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Abstract

human health.

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity
to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing pro-
cesses that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a conse-
guence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome
editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we
highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these
limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome
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Background

Cancer is one of the leading causes of disease-related
death, increasing worldwide incidence [1]. At the same
time, advancements have been achieved in the prevention
and therapeutic approaches, resulting in longer lifetimes
or even cures for certain patients with cancer. Unfortu-
nately, chemotherapy and radiotherapy, the two gold
stones in cancer treatment, are also painful for patients
and cause severe side effects [2]. Therefore, developing
innovative anti-cancer therapies with less side effects
needs a comprehensive understanding of cancer biology.
The most recent advancements in sequencing technology
have made it possible to study the cancer genome more
effectively and at a lower cost than ever before. The use
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of an integrated strategy that incorporates genomic and
transcriptomic advancements can provide a comprehen-
sive view of an individual’s genome. Additionally, this
method is used to make valuable decisions relating to
patient therapeutic options [3].

Different genomic engineering tools have been per-
formed in cancer therapy such as ZFNs and TALENs
by targeting DNA domain-binding proteins. Still, their
efficacy was limited due to the inability to target epi-
genetic modification that arises in tumorigenesis [4].
Recently, a more flexible genome editing technique,
CRISPRs linked with HNH domain protein Cas9,
promises efficient, long-term safety cancer treatment
[5]. The CRISPR/Cas9 system, unlike previous genome
editing methods that used protein-DNA interactions to
mediate sequence recognition, uses an RNA molecule
to mediate binding. CRISPR loci, which are made up
of alternating repeat-spacer units, and CRISPR-asso-
ciated (Cas) proteins, are derived from a prokaryotic
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host defense system that protects against viral genomes
and plasmids [6]. Based on the method of recognition
and cleavage, CRISPR/Cas systems are divided into two
classes, which are further divided into six types and
various subtypes [7]. Class 1 systems cleave with pro-
tein complexes, whereas Class 2 systems only cleave
with one protein, creating an opportunity for genome
engineering [8]. However, certain targeting limitations
apply to all Class 2 systems (types II, V, and VI). For
example, a protospacer flanking sequence is recognized
by Type VI systems, which use Casl3 to cleave RNA
[9]. In addition, type II and Type V systems recognize
the adjacent protospacer motif (PAM), a conserved
2-5 bp sequence [10]. For example, the Casl12a/Cpfl
protein uses a simple crRNA and recognizes a PAM
directly before the protospacer, such as T-rich PAMs
(TTTN) [11]. Conversely, type II Cas9 nuclease recog-
nizes PAM sequences downstream of the protospacer
[12]. The most well-characterized and broadly applied
CRISPR system is the type II CRISPR/Cas9 system.

Cas9 is an RNA-guided endonuclease that recognizes
and cleaves target DNAs that have template strand pair-
ing to the guide RNA, and it requires RNA molecule
known as the trans-activating crRNA (tracrRNA). Tracr-
RNA promotes crRNA binding and processing. Moreo-
ver, a linker can join the tracrRNA and crRNA into a
single molecule known as the single guide RNA used in
genome editing (sgRNA) (Fig. 1).

Cas9 is an RNA-guided endonuclease that recognizes
and cleaves target DNA that have template strand pair-
ing to the guide RNA, which is composed of Crispr RNA
(crRNA) and tracrRNA [13]. crRNA, which has a [17-20]
nucleotide sequence that is complementary to the target
DNA, and tracrRNA, which acts as a Cas nuclease bind-
ing scaffold [14].

The CRISPR/Cas9 system has been successfully applied
to in vitro cancer research by inhibiting one or more
oncogenic molecular pathways (Table 1). However, the in
vivo use of the CRISPR/Cas9 system has faced many chal-
lenges such as the occurrence of off-targeting modifica-
tions, the possibility of causing autoimmune diseases, the
identification of a proper delivery technique, and, lastly,
ethical concerns. As a result, research scientists follow
different procedures and investigate various bioinformat-
ics tools to prevent, or at least reduce, these obstacles to
make the CRISPR/Cas9 system more suitable for treating
cancer in the human body. This review summarizes some
of the main limitations of using CRISPR/Cas9 in clinical
trials and some of the strategies applied in previous stud-
ies to overcome these limitations. Hopefully, this study
provides a comprehensive overview of the main road-
blocks to implementing this promising technique in vivo,
helping future researchers focus their efforts on tackling
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them and making CRISPR come alive as a powerful strat-
egy to treat cancer.

Innovative advances in CRISPR/Cas9 gene-editing
technology

When Japanese scientists found several previously undis-
covered tandem repeats in the E. coli genome in 1987,
they didn’t report the biological relevance of those find-
ings [15]. However, the role of these sequences remained
unknown until they were termed Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) in 2002
[16]. Then, in 2005, the CRISPR loci were shown to play
a significant role in adaptive immunity by three different
study teams [17-19]. In 2007, Barrangou and his team
revealed that viral gene sequences integrated by bacteria
might modify the bacterium’s resistance to phages [20].
Brouns et al. in 2008 discovered that non-coding RNA
produced from the CRISPR incorporating short frag-
ments might direct the CRISPR-associated (Cas) proteins
to the target-specific portion of DNA, allowing it to per-
form a protective function [21]. Deltcheva et al. discov-
ered that trans-coding crRNA (tracrRNA) was related to
the maturation and processing of pre-crRNA, and their
research revealed new destinations for crRNA develop-
ment [22]. In vivo studies in 2012 showed that mature
crRNA produced two unique RNA structures when base-
paired with tracrRNA, guiding CRISPR-associated pro-
tein Cas9 to create double-stranded (ds) DNA cleavage
[23]. Subsequently, Cong and Mali teams made genome
editing with the CRISPR/Cas9 system possible, who used
two different type II Cas systems to make DNA cuts in
cell cultures [24, 25]. Once the CRISPR/Cas9 technology
was developed, many CRISPR/Cas9-based tools for gene
editing at the DNA and RNA levels were created by 2020,
with fast advancements in the technology since [26, 27]
(Fig. 2).

Overview of CRISPR/Cas9-based genome editing

CRISPR is a response of the bacterial and archaea
immune system to protect themselves from virus infec-
tions [28]. Approximately half of the bacteria have a
CRISPR/Cas system [29, 30] a defense mechanism that
allows the bacterial cell to memorize, recognize and beat
recurrently infecting agents [31]. In this system, short
guide CRISPR RNAs (crRNA) interfere with invading
nucleic acids in a sequence-specific manner. CRISPR/
Cas is composed of a genomic locus termed CRISPR that
contains harsh repeating elements separated by unique
sequences (spacers), which derive from Mobile genetic
factors like phages, plasmids, or transposons. An AT-rich
region is typically found at the beginning of Cas genes,
which encode Cas proteins [32]. Nowadays, accord-
ing to the structure and function of the Cas protein, the



Rasul et al. Molecular Cancer (2022) 21:64

Page 3 of 30

Virus invaded

bacterial cell
1 Viral DNA is inserted into the
bacterial genome
Spacer
Adaptation aquisition —

N

tracrRNAs recognize CRISPR RNA

w

The CRISPR RNA:tracrRNA duplex is
cleaved off of the longer pre-crRNA.

Production of

CRISPR RNA
CRISPR RNA guides molecular
machinary to target & distroy viral
ginome
DNA Cas9
Hybridization

and cleavage of
the viral genom

4 If the bacterium is infected by the same
virus, the Cas9:crRNA produced during the
first infection identifies PAM sequences in
the viral genome and prevent re-infection.

[N

A

\
Z:\% Bacterial cell
Cas Viral DNA

°/

Casy
2

sequences and target Cas9 enzymes to
the CRISPR RNA. ./ﬁ_m
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during CRISPR RNA biogenesis. The Cas protein effectors bind individual crRNAs. Effectors programmed by suitable crRNA attach to phage DNA
with sequences matching a CRISPR spacer in the cell, and the resulting R-loop complex is destroyed by Cas executor nuclease
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CRISPR/Cas systems can be divided into two classes
(class I, class II), which are further categorized into six
types (type I-VI) [33]. Class I consists of multiprotein
complexes responsible for the cleavage of nucleic acid.

In contrast, in class II, only a single protein, Cas9,
is used to read, identify and cleave the DNA target
sequence [33]. In CRISPR technology, a single protein
method is more effective than a multiprotein approach,
hence the class II system is more often used, especially in
research [10]. Figure 1 illustrates the details of the Type
II CRISPR/Cas9 system. For instance, deactivated Cas9
can be utilized to target the epigenome by inhibiting the

enzymatic activity of HNH domains without causing
sequence disruption [34]. The guide RNA is composed
of two core parts; the first is required to bind the RNA
to the Cas protein, and the second part, called a spacer,
consists of about 20 nucleotides and is responsible for
identifying and binding to the targeted site [35]. Further-
more, the PAM sequence is a short DNA sequence usu-
ally between 2 and 6 nucleotides that is also required to
identify the exact target site on the DNA, and it is located
three base pairs from the site where the DNA will be cut,
and the mutation will be introduced [10] (Fig. 1).
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Anticancer application of CRISPR/Cas9 gene editing

and clinical trials

Cancer initiation and spread are mediated by muta-
tions and dysregulation of a variety of genes [36] such
as oncogenes, tumor suppressor genes, and stem cell-
associated genes, chemo-resistant genes and metabolic
genes. Cancer treatment’s primary goal is to halt can-
cer cell growth and development by repairing muta-
tions and restoring dysregulated gene expression. Since
its inception, the CRISPR/Cas9 gene-editing method
has been widely used in cancer research, with prom-
ising results. Georgiadis et al. recently demonstrated
that fratricide-resistant T cells can be generated by
removing and replacing the TCR/CD3 and CD7 with
lentiviral-mediated production of CARs specific for the
CD3 or CD7[37]. Table 1 lists some of the target genes,
tumors, and studies that show the effectiveness of
CRISPR/Cas9 in correcting these alterations. Based on
promising pre-clinical results, the CRISPR/Cas9 system
can be used in clinical settings to target cancer-causing
genes (Fig. 3). The efficacy of CRISPR-based cancer
therapeutics is now being investigated in a number of
clinical trials (Table 2).

The programmed cell death-1 (PD-1) protein expres-
sion is being targeted by several of these clinical studies.
For example, a monoclonal antibody against PD-1 called
pembrolizumab exhibits anti-tumor activity in Non-Small
Cell Lung Cancer (NSCLC), suppressing the immune sys-
tem’s ability to produce PD-1 and PD-L1 (programmed
death-ligand 1), dramatically improves patients’ survival
rate [38]. Because the FDA has approved PD-1 inhibitors
for cancer immunotherapy, PD-1 is an intriguing target
for immunotherapy. In addition, CRISPR/Cas9 has been
used in patients to begin targeting PD-1 (NCT02793856).

They used CRISPR/Cas9 to suppress PD-1 expression
in metastatic cells from NSCLC patients. The cells were
cultured and modified before being reintroduced into the
patient [39].

PD-1 knockout-engineered immune cells to treat meta-
static NSCLC will be tested for safety in a dosages trial.
Additional trials targeting PD-1 expression in T-cells are
currently done in other types of cancer such as renal,
bladder, and prostate cell malignancies [40]. Similarly,
PD-1 deletion has been used in T-cells in phase II clini-
cal trials for esophagus cancer (NCT03081715). Fur-
thermore, the ability of CRISPR gene editing for cancer
immunotherapy to persist for up to 9 months, suggests
that immunogenicity is low under these settings and
demonstrates the practicality of CRISPR gene editing
for cancer immunotherapy [41]. Clinical experiments
are also using CRISPR/Cas9 to create chimeric antigen
receptor (CAR) T cells.

The first-in-human trial was conducted by scientists
from the university of Pennsylvania applying CRISPR/
Cas9 genome-edited NY-ESO-1 TCR cells for cancer
patients [42] including advanced multiple myeloma
(MM) myxoid/round cell liposarcoma (MRCL), and
synovial sarcoma (NCT03399448). They showed that
T cells were proven to be safe, viable, and long-lasting
[42]. Furthermore, using CRISPR to eliminate endog-
enous TCR and PD-1 might improve tumor rejection
activity [40]. Additionally, the allogeneic CAR T-cells
targeted to the CD19 antigen were produced by com-
bining the lentivirus-delivered CAR receptors and elec-
troporation-delivered CRISPR RNA to alter the natural
TCR and B2M genes. For patients with leukemia, this
strategy may help avoid the host’s immune system and
hence avoid graft-versus-host-disease complications.
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Fig. 3 CRISPR/Cas9-mediated treatment has the potential to cure a variety of diseases. The number of diseases that CRISPR is now used to treat is
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viral diseases, neurological diseases, cancer, ocular disease, blood diseases, and cardiovascular diseases and disorders, as well as other complex
genetic human diseases, according to data from clinical trials released recently

Blood diseases

Consequently, additional CRISPR clinical trials (phase
III) used CRISPR-edited CAR T-cells with dual specific-
ity for CD19 and CD20/CD22, which can identify and
destroy CD19-negative malignant cells by identification
of CD20/CD22 (NCT03398967). This may have been
a helpful adjunctive treatment for an extensive range
of the population. In another work, Chen et al. applied
CRISPR/Casl3a to disrupt human papillomavirus16/18
E6/E7 mRNAs using an emerging programmed CRISPR
technology. They revealed that HPV 16/18 E6/E7 mRNA
was successfully and selectively knocked down using a
modified CRISPR/Casl3a system, causing growth sup-
pression and cell death in HPV 16 and 18 positive SiHa
and HeLa cell lines, but not in the HPV -negative C33A
cells [43]. An additional CRISPR clinical study has been
planned to test new medications and determine their
effectiveness (NCT03332030). In this study, patients with
Neurofibromatosis type 1 (NF1) were used to create an
induced pluripotent stem cell bank (iPSC) (NF1). NF1 is
a common neurocutaneous disease that frequently devel-
ops tumors of both benign and malignant types [44]. The

main method that used in vivo and in vitro CRISPR/Cas9
study to treat diseases showed in Figs. 3 and 4.

To identify a particular target drug for NF1, CRISPR/
Cas9 was used to create NF1 homozygous (NF1-/-) and
NF1 heterozygous (NF1+4/-) cell lines, as well as NF1
wild type (NF1+/4). The discovery of NF1-targeted
therapies may be aided by the opposite or alleviated char-
acteristics. Despite promising clinical trial results, more
research is needed to ensure that CRISPR/Cas9 is a safe
and effective method of treating human cancers [45]. On
the other hand, CRISPR Cas9 indirectly can be used in
cancer therapy to find out the drug-resistance mutation
in a short period of time. For example, through applying
CRISPR Cas9, only in 40 min can determine the FLT3-
F691L with a sensitivity of 0.1% [46].

Challenges of CRISPR/Cas9

Even though the previous explanation suggests that
CRISPR/Cas9 is a promising approach, this editing
system still has a number of limitations and risks that
make it challenging to use in clinical trials due to its
recent discovery and use in humans. Immunogenicity,
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off-targeting, polymorphism, delivery method, and eth-
ics are only several major concerns with the CRISPR/
Cas9 system highlighted with the list of strategies that
has been developed and can be used to overcome those
limitations (Fig. 5).

Autoimmune response against endogenous Cas9 protein
The Cas9 protein is one of the three main components
of the structure of the CRISPR system, and it has a fun-
damental role in binding double-stranded DNA, paired
with the mRNA guide, and cutting it at a specific site,
expressly 3 bases before the PAM sequence [104].This
protein derives from Streptococcus pyogenes, a bacterium
that is the cause of many common infections in humans.
It is recognized by the body as an antigen, developing an
immune response against it [105]. Similarly, the existence
of a pre-existing immune response to the homologous
Cas9 protein in Staphylococcus aureus has been reported
[106]. Indeed, both Staphylococcus aureus and Strepto-
coccus pyogenes, from which the main Cas9 proteins are
obtained, SaCas9 and SpCas9, have infected humans for a
long time [106]. Thus, the human immune system recog-
nizes these proteins as foreign and develops an immune
response against them upon injection, which leads to fast
degradation of the Cas9 protein, preventing it from per-
forming the gene-editing function [107].

Strategies to overcome immunogenicity

Several strategies have been proposed to overcome limits
posed by immunogenicity against Cas9. Here, we are giv-
ing an overview of the main ones offered; (i) implement-
ing the CRISPR/Cas system for gene editing early in a
lifetime; (ii) targeting immune-privileged organs (Fig. 6).

Gene editing in early lifetime

Even before birth, various types of disease can be
detected in children, and preventing or treating those
diseases will save thousands of lives worldwide. The
CRISPR/Cas system has been successfully applied in
treating various types of inherited diseases in children,
such as cystic fibrosis, thalassemia, and sickle cell ane-
mia, Mucopolysaccharidosis type IVA [108—113]. Fur-
thermore, CRISPR/Cas9 can inhibit different molecular
pathways of various common types of cancer in children,
such as neuroblastoma and lymphoma [114, 115]. More-
over, treating these defects by CRISPR Cas system after
diagnosed can be done before the infant is immunized
with anti-Cas protein.

Targeting immune-privileged organs

Another practical approach to overcoming the risk of
autoimmune disease is gene editing by CRISPR Cas9
techniques in those organs recognized as immune-
privileged organs. An Immune privileged organ can be
defined as a site in the body where a graft tissue can be
implanted without being rejected by the organism due
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Fig. 5 Challenges and overcoming strategies of CRISPR/Cas9. Immunogenicity, off-targeting, polymorphism, delivery technique, and ethical issues
are main limitations, difficulties; and challenges of the CRISPR/Cas9 system in clinical trials and its recent discovery and usage in humans

to an immunological reaction formed against it [116].
Examples of immune privilege organs are eyes [117],
brain [118], placenta, fetus [119], and testicles [120].

Many congenital eye disorders lead to blindness and
other defects in the eyes, such as Leber congenital amau-
rosis type 10, retinal dystrophy caused by a mutation
in the CEP290 [121]. Fortunately, many studies proved
that the eyes are one of the immune-privileged organs
that can successfully imply CRISPR Cas9 on it and edit
a particular mutation there [122]. For example, Jain et al.
employed CRISPR-Cas9 genome editing in human TM
cells and in a POAG animal model to reduce the expres-
sion of mutant MYOC, resulting in a reduction in the
stress on the ER [123].

CRISPR offers an excellent opportunity for scientists to
reach high gene editing efficiency in fetuses and embryos,
as the immune system has not yet reached maturity. Nev-
ertheless, Because of the substantial danger of embryo

off-targeting associated with its use in vivo, it is illegal in
many countries. For example, CRISPR/Cas9’s off-target-
ing rate was 16% in a study aiming to target the POU5F1
gene in embryos [124]. Correspondingly, due to the
cleavage of both alleles, off-target cleavage of Cas9 causes
chromosomal loss and hemizygous indels [125]. These
findings show that chromosomal content can be manipu-
lated. Still, it requires other skills and strategies to reduce
the high risk of off-targeting and loss of DNA fragments.
Additionally, testicles are another immuno-privi-
leged organ that the gene editor can target to correct
the mutated genes and deactivate oncogene in cancer
patients [120]. These genes can be identified and reverted
to their normal function through CRISPR Cas system.
Sun et al. found that male fertility genes in mice can be
dispensable for further fecundity by knocked out through
CRISPR/Cas9 [126]. Furthermore, in mice, CRISPR/
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Brain tissue

'Immune-privileged' sites and CRISPR/Cas9-mediating gene editing

Eye tissue Recovered visual

Treatment

In vivo CRISPR/Cas9-mediated treatment to
Alzheimer disease by targeting Bace1 gene.

Endometerial
cancer

In vitro CRISPR/Cas9-mediated gene editing
to in activate ARID1A gene in Endometrial
cancer cells.

Testicles

Fig. 6 ‘Immune-privileged’sites and CRISPR/Cas9-mediating gene editing. Implementing the CRISPR Cas system for gene editing early in person’s
life; and targeting immune-privileged organs are all attempts to overcome the limitations provided by immunogenicity against Cas9

function

Treatment

CRISPR Cas9/Cas9-mediated to POAG by
targeting mutant myocilin gene in in vivo
mouse model and ex vivo human eyes.

Tumoszite in testicle
Treatment

In vivo CRISPR Cas9-mediated treatment to
spermatogenesis process by targeting SIx2.

Cas9-mediated gene editing uncovered 30 testis-enriched
genes not required for male fertility [127].

Likewise, brain is another immune privileged organ,
and several studies were performed in vivo without
immune tolerance. Normalized FMR-1 gene expression
was achieved by CRISPR/Cas9-mediated deletion of the
CGG repeat in hiPSCs from fragile X syndrome patients,
a change that was sustained even after differentiation into
neural progenitor cells (NPCs) and mature neurons; in
addition, hypermethylation of the CpG sites upstream of
FMR-1 was reversed [128].

Off-targeting

Another main concern about using CRISPR/Cas9 in
recent years is having a high number of off-targeting
[129-131]. When implying the CRISPR Cas9 system in
a complex genomic species such as mammalians, the
gRNA might bring to a wrong target due to similarities
within the genome, which may lead to further muta-
tions being introduced in undesired genomic locations
[132]. In recent years, many bioinformatics tools have
been developed to help predict and reduce off-target
modifications. These should be further improved to
enable researchers to use them effectively in the devel-
opment of new therapies.

Strategies to overcome off-targeting

The main strategies that have been successfully per-
formed in previous studies can be classified into three
main groups; (I) bioinformatics tools to design more
accurate gRNA and predict off-targeting; (II) use of
Cas9 nickases; (III) add anti-CRISPR proteins.

Bioinformatics tools

Bioinformatics tools play a crucial role in analyzing,
predicting, and determining the CRISPR Cas system.
Bioinformatics tools allowed Francisco Mojica to dis-
cover that the system previously found in bacteria also
existed in archaea [133]. Further, bioinformatics tools
help scientists design more efficient gRNAs, detect
the accurate editing site within the whole genome, and
evade off-targeting percentage probability (Table 3)
[134]. Studies have shown that the gRNA is responsible
for most of the off-targeting [135]. For example, many
studies have shown a direct correlation between gRNA
length and the number of off-targeting; thus, finding
the perfect size of the gRNA is essential to reduce the
off-targeting probability [136]. Such as reducing the
length of gRNA to less than 20 nucleotides have a sig-
nificant role in lowering off-targeting by about 5000
folds in the same efficiency of the longer gRNA [34,
122]. According to another study, most of the mis-
matches occur within the last three nucleotides placed



Rasul et al. Molecular Cancer (2022) 21:64

at the opposite side of the PAM sequence, thus remov-
ing these nucleotides and maintaining the length of
gRNA about 17 nucleotides crucial role in the reduc-
tion of off-targeting [137]. On the other hand, gRNAs
shorter than 15 base pairs are not safe as they would
lose the specificity and could not bind the right target
inside the nucleus [138].

Cas9 nickases

Another practical approach to reducing the number of
off-targeting is mutating in one nuclease domain in just
one strand of the DNA by CRISPR nickase, which crucial
to create nick that quickly repaired in the cells nickase
[155]. Cas9 nickase has a different breaking mechanism
than the normal Cas9 protein; in particular, it breaks
down just one strand of the DNA, and they use double
adjacent gRNAs rather than sgRNAs (Fig. 7). Therefore,
editing genes by using Cas9 nickase reduces further dam-
age in the target DNA, and it has a significant role in
reducing the number of off-targeting [156]. Furthermore,
it was shown that paired nicking could reduce the risk
of off-targeting by 50 to 1500 folds in cell lines, and in
mouse zygotes, it allows the gene knockout without any
effect on cleavage efficiency [155].

Anti-CRISPR proteins

Inactivation of Cas9 protein after targeting its site may
also reduce the number of off-targeting [134]. It has been
proven that the number of off-targeting is correlatively
increased as long as the Cas9 protein is expressed in the
human tissue culture [137]. Deactivation of Cas9 protein
can be obtained through using anti-CRISPR proteins
(Acr) [157]. Acr proteins are produced in both bacte-
rial and human cells and allow to disable CRISPR func-
tion [158]. Moreover, more than 50 anti-CRISPR proteins
have been discovered so far, synthesized by viruses as a
defense system against prokaryotic cells [159]. The first
Acr protein discovered that deactivates the CRISPR type
I system in P aeruginosa, while the other Acr proteins
can act on different types of CRISPR, such as types II,
II1, and V [31]. Acr proteins are about 52 to 333 amino
acids, meaning they are tiny molecules and diverse
with no sequence overlap with other proteins [159,
160]. Also, each Acr protein has a specific and unique
sequence free of conserved sequences, which increases
their diversity [161]. Having a small size and a unique
genomic sequence make the recognition of Acr difficult
by standard homology-based methods. Therefore, these
proteins can target their aimed sequences before being
recognized. Furthermore, using a different mechanism is
one of the successful keys used by Acr to deactivate the
CRISPR/Cas9 system [162]. For example, AcrlIA4 binds
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to both Cas9 and sgRNA rather than binding with just
one of them [161]. The efficiency of Acr depends on three
main mechanisms, which are the crRNA concentration,
DNA binding obstruction, and DNA cleavage inhibition
[163]. When the viral genome is injected into the phage,
its Acr proteins in a small concentration make the host
cells immunosuppression and prepare the bacteriophage
for future infections by the phase [164]. Conversely, hav-
ing a high concentration of Acr proteins and vulnerable
bacteriophage disables the function of the CRISPR sys-
tem from the infected bacteria [164]. Moreover, Acr pro-
teins have a stronger binding affinity with CRISPR; thus
it is required a small concentration disable the function
of the CRISPR system. On the other hand, anti-CRISPR-
associated (Aca) proteins work oppositely to Acr proteins
by preventing the transcription of anti-CRISPR proteins
[163]. Therefore, the CRISPR system can be improved by
using Aca proteins to suppress Acr proteins. Also, the use
of Acr proteins that imply phage instead of antibiotics
may overcome the issue of drug resistance[165].

Screening before the treatment

Pre-existing mutations in genes like TP53 and KRAS
may raise the risk of additional mutations during
CRISPR Cas cancer therapy [166]. And the two pri-
mary ways for dealing with this problem are screening
before using the CRISPR Cas system and monitoring
the patient after injection.

Polymorphism in cancer

Unlike other genetic diseases such as Duchenne Mus-
cle, Dystrophy, and cystic fibrosis, cancer relies on sev-
eral mutations [167-170]. Moreover, dysregulation of
the multiple genes leads to cancer most of the time. For
example, mutations happen in approximately 190 codons
in the human TP53 gene, and around 25% of the muta-
tions occur in eight codons [171]. Hence, editing a sin-
gle mutated nucleotide is not enough in most cases that
are widely performed in gene therapy [170]. Correcting
mutated nucleotide by knocking-in is much more chal-
lenging in CRISPR Cas9 since it is more precise than
knocking out, which creates alterations, as knocking in,
all of the cancer-causing genes takes longer and needs
multi-guide RNA [172]. However, by CRISPR Cas9,
knocking in is potentially helpful in many ways, such as
studying particular gene variation to find out the gene
regulation [172].

Correcting or editing the mutated nucleotides of
tumor suppressor genes is one of the approaches that
should be thought about to obtain the desired result
in cancer therapy by knock-in in the mutated gene
(Fig. 8). CRISPR/Cas9 technology targeted these
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Cas9

tracrRNA
nuclease

D10A Cas9
nickase

gRNA-targeting

gRNA-targeting strand

strand

Non-targeted
strand

A. Paired nickases system
two amino acids in the Cas9 endonuclease
protein (H840 and D10), that are involved in
cutting one of the DNA strands.

relative position of the two gRNA target sites

—l 17 tracrRNA

B. Single nickase system
D10A Cas9 nickase can cut merely the
strand complementary to the sgRNA

Single nickase and paired nickases systems

H840A

tracrRNA
Cas9 nickase

gRNA-targeting
strand

Non-targeted PAM

strand

C. Single nickase system
H840A Cas9 nickase can cut merely the
Non-targeted strand

Fig. 7 Nickase systems consisting of one or two nickases. H840 and D10 are two amino acids found in the Cas9 endonuclease protein that are
involved in the cutting of one DNA strand by the enzyme. The RuvC domain contains the amino acid H840, while the HNH domain has the amino
acid D10. The non-targeted strand is cleaved by Cas9 H840A, while the gRNA-targeting strand is cleaved by Cas9 D10A. Cas9 can only cut the
strand complementary to the gRNA in a single nickase; however, a pair of sgRNA-Cas9n complexes can nick both strands at once (paired nickases).
Additional concerns for gRNA design when using paired nickases include creating a 5’ overhang, the spacing between the two gRNAs, and the

tumor-suppressor genes to inhibit or reduce tumori-
genesis by restoring the activities of tumor-suppressor
genes [34]. However, as in cancer, there is plenty of
mutations in tumor-suppressor genes, it requires a
higher number of gRNA, and there is a higher risk of
off-targeting. On the other hand, the CRISPR Cas sys-
tem can disrupt the nucleotides located in the active
site of the protein to suppress the activity of onco-
genes, such as KRAS in pancreatic cancer and ATM
in neuroendocrine cancer by deleting their inactiva-
tion sequences (Table 1) [34, 173]. On the other side,
in TNBC cells, the deactivation of CXCR7 and the co-
knockout of CX