(g — 1) + 1. In the 2D Euclidean case reviewed above, the
compactified unit cell X has g = 1, and thus, the covering space
Y~ (the big torus) also has h = 1 for any N (Fig. 24). By contrast,
a hyperbolic PBC cluster is necessarily a higher-genus surface,
with genus & that grows with the size of the system (Fig. 2B). For
the {8, 8} lattice considered here, g = 2, and thus a PBC cluster
with N sites has genus

h=N+1. [7]

In the context of algebraic geometry, the covering map Yy — X
is a holomorphic map ¥, — X, between Riemann surfaces that
preserves the Poincaré metric, and the relation between 4 and
g is known as the Riemann-Hurwitz formula (in the simplest
case of a finite, Galois, unramified covering) (40). Covering
theory implies that I'pgc is isomorphic to the fundamental group
of a genus-h surface, which can be given a finite presentation
analogous to that of Eq. 4 but with 2h generators and one relation
(Eq. 8). Finally, in analogy with the Euclidean case, we interpret
the factor group I'/T'ppc as a finite group of translations on
the cluster. Constructing a Bloch theory for finite hyperbolic
clusters with PBC thus amounts to studying the representations
on Hilbert space of this finite group, which we will do in Fuchsian
Translation Symmetry in Finite Size.

The Low-Index Normal Subgroups Procedure. In the Euclidean case,
all subgroups of the abelian group Z? are normal and are easily
enumerated. By contrast, and as noticed in ref. 33, the enu-
meration of normal subgroups of finite index in a nonabelian
Fuchsian group is a nontrivial mathematical problem. To simplify
the problem, one can further impose that normal subgroups be
torsion-free. Torsion elements® in a Fuchsian group correspond
to elliptic isometries, i.e., transformations in the same conjugacy
class as a rotation z — e'“z by angle o about the center of the
Poincaré disk. (If I'pgc contained elliptic elements, the cover
Yy = H/T'ppc would not be a smooth Riemann surface but an
orbifold, with conical singularities.) Proofs of existence and a
discussion of examples of torsion-free normal subgroups for cer-
tain Fuchsian groups can be found in the mathematical literature

+

Fig. 2. Examples of covering maps Yy — X for N =5 with group of deck
transformations Zs. (A) Euclidean case: a toroidal cluster covers a toroidal
unit cell. (B) Hyperbolic case: a genus-6 cluster covers a genus-2 unit cell. In
both cases, the red loops in Yy are identified in the quotient Yy /Zs = X.

SA torsion element in a group is an element a such that a™ equals the identity in the
group for some power m € ZT.
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(41-45). These studies consider general Fuchsian groups contain-
ing hyperbolic, elliptic, and parabolic elements. In the case of
interest to us, the translation group I is strictly hyperbolic; thus,
it and all its subgroups are necessarily torsion free. Indeed, as
discussed earlier, 71 (X7 ) 22 I'ppc can be given the presentation

m(Zh) = <(117 bi,...,an, by : [al, bl] cee [ah, bh]>, [8]
where [a, b] = aba~ b~ is the commutator of two elements in
the group. This presentation does not contain any torsion.

Although for any cluster of size N, the associated normal sub-
group I'ppc is necessarily isomorphic to [8] and thus completely
known as an abstract group, in practice one needs to know how
its generators a, b1, ..., an, by, are expressed in terms of the
original generators ~i,...,7vs of I'; i.e., one needs to know the
precise isomorphism 71 (35) — I'ppc With I'pgc considered as a
subgroup of I'. Only then can one determine which N sites z,
of the infinite lattice are included in a given cluster, how the
boundary sites of the cluster are to be identified under PBC, and
how the group I' /T'ppc of residual translations acts on the sites of
the cluster. In other words, for a given index N, there are many
distinct normal subgroups of I', although they are all isomorphic
from an abstract point of view. From a topological or geometric
standpoint, there are many ways to wrap a cluster of N hyperbolic
unit cells into a genus-(N + 1) surface.

While analytical approaches appear to be of limited use for our
problem (41-45), methods in computational group theory exist
that allow for the systematic enumeration of normal subgroups of
a given index in a finitely presented group (46). One such method,
the low-index subgroups algorithm (47), is based on a systematic
enumeration of all cosets of a given finite-index subgroup using
the so-called Todd-Coxeter coset enumeration procedure (48).
For normal subgroups, our prime focus here, the method was
given more efficient adaptations and implementations by Conder
and Dobcsanyi (49) and Firth (50) in collaboration with D. Holt.
Here we will use a freely available implementation of the Firth—
Holt algorithm written for the computational discrete algebra
system GAP (51) by E. Rober (52) and referred to hereafter as
low-index normal subgroups (LINS)."

LINS takes as sole input the presentation [4] of the group T’
as a finite set of generators and relations expressed as words in
the generators and returns all possible normal subgroups I'pgc of
index N up to a specified finite maximal index Nmax. The output
for each normal subgroup is in the form of a finite generating
set W whose elements are expressed as words in the generators
Y1, ..,7v4 of I', such that I'pgc = (W). This is isomorphic to the
free group on W modulo the set of relations in W that descend
from the (unique) relation in I'. In practice, this latter relation
is automatically satisfied when working with the PSU(1,1) rep-
resentation of the generators; thus, the action of I'pgc on H is
simply obtained by repeated application of the words in W.

The fact that I'pgc is a subgroup of index N in I' implies the
(right) coset decomposition

I'=Tppc U Tppcge U+ -+ Uppcyn, [9]
where U denotes disjoint union, and the set
[10]

T={g1=¢€,92,...,gn} CT

of coset representatives, where e designates the identity element,
is called a (right) transversal for I'pgc in I'. (For a normal sub-
group, right and left cosets are equivalent, and we will hereafter

TAs a test of the LINS package, we have verified that it correctly reproduces the number
of normal subgroups of another Fuchsian group, the modular group PSL(2, Z), which
has been computed for indices up to 66 in ref. 53.
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omit this distinction.) The fact that I" tiles all of H with copies of
D can be expressed as H = LI, eryD. Likewise, Eq. 9 implies that

a= |

FpBCET'PBC

~pecC, [11]
i.e., I'ppc tiles all of H with copies of the cluster C, where

N
C= |_| g:D. [12]
1=1

While the choice of transversal is not unique, since any g; € T'
can always be left-multiplied by an arbitrary element of I'pgc, a
physical choice of transversal is one in which C forms a connected
region in H. Indeed, for such a choice the resulting finite por-
tion {z = ¢:(0),s=1,..., N} of hyperbolic lattice will form a
connected graph once nearest-neighbor hopping is introduced.
We will henceforth refer to clusters associated with such a choice
of transversal as connected clusters, and will exclusively consider
those; for technical reasons we also limit our study to connected
clusters for which words of length 3 and up do not appear in the
transversal (SI Appendix, section S1).

The number of normal subgroups grows rapidly with index,
albeit nonmonotonically (Fig. 3, blue circles), and the compu-
tational time required to enumerate them grows as well. The
number NSG, of normal subgroups of prime index p can be
determined analytically (ST Appendix, section S2):

NSG, =1+ p+p° +p°, [13]

which agrees with our computational results. We have performed
computations using LINS up to Nnax = 25, which takes approx-
imately 1 wk on a single-CPU machine. For a given index, the
number of normal subgroups giving rise to connected clusters of
the type discussed above is roughly an order magnitude less than
the total number of subgroups (Fig. 3, red crosses). However, the
number of connected clusters also grows rapidly, and although
the growth is again nonmonotonic, we hypothesize connected
PBC clusters can be found for arbitrarily large N.

We plot in Fig. 4 an example of connected cluster with N =9
unit cells. While all N =9 clusters consist of the disjoint union
of the central octagon D and its eight nearest neighbors and are
thus identical as subsets of the Poincaré disk, they differ in their

5
10 T T T T 0}

-
(=)
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Fig. 3. Number of distinct normal subgroups I'pgc in I' as a function of
index N, as computed by LINS. Blue circles indicate all normal subgroups, the
green line indicates plot of Eq. 13, and red crosses indicate normal subgroups
giving rise to connected PBC clusters for which words of length 3 and longer
are excluded from the transversal T.
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b 2PV

Fig. 4. Example of connected cluster of size N =9 and its pairwise edge
identifications implied by I'pgc.

pairwise edge identifications. The latter depend on the particular
index-9 subgroup I'pgc considered and can be reconstructed
from it. In The Hopping Matrix, we derive the fact that two
octagons ¢;D and ¢;D are nearest neighbors on a PBC cluster
if there exists a group element ~pgc € I'pgc such that give =
YpBCYs> Where Yo € {71,...,74,7 ", ..., v1 ' }. To determine if
two octagons ¢;D and g;D share a common boundary in the
compactified surface, one can then form all eight group elements
iV gj’1 and check if they belong to I'pgc, which is easily done
in GAP. Excluding the common boundary that would persist in
the presence of open boundary conditions, one can systematically
determine the 28 orientation-preserving pairwise identifications
that turn the 56-sided hyperbolic polygon in Fig. 4 into a genus-10
surface. This can be done for any PBC cluster.

The Hopping Matrix. Having developed an algorithm to systemat-
ically construct connected PBC clusters of (in principle) arbitrary
size N, we turn to the construction of a tight-binding Hamiltonian
on this cluster, which has the general form

N
Hesc= »_ Hyclc, [14]
i,j=1

in second quantization, where cf” annihilates (creates) a particle
on site i of the cluster with coordinate z = ¢;(0), g; € T in the
Poincaré disk. As we are only interested in single-particle physics,
the statistics of the creation/annihilation operators is irrelevant;
our goal is only to construct and diagonalize the N x N hopping
matrix H;;. We focus here on nearest-neighbor hopping, where
the relevant notion of distance is hyperbolic distance; extensions
to longer-range hopping will be seen to be straightforward. We
thus wish to set H;; = —1 if i and j are nearest neighbors and
H;; = 0 otherwise. As discussed in ref. 31, to find the eight nearest
neighbors of a site z; on the infinite {8, 8} lattice, one I-translates
zi back to the origin z = 0; applies any of the eight length-1
words 75,7, ', j=1,...,4t0 z=0; and I -translates back. On

an infinite lattice, the eight nearest neighbors z;,,a=1,...,8 of
2 = ¢i(0) are then
%o = (9709 )9:(0) = g:7a(0), [15]
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where o € {71,...,74,7 ", ...,7: - }. Indeed, one can check
using the explicit PSU(1,1) matrices [5] that the nearest-

neighbor hyperbolic distance ¢ is*
(= d(z,z,)=cosh™"(5+ 4v/2) ~ 3.057

and is the same for all i, given that d(v(2),v(z")) = d(z,
any hyperbolic isometry .

While computation of the hyperbolic distance allows us to find
the nearest neighbors of a site on an infinite lattice, this is not
sufficient on a finite PBC cluster, since sites that appear farther
apart than ¢ in H, e.g., on opposite edges of the cluster, may be
nearest neighbors on the compactified surface Yy = H/T'pgc. We
thus need a notion of distance on the PBC cluster, i.e., distance
modulo elements of I'pgc, which can be formally defined as

[16]
2") for

min
vpBCE'PBC

dppe(2i, 2) = d(zi,ypBCZ))- [17]
Nearest neighbors on the cluster are then those pairs z;, z; such
that dec(Zi, Zj) =/.

To implement this distance function in practice, it is useful to
think of the N sites z; of the cluster as elements in the factor
group I'/T'ppc, i.e., the cosets I'pgcgs. The sites z; = ¢;(0) and
zj = ¢;(0) are nearest neighbors on the cluster if there exists a
~pac € I'ppe such that g;7(0) = vppcg; (0). Left-multiplying by
the group I'pgc on both sides of this equality, we obtain the
requirement that

FPBCg] (0) . [18]

Since there is a unique hyperbolic transformation which connects
two points in H, and cosets form a disjoint partition of I" (Eq.
9), this implies the equality I'ppcgiva = I'pBcg;. In other words,
sites z; and z; are nearest neighbors on the cluster if g; and
giY belong to the same coset of I'pgc in I'. GAP routines for
finitely presented groups (51) allow one to determine whether
two elements of such a group I belong to the same right coset
of a subgroup I'pgc of I'. In practice, for each g; € T and o =
1,...,8, we utilize those routines to determine which element
g; € T belongs to the same coset as g;y. and assign Hy = —1.
Since each generator and its inverse both appear in the set {7 },
the resulting (real) hopping matrix is automatically symmetric
and thus defines a valid tight-binding Hamiltonian on the PBC
cluster.

Ipecgiva(0) =

Fuchsian Translation Symmetry in Finite Size. As reviewed earlier,
for a 1D Euclidean chain of N sites with PBC, the infinite transla-
tion group G = Z reduces to the finite group G/ Gppc = Z/NZ =
Zn, the cyclic group of order N. Ignoring symmetries other than
translational (e.g., point-group symmetries), this is the symmetry
group of the finite lattice. Viewed formally, a translation on
the cluster acts as some permutation of the N sites: there is a
faithful (injective) homomorphism i/ : G/ Gpgc — S, where Sy
is the permutation group on N elements. In practice, to each ele-
ment g €{0,1,..., N — 1} & Zy, one can assign a permutation
matrix U/ (g) which acts by multiplication on a column vector of

sites z = (1,2,...,N)T:
01 0 0
0 0 1 0
UO) =LvuM=| : 1 1|,
0 0 O 1
1 0 O 0
U2)=uU1y>,....uUN -1 =um™ 1, [19]

#We have chosen our lattice sites to lie at the centers of hyperbolic octagons but
could have equally well chosen them to lie at the vertices of those octagons: the
{8, 8} lattice is self-dual, and the nearest-neighbor vertex-vertex distance is again £ =
cosh~1 (5 + 4v/2).
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where [y denotes the N x N identity matrix. Translation symme-
try on the PBC cluster is the statement that the hopping matrix
commutes with the translation matrices U/(g) for all g € G/ Gppc.

In the hyperbolic case, the factor group I' /T'pgc is the group of
residual I'-translations on the PBC cluster. By Cayley’s theorem,
any finite group of order N admits a faithful homomorphism to
the permutation group Sy; thus, we look for the N x N matrix
representation of such a homomorphism:

U:T/Tppc — Sn- [20]

Before constructing the translation matrices I/ in finite size, we
first review the concept of Fuchsian translation symmetry on an
infinite hyperbolic lattice (30, 31). For nearest-neighbor hopping
on the {8, 8} lattice, the second-quantized Hamiltonian is

H= Z Hycle; = — Z Z CATY(O)CWQ(O)’
i

yel' «
where 7o € {71,...,74,7 %,.-.,7; '} as before. Translation
symmetry on this infinite lattice is the statement that [7,, H] =
0 for all v €T, where the translation operators 7, act on
creation/annihilation operators as

[21]

TVt =) [22]
Indeed, using the rearrangement lemma, it is easy to prove that
THT, =

On a finite PBC cluster, recall that the sites z; are best viewed
as elements of I' /T'ppc, which are the N cosets I'ppcg; denoted for
51mp1101ty by [¢:]. Using this notation, the tight-binding Hamilto-
nian [14] can thus be written as

N
_ 4 _ i
Mesc= ) Hycl,je, = Yo D ey 23]
i,j=1 [9:]€ET/Tppc

which parallels the structure of [21] but where the finite hopping

matrix is
- Z 5[9;]7[91,%]7

as described operationally in the paragraph following Eq. 18.
The action [22] of the infinite group on the creation/annihilation
operators is replaced by an action of I'/T'ppc,

[24]

(1) (1)
T[gklc[g]]lﬁ = Clgrg] = Zc[g Uij ([9x]) [25]
where
Uij ([9r]) = 011, lgr951 [26]

is the desired homomorphism [20]. In ST Appendix, section S3,
we show that the matrices [26] form a faithful representation of
I'/T'ppc and commute with the hopping matrix H. In practice, we
construct the translation matrices for a given PBC cluster using
the same GAP routines as for the hopping matrix: for each pair
j,k=1,..., N,wedetermine which element g; of the transversal
belongs to the same coset as gi, g;, and assign Uy; ([gx]) = 1.

Abelian Clusters

In the 1D Euclidean example discussed earlier, the permutation
matrices [19] are in fact circulant matrices, which all mutually
commute since they are all given by some positive power of
the same matrix U/(1). Together with the hopping matrix, they
form a mutually commuting set and can thus be simultaneously
diagonalized. Since U(g)" =1y for all g € {0,1,..., N — 1} =
Zy,the N eigenvalues YV (), A\=0,..., N — 1ofU(g) are Nth
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roots of unity. Explicitly, we have xM(g) = e7#2™*9/N  which
is nothing but the Bloch phase factor associated with crystal
momentum k = 2 A/ N. In representation-theoretic terms, each
A defines a 1D irrep x») : Zy — U(1). Since Zy is abelian, this
exhausts the set of all irreps. Finally, since the hopping matrix
H commutes with all /(g), the eigenstates of H are also eigen-
states of U(g) and thus obey Bloch’s theorem: ™ (g7 (z)) =
XNV (g)p™ ().

In the hyperbolic case, the infinite translation group I
is nonabelian, thus we would not generally expect that the
residual translation group I'/T'pgc is abelian. According to this
expectation, the translation matrices ¢ ([gx]) would not mutually
commute, and Hamiltonian eigenstates would not obey the
U (1) automorphic Bloch condition [6]. Surprisingly, for a large
fraction of connected clusters, I'/T'pgc is in fact abelian (Fig. 5).
We hereafter refer to such clusters as abelian clusters! and
denote clusters for which I'/I'pgc is nonabelian as nonabelian
clusters. Out of the 25 distinct system sizes N =1,...,25 we
have investigated, only 6 admit nonabelian clusters, whereas all
admit abelian clusters. Furthermore, for all system sizes studied,
the proportion of abelian clusters is greater than 80%. We also
note that all clusters of prime size p are necessarily abelian since
any finite group of prime order p is isomorphic to Z,.

The second key result of the present work is thus that despite
Fuchsian translations being non-Euclidean in nature, PBC on
finite hyperbolic lattices are possible such that the U(1) auto-
morphic Bloch condition proposed in ref. 30 becomes exact and
applies to all states in the spectrum. More precisely, for abelian
clusters, eigenstates of H must obey the U (1) automorphic Bloch
theorem:

M (gt (z) = XM (lge)) ™ (20), [gr] € T/Tppe. 1271

For such clusters, the N translation matrices U([gx]), k=
1,..., N form a mutually commuting set and can be simulta-
neously diagonalized by some common transformation P:

x™ ([g])
PU([gr]) P~ = . [28]
XM ([gx))

where each Bloch factor x*)([g]), A=1,..., N defines a 1D

irrep x : T'/Tpgc — U(1). Indeed, as in the Euclidean case, the
translation matrices are N x N permutation matrices; thus, their
eigenvalues are roots of unity.
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Fig. 5. Fraction of connected clusters for which the residual translation
group I'/Tpgc is abelian. For N < Nmax = 25, nonabelian clusters are found
only at sizes N = 12, 16, 18, 20, 21, 24.

Igloch theory on abelian covers of a general class of connected graphs is also studied in
ref. 54.
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Discretization of the Jacobian. In ref. 30, we considered the
automorphic Bloch condition ¢ (y~*(2)) = x(7)%(z) such that
x:I'— U(1) was a U(1) irrep of the infinite group I'. By the
Narasimhan—Seshadri theorem (34) in rank 1, the space of
all such irreps, also known as a character variety, forms a 2g-
dimensional torus Jac(X,) = 7?9, the Jacobian variety of the
Riemann surface Y,. The space Jac(X,) can be interpreted
physically as the set of independent magnetic fluxes that can
thread the 2¢g noncontractible cycles of the compactified unit cell
of a {4¢,4g} lattice. For the Bolza lattice with g = 2, there are
four such fluxes, and we defined x by its action on the generators
of I': x(v;) = x*(wj_l) =e ™, j=1,...,4. Each component k;
of the hyperbolic crystal momentum k = (k1, k2, ks, k4) could
then assume a continuous set of values in [—m, 7]/ ~, with
~ being the antipodal map that identifies £ in the interval.

For a finite PBC cluster, we expect by analogy with conven-
tional band theory (29) that the crystal momentum becomes
discretized. In the 1D Euclidean example above, this occurs be-
cause the irrep x(g) = e =™, k € [-w, 7]/ ~ of G = Z is a valid
irrep of G/Gppc = Zn only if k is an integer multiple of 27/ N:
otherwise, x(gpsc) # 1 for gepc € Gpac = NZ. Likewise, here a
U(1) irrep x of I is only a valid irrep of I'/T'pgc if x(7pec) =1
for «ppc € I'ppc, Which imposes a discretization condition on the
hyperbolic crystal momentum k. Indeed, having obtained the
N eigenvalues X ([gx]), A=1,..., N for each [g;] by simul-
taneous diagonalization of the translation matrices ¢/, the N
allowed values k™ = (£, &V kY| kM) of hyperbolic crystal
momentum are obtained by considering elementary translations
9] = [ws]:

A — k™
XV () =™

Since the x* are roots of unity, the components k]w are neces-

,7=1,...,4Xx=1,...,N. [29]

sarily rational multiples of 27, but the set of allowed points & in
Jac(Z2) = T* depends on the particular cluster considered, i.c.,
the particular normal subgroup I'pgc. The Euclidean counterpart
of this statement is a familiar fact encountered, e.g., in numerical
exact diagonalization studies of quantum lattice Hamiltonians,
where PBC clusters of different shapes allow for different dis-
crete “samplings” of the Brillouin zone.

Substituting the U (1) automorphic Bloch ansatz [27] in the
Schrédinger equation ), Hi;v)(z) = Ev(z) for the nearest-
neighbor Hamiltonian [24], we obtain the hyperbolic band struc-
ture in finite size,

4
BV =B (kV) == 3 X" () = -2 Y cos k™,
« j=1
A=1,...,N. [30]

In the last equality, we have used the fact that x([y; ']) =

x([%]1™Y) = x* ([5])- To assess the validity of our Bloch theorem
[27], we can compare the band structure [30] with the result of
brute-force numerical diagonalization of the hopping matrix H;;,
not assuming any symmetries. We find that for all abelian clusters
considered, there is an exact match between the energy spectra
computed both ways (see Fig. 6 for an example for N = 25).
To get a sense of how well Jac(32) is sampled upon increasing
the PBC cluster size N, we present in SI Appendix, section S4,
density-of-states (DOS) histograms for three different cluster
sizes. As the cluster size increases, they approximate the DOS
of an infinite abelian cluster (see The Commutator Subgroup and
the Maximal Abelian Cover) increasingly well.

The Commutator Subgroup and the Maximal Abelian Cover. We have
so far considered only the case where I'pgc is a normal subgroup
of finite index, corresponding to a finite hyperbolic cluster. An
example of normal subgroup of infinite index is the commutator
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Fig. 6. Comparison between the energy spectrum computed from exact di-
agonalization of the hopping matrix (red crosses) and from U(1) hyperbolic
band theory (blue circles), for four distinct N = 25 clusters denoted A, B, C,
and D.

subgroup I'™ = [I", T'], which is the group freely generated by
elements of the form %wj'y;lyj’l, 1,7 =1,...,4. Loosely speak-
ing, the commutator subgroup measures the extent to which I' is
nonabelian: the commutator subgroup of an abelian group is the
trivial group with a single (identity) element. The commutator
subgroup is also the smallest normal subgroup of I" such that the
factor group is abelian; equivalently, the quotient I'/ N with N a
normal subgroup of T' is abelian if and only if ") C N. Thus,
for all abelian clusters encountered so far, one must have I'™) C
T'ppc. Choosing I'ppc = r corresponds in fact to the compacti-
fication of an infinite subset of the original {8, 8} tessellation, and
the space Y., =H/T'? is the largest possible abelian cover of
the Bolza surface X = H/I". It is an abelian cover with infinitely
many sheets, which we will call the maximal abelian cover of X.
Geometrically, it is a Riemann surface of infinite genus.

The (infinite) group of residual translations on the maximal
abelian cover Y., is the quotient I'/T'), known as the abelian-
ization of I". By the Hurewicz theorem (35), T'/T!) is isomorphic
to the first homology group H;(X,Z), which is abelian. For the
{8, 8} lattice, we have Hi(X,Z) = Z*; more generally, for the
{4g,44} lattice, we have H;(X,Z) = Z*9. In physical terms, the
maximal abelian cover is a subset of the original hyperbolic lattice
that behaves as an infinite Euclidean lattice in 2¢g dimensions. As
for finite abelian clusters, the U(1) automorphic Bloch theorem
holds exactly for the maximal abelian cover, but the hyperbolic
momenta k now form a continuous set mapping the entire Jaco-
bian Jac(XZ,) = 729,

Nonabelian Clusters: A Nonabelian Bloch Theorem

Having discussed abelian clusters, for which the U(1) automor-
phic Bloch condition [6] becomes a rigorous Bloch theorem [27],
we next turn to nonabelian clusters, for which the residual trans-
lation group I'/T'pgc is a nonabelian finite group of order N. One
still obtains a homomorphism [20], but the permutation matrices
U([gr]) do not mutually commute. However, they still commute
with the hopping matrix H; thus, we expect that eigenstates ¢ (z;)
of H will form degenerate multiplets transforming according to
irreps of I'/T'ppc:

A

Mg ') =D e () D) ((96]), [9x] € T/Tese. [31]

p=1
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Here M, 1 =1,...,r are the r, degenerate states belonging
to irrep A of I'/T'ppc, 7 is the dimension of that irrep, and
D™ € U(ry) are the unitary representation matrices. Eq. 31
is the third key result of this work: namely, that eigenstates of
translationally invariant hopping Hamiltonians on finite hyper-
bolic lattices with PBC obey a nonabelian Bloch theorem. For 1D
irreps such as the trivial representation, which is always present
for any group, one has 7y = 1 and Eq. 31 reduces to the abelian
Bloch theorem [27], with X(A) =DW™ . For T /T'pac nonabelian,
there will also be irreps with 7, > 1, subject to the constraint that
Zﬁle r? = N where A/ < N is the number of conjugacy classes
of I'/T'ppc (and thus also the number of irreps) (38). For an
abelian group, each element is in its own conjugacy class; thus,

While the appearance of higher-dimensional irreps in the
spectrum of H is generally expected, one could contemplate the
possibility that the multiplicity ax of such an irrep A, i.e., the
number of times that a multiplet belonging to A appears in the
spectrum, is in fact zero. However, we can easily show that all
irreps must necessarily appear in the spectrum by recognizing
that the translation matrices ¢/ form what is known as the regular
representation of I'/I'pgc. The regular representation of a group
of order N is the one derived from the defining representation
of Sy under the homomorphism of that group into Sy implied
by Cayley’s theorem (recall Eq. 20). The regular representation
is reducible and can be block-diagonalized by a suitable unitary
transformation P,

N
PU([g:)) P~ = DM ([gi)), [32]
A=1

i.e., decomposed into a direct sum of irreps A, where the multi-
plicity is equal to the dimension 7 of irrep A (38). For an abelian
group, we recover Eq. 28: all irreps are 1D, and the regular
representation I/ can be fully diagonalized. By Schur’s lemma,
the matrix PHP ™!, which commutes with the PU([gs])P~* by
assumption, must necessarily be diagonal, with a number ry

of r\-fold degenerate energy eigenvalues E’l(k)7 R Er(j ). Since

ﬁ\\/:l r? = N from the general dimensionality theorem used

earlier, this accounts for the entire spectrum. Thus, provided
irreps with 7\ > 1 exist, as they do for I /I'pgc nonabelian, r-fold
degenerate multiplets obeying the nonabelian Bloch theorem
[31] necessarily appear ry times in the spectrum of nonabelian
PBC clusters. For simplicity, we refer to eigenstates obeying the
U(1) automorphic Bloch theorem [27] as abelian states, and
we refer to eigenstates obeying the Bloch theorem [31] with
rx > 1 as nonabelian states. While abelian clusters only possess
abelian states, nonabelian clusters possess states of both types.
In SI Appendix, section S4, we show that nonabelian clusters can
possess a significant fraction of abelian states.

Irrep Decomposition of the Finite-Size Spectrum: An Explicit Exam-
ple. Beyond computing the relative fraction of abelian vs. non-
abelian states in the spectrum of a given cluster, we now show
with an explicit example how the finite-size spectrum may be fully
characterized in terms of the irreps of I'/T'ppc; detailed calcula-
tions can be found in SI Appendix, section S5. We choose a spe-
cific nonabelian cluster of size N = 24 and explicitly calculate in
GAP the (irreducible) character table of its associated translation
group I'/T'pgc. The group is found to have eight 1D irreps A =
1,...,8and four 2D irreps A =9, . . ., 12. Accordingly, based on
Fuchsian translation symmetry alone, we expect the spectrum
of H to consist of eight nondegenerate levels and eight twofold
degenerate multiplets (two copies of each 2D irrep), for a total
of 16 distinct eigenenergies (but 8 + 8 x 2 = 24 eigenstates).
Numerically diagonalizing the hopping Hamiltonian H, we
find only eight distinct eigenenergies and observe fourfold and
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Fig. 7. Energy spectrum of the hopping Hamiltonian on the PBC cluster
considered in Irrep Decomposition of the Finite-Size Spectrum: An Explicit
Example. Blue indicates levels corresponding to abelian states; red indicates
levels corresponding to nonabelian states. Numbers correspond to the irrep
label )\, and gray ellipses denote eigenstates belonging to a (2D) nonabelian
irrep.

even sixfold degeneracies (Fig. 7). This implies the presence
of additional degeneracies beyond those required by Fuchsian
translation symmetry, either accidental or arising from point-
group symmetries (30), which are not considered here. To deter-
mine which of these observed degeneracies arise from Fuchsian
translation symmetry, we construct projector matrices II™) which
project an arbitrary state onto irrep A. We can then precisely
determine to which irrep each of the 24 eigenstates of H belongs
(Fig. 7, with 1D irreps in blue and 2D irreps in red). As a result,
we can distinguish between degeneracies that are a consequence
of the nonabelian Bloch theorem [31] and degeneracies that we
will refer to as accidental (with the above caveat regarding point-
group symmetries). The 1 and 2 irreps appear as nondegenerate
levels, according to the generic expectation. The 3 and 6, 4 and
5, and 7 and 8 irreps appear in pairs, which is an accidental
degeneracy. All those 1D irreps appear only once, as expected
from our earlier discussion. The 2D 9, 10, 11, and 12 irreps each
appear twice. The two copies of the 11 and 12 irreps appear
at different energies, which is the generic scenario, but the two
copies of the 9 and 10 irreps appear at the same energy, which is
again an accidental degeneracy. Other accidental degeneracies
are found between the A = 7,8 abelian states and the A =9
nonabelian multiplets and between the A = 11 and A = 12 non-
abelian multiplets.

Discretization of the Higher-Rank Moduli Spaces. The presence of
nonabelian Brillouin zones in our nonabelian Bloch theorem
manifests itself in terms of algebraic geometry through the full
power of the Narasimhan-Seshadri theorem (34). We now di-
rectly generalize unitary irreps x : I' — U(1) in the automorphic
Bloch condition to those of the form x :T'— U(r), thereby
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producing a higher-rank character variety. When > 1, the space
of such irreps x taken up to isomorphism does not admit the
structure of a compact torus. Rather, the moduli space is a
(2r?(g — 1) + 2)-dimensional manifold NV'(3,, U(r)) that lacks
the compactness and the group structure inherent to the rank-
1 character variety, namely, N'(X2,, U(1)) =2 Jac(3,). Various
aspects of its topology and geometry are well known (e.g., ref.
55). The stability condition on N' (34, U(r)) was first introduced
by Mumford in ref. 56; stability conditions have become familiar
tools in algebraic geometry that permit geometers to construct
topologically nice spaces from quotients by equivalence relations
and group actions.

The lack of compactness of N (3,, U(r)) is corrected in a
very mild way by admitting reducible representations. However,
the overall structure is still not toroidal. Indeed, N (X, U(r))
is the quotient of a Euclidean space by a lattice only when
r = 1. Now, by applying the classical Riemann—Hilbert corre-
spondence (e.g., ref. 57), we can view NV (X4, U(r)) as a moduli
space of reducible, flat U(r) connections on X,. The latter has
previously appeared in physics in the semiclassical quantization
of 2D Yang-Mills theory on Riemann surfaces (58, 59) and in
the canonical quantization of 3D Chern-Simons theory on a
spacetime of the form X, x R (60, 61). In turn, Narasimhan—
Seshadri recasts this moduli space of flat connections as the
moduli space M(X,, U(r)) of semistable holomorphic vector
bundles of (complex) rank r and vanishing first Chern class, which
enjoys its own connections to completely integrable Hamiltonian
systems and quantization (e.g., refs. 62, 63). Here a holomorphic
vector bundle V' on X, is said to be semistable if each and
every nonzero, proper subbundle U C V satisfies the following
inequality: ¢, (U)/rk(U) < e1(V)/r, where rk and ¢; denote the
rank and the first Chern class (as an integer), respectively. In
other words, the normalized first Chern class of each subbundle
must not exceed that of the whole bundle. This condition limits,
in particular, the automorphisms available to a bundle, which is
necessary for forming a topologically well-behaved moduli space.
However, the bundles 7 admitting at least one subbundle U with
c1(U)/rk(U) < e1(V)/r are simultaneously the compactifying
points of the topology as well as the (possibly) singular points.

It is worth noting that the correspondence N(X,, U(r)) &
M(2,, U(r)) is a diffeomorphism but not a complex-analytic
isomorphism in general. In other words, the correspondence
presents two different complex manifold structures on the same
differentiable manifold. While N'(X,, U(r)) and M(XZ,, U(r))
are topologically equivalent and equally suitable for capturing
eigenstates within the hyperbolic band theory, and while
N (X4, U(r)) is physically appealing as a space of connections,
M(%,, U(r)) has a more rigid geometric structure that submits
to tools from algebraic geometry that are not normally available
for N'(Zy, U(r)). It is also important to note that N (2,4, U(r))
only depends on the topological information of the surface 3,
while the geometry of M(X,, U(r)) depends on the Riemann
surface structure on X,.""

We now turn to a concrete example, the moduli space
M(X2, U(2)), that demonstrates the departure from the toroidal
geometry of the abelian Brillouin zone and applies to the earlier
discussion of 2D irreps for the Bolza surface. This moduli space
is isomorg)hic to a bundle of copies of the complex projective
space CPP° over the Jacobian (65). In other words, the genus-2,
U(2) moduli space has a U(1) direction that is the Jacobian
and an SU(2) direction whose geometry is more akin to that
of the sphere (Fig. 8)—indeed, the simplest complex projective

**For further details concerning the Riemann-Hilbert correspondence, the Narasimhan-
Seshadri correspondence, stability, differentiable versus complex structures on moduli
spaces, and the larger nonabelian Hodge theory correspondence that these ideas fit
into, we refer the reader to the survey in ref. 64, for instance.
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Fig. 8. Schematic representation of the moduli space M (3, U(2)).

space, CP', is exactly the Riemann sphere. These CP? fibers
are positively curved, unlike a torus which is geometrically flat.
For Jac(Xy) = M(X,, U(1)), the SU(1) factor is trivial, and
thus, we only detect the toroidal geometry of the Jacobian. In
SI Appendix, section S6, we provide further information on the
geometry of the higher-rank moduli spaces.

Now, let us denote the normal subgroup I'pgc < T as Iy to
emphasize its finite index N, where I" = 71 (X,) as before. Let
Gy =T /Ty, noting that | Gy | = N. We may construct a new Rie-
mann surface Yy = H/T'y, which projects onto ¥, as an N-fold
Galois cover. We use fy to denote the covering map Yy — X,
where we use X = X, for simplicity. (As discussed in Hyperbolic
Clusters and Normal Subgroups, the genus of Yy depends on
g and N in a predictable way, as per the Riemann-Hurwitz
theorem.) Observe that we can recover ¥, as Yy /Gy, where
Gy has the interpretation as a group of deck transformations for
the cover. As N increases, the surfaces Y and the groups Gy can
be regarded as a sequence of approximations to H and I', respec-
tively. On the moduli spaces side, we are replacing the character
variety Irrep(I’, U(r))/U(r) with Irrep(Gn, U(r))/U(r) ,
which represents a discretization of the character variety. This
is an example of how using Narasimhan—Seshadri is helpful. By
viewing this in terms of moduli spaces of holomorphic bundles,
we note that a rank-» bundle V on X, has a pullback fy V to Y.
The new bundle fx V has the same rank as V" and, after tensoring
by a line bundle, has vanishing first Chern class. (We will use
fa V for this twisted bundle without ambiguity.) Furthermore,
stability is preserved under pulling back, and so fy V belongs
to M(Yy, U(r)); thus, a stable bundle on X induces one on
Yn. Now, if V' came from Irrep(Gn, U(r))/U(r) specifically,
then V' arises from a representation of I' that sends I'’y to the
identity in U(r). This means that the bundle fy V must be trivial
except for possibly around the branch points of fy : Yv — X,
and so the moduli problem reduces to one on a divisor (a finite
set of points) in Yy. In other words, Irrep(Gn, U(r))/U(r) is
discrete, and we may thus perform, for arbitrary rank, similar
explicit band-theoretic calculations as done in ranks 1 and 2
in Irrep Decomposition of the Finite-Size Spectrum: An Explicit
Example. We leave such systematic calculations for future
exploration.

Summary and Outlook

In summary, we have extended the hyperbolic band theory of
ref. 30 in several significant ways. First, based on earlier work of
Sausset and Tarjus, we have generalized the notion of PBC for
finite lattices from the Euclidean to the hyperbolic context and
shown that such a notion is compatible with the automorphic
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Bloch condition proposed in ref. 30. In both the Euclidean and
hyperbolic contexts, a finite PBC cluster with NV sites corresponds
to a choice of normal subgroup I'pgc of finite index N in the
translation group I'. We have used a mathematical algorithm,
the LINS procedure, to systematically enumerate all possible
PBC clusters of the {8, 8} lattice up to N = 25. We then showed
that the group of residual translations on the cluster is the factor
group I'/T'pgc, a finite group of order N, and constructed nearest-
neighbor hopping Hamiltonians invariant under this group.
Although we have focused on the {8, 8} lattice, our constructions
are straightforwardly generalized to all hyperbolic lattices for
which a strictly hyperbolic, cocompact translation group I'
associated with its underlying hyperbolic Bravais lattice (31) can
be identified.

Second, we established that for the majority of PBC clusters,
I'/Tppc is in fact abelian, and the automorphic Bloch ansatz
of ref. 30 with U(1) factors of automorphy becomes exact. As
with Euclidean lattices, the hyperbolic crystal momentum k €
Jac(Xy) & T?9 becomes discrete in finite size, with components
valued in 27Q. There exists in fact an infinite PBC cluster,
corresponding to I'pgc equal to the commutator subgroup of T,
which behaves as a Euclidean lattice in 2¢g dimensions. For this
particular infinite cluster, U (1) hyperbolic band theory is again
exact but this time with a continuous crystal momentum.

Third, we showed that for certain PBC clusters considered,
T'/T'ppc is nonabelian, and U (1) factors of automorphy are not
sufficient to describe the entire spectrum. Rather, we showed that
some eigenstates obey a nonabelian Bloch theorem: they belong
to degenerate multiplets and transform into each other under
Fuchsian translations. The analog of the discretization of crystal
momentum in this case is the selection of discrete points from
an otherwise continuous space, the moduli space M (2,4, U(r))
of stable holomorphic vector bundles of rank r, with > 1. This
classic object in modern algebraic geometry, isomorphic to the
space of inequivalent U(r) irreps of I, emerges naturally from
our construction in the infinite-size limit and generalizes the
Jacobian torus that only parametrizes U (1) representations.

As a concrete experimental proposal to realize the physics
discussed in this work, we propose fabricating a device based on
the {8, 3} lattice (Fig. 9); the heptagonal version of this tiling
was used as layout graph in the CQED experiments of ref. 2.
The kagome-like line graphs of such lattices, which the latter
technology effectively implements, are of intrinsic interest due
to their unusual flat bands (2, 25). The proposed device contains
N =12 unit cells of the Bolza lattice, the smallest value of N
at which nonabelian Bloch states appear (Fig. 5). There are 16
sites per unit cell, for a total of 192 sites. In the CQED imple-
mentation, each site is decorated with a capacitive coupler and
three coplanar waveguide resonators; with electric circuits, each
site is a distinct node. While only lattices with open (Dirichlet)
boundary conditions were considered in previous experiments (2,
7), here we wish to exploit the flexibility of the CQED/electric
circuit platforms to engineer PBC. In SI Appendix, section S7,
we give detailed prescriptions for connecting the 88 bound-
ary sites in two different ways, yielding abelian and nonabelian
PBC.

Finally, we indicate possible avenues for future theoretical
research. First, finding an explicit parametrization of the irre-
ducible U(r) representation matrices in the nonabelian Bloch
theorem [31] is an important question for future research. The
genus-2, rank-2 case is a promising starting point since the geom-
etry of the associated moduli space is in principle known. Second,
it would be interesting to explore the effect of threading global
fluxes through the 2 cycles of the compactified PBC cluster, i.e.,
considering twisted PBC. For 2D Euclidean lattices, the space
of such fluxes is Jac(T?) = T2 regardless of system size. For a
square lattice, inserting a pair of global fluxes (¢, ¢,) in the x
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Fig. 9. Proposed realization of abelian/nonabelian Bloch states using CQED
or electric circuit implementations. A cluster of 192 sites (red vertices) of the
{8, 3} lattice corresponds to N = 12 Bolza unit cells (blue octagons) with 16
sites each. The 88 boundary sites can be wired together in two different ways
to achieve either abelian or nonabelian PBC; see S/ Appendix, section S7 for
the list of boundary identifications and close-ups of the A, B, and C boundary
octagons (green).

and y directions, respectively, leads to a shift of the crystal mo-
mentum (k;, k) — (ke + ¢z, ky + ¢y). By contrast, for hyper-
bolic lattices, the space of global U(1) fluxes is Jac(Xy) = T2",
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whose dimension grows with the size of the system (recall Eq. 7
and the surrounding discussion). Precisely how the quantized
hyperbolic crystal momenta k € Jac(X,) are shifted upon tuning
such global fluxes and whether nonabelian global fluxes can also
be inserted are interesting questions for further research. From
the algebro-geometric point of view, the intricate (co)homology
of nonabelian global fluxes in M (3,, U(r)) may carry physical
meaning worthy of investigation in this context. At the same time,
the existence of nonsmooth values of the crystal momentum,
corresponding to semistable (but not stable) vector bundles in
M(%,, U(r)), is a compelling feature of hyperbolic band theory
that should be understood, as should the role of turning on
nonzero values of the first Chern class of a stable bundle. Last,
the fact that stability for vector bundles is intimately tied to
the Yang-Mills equations on a surface (58) is suggestive of in-
triguing connections between high-energy physics and condensed
matter.
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