
New Benzimidazole‑, 1,2,4-Triazole‑, and 1,3,5-Triazine-Based
Derivatives as Potential EGFRWT and EGFRT790M Inhibitors:
Microwave-Assisted Synthesis, Anticancer Evaluation, and Molecular
Docking Study
Heba E. Hashem, Abd El-Galil E. Amr,* Eman S. Nossier, Manal M. Anwar,* and Eman M. Azmy

Cite This: ACS Omega 2022, 7, 7155−7171 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: A new series of benzimidazole, 1,2,4-triazole, and
1,3,5-triazine derivatives were designed and synthesized using a
microwave irradiation synthetic approach utilizing 2-phenylacetyl
isothiocyanate (1) as a key starting material. All the new analogues
were evaluated as anticancer agents against a panel of cancer cell
lines utilizing doxorubicin as a standard drug. Most of the tested
derivatives exhibited selective cytotoxic activity against MCF-7 and
A-549 cancer cell lines. Furthermore, the new target compounds 5,
6, and 7 as the most potent antiproliferative agents have been
assessed as in vitro EGFRWT and EGFRT790M inhibitors compared
to the reference drugs erlotinib and AZD9291. They represented
more potent suppression activity against the mutated EGFRT790M

than the wild-type EGFRWT. Moreover, the compounds 5, 6, and 7 down-regulated the oncogenic parameter p53 ubiquitination. A
docking simulation of compound 6b was carried out to correlate its molecular structure with its significant EGFR inhibition potency
and its possible binding interactions within the active site of EGFRWT and the mutant EGFRT790M.

1. INTRODUCTION

Cancer disease is a terrible health epidemic that kills millions
of people all over the world in both developed and developing
countries.1 Despite the great progress accomplished in cancer
therapy, several limitations still present. Examples are the
selectivity for cancer cells, adverse effects, as well as the
multiple-drug resistance acquisition by the cancer cells leading
them to be unresponsive to conventional therapeutic agents.2,3

Accordingly, the innovation of new small molecules that are
both potent and selective is still a serious challenge in the field
of medicinal chemistry. The alteration of different protein
expressions and the activity of various receptor tyrosine kinases
(RTKs) are considered the main causes of many cancer types
since they are responsible for the regulation of different cellular
pathways such as proliferation, differentiation, migration, and
angiogenesis.4,5 The epidermal growth factor receptor (EGFR)
is a member of tyrosine kinases (TKs).6 It is a trans-membrane
protein belonging to the erbB/HER-family and plays a pivotal
role in governing cellular transduction or communication
signaling through the phosphorylation of tyrosine residues in
the protein domain.7,8 EGFR is one of the main tumor markers
in many cancer types (such as colon, lung, liver, cervical,
ovarian, breast, prostate, and bladder cancers), where its
signaling in tumors, as opposed to normal cells, becomes
dysregulated, resulting in EGFR overexpression and/or

obtaining a gain-of-function mutation.9−13 This act is
considered the main cause of tumor cell proliferation, invading
the surrounding tissues and resulting in an increased
angiogenesis.14 Accordingly, interrupting EGFR communicat-
ing signals is considered to be one of the prime targets to
invade tumors caused by its mis-regulation.9−14 Targeted drugs
inhibiting EGFR can selectively attack the cancer cells rather
than normal ones, thus producing a good safety profile and less
harm to the body with more patient comfortability.15 Multiple
EGFR suppressors have been developed and classified into
different generations. The first generation was gefitinib
(Iressa), erlotinib (Tarceva), and icotinib (Conmana).16−20

Studies revealed that acquired drug resistance to the first-
generation EGFR-TKIs was revealed due to T790M ″gate-
keeper″ and L858R mutations in EGFR about 9−14 months
after clinical treatment.21−23 The emergence of resistance
paved the way toward the development of the second-
generation inhibitors (EGFR TKI) (afatinib, dacomitinib,
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neratinib, and canertinib) that have exhibited a 60−70%
objective response rate.17 The drugs related to this class
contain an electrophilic acrylamide side chain that interacts
irreversibly with cysteine CYS797 forming covalent complexes,
thus overcoming the obstacle of resistance mediated by
EGFRT790M or EGFRT790M/L858R mutation.24−27 On the other
hand, due to the high reactivity of the acrylamide moiety, it
interacts non-selectively with the cysteine residue in untargeted
proteins, leading to toxic side effects such as diarrhea and skin
rash that limited their clinical use.28−32 Recently, to solve these
undesirable side effects, several third-generation inhibitors have

been discovered, such as WZ4002,29 osimertinib (AZD9291)
(Tagrisso),33 olmutinib (Olita),31 and rociletinib (CO1686).34

These inhibitors do not only produce good anti-tumor activity
but also produce good selectivity to EGFRT790M and
EGFRT790M/L858R kinases.29,35 Rociletinib and osimertinib
were considered as breakthrough therapies in the mutant
NSCLC treatment by the US FDA in 2014.36 Studies showed
that osimertinib’s efficacy is marred by various side effects such
as grade 3 venous thromboembolism and pneumonia. Its
toxicity was attributed to AZ5104, which is its main metabolite,
lacking selectivity between the mutant and WT EGFR.29,35−38

Figure 1. Examples of the first, second and third generations of EGFR inhibitors.
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Accordingly, much efforts are still needed to discover new
EGFR inhibitors of high selectivity to EGFRT790M and
EGFRT790M/L858R kinase with low side effects (Figure 1).
Many nitrogen-heterocyclic ring systems have recently been

discovered to introduce surprisingly complex biological
properties, making them one of the most significant groups
in medicinal chemistry. They constitute a basic scaffold in
numerous drugs due to their capabilities to imitate and interact
with different biological molecules, leading to remarkable
pharmacological properties.39−42 The benzimidazole scaffold
participates in various compounds producing a wide range of
biological activities such as antimicrobial, antiparasitic,
antihistaminic, antiallergic, anticancer, and antioxidant.43−49

The benzimidazoles could be considered as auxiliary isosters of
nucleotides having a potential for chemotherapeutic applica-
tions.46 In addition, the orally available third-generation EGFR
inhibitor nazartinib bears a benzimidazole nucleus.50 More-
over, the triazole nucleus plays a vital role in the field of drug
discovery. The triazole ring is characterized by significant
stability and excellent pharmacological potency due to its
electron-rich characteristics and the occurrence of an

unsaturated hydrocarbon ring structure. These properties
support the triazole structure to interact with various receptors
(enzymes) through H-bonding that endows it with significant
pharmacological actions.51−53 Currently, triazole derivatives
are used to treat a wide variety of diseases specially cancer
disease.51−53 Numerous anticancer drugs bearing the 1,2,4-
triazole moiety are available in the market such as
anastrozole,54,55 letrozole,56 and vorozole.57 Furthermore, the
s-triazine (1,3,5-triazine) scaffold constitutes a basic template
for the design and synthesis of various bioactive compounds
with widespread applications in medicinal chemistry.58 The s-
triazine core has three functionalized branches at positions 2, 4,
and 6, a property that leads to easily modulating the
physicochemical and biological activities of s-triazine deriva-
tives.59 Many studies investigated the notable progress in the
design, synthetic approaches, and evaluation of numerous s-
triazine candidates with great promising antitumor activity
acting via the inhibition of different protein kinases such as
CDK2, PI3Kα/mTOR, CA, human topoisomerase IIα,
hDHFR, EGFR (EGFRWT and EGFRT790M), and tubulin
polymerization.60−67 There are various anticancer drugs

Figure 2. Examples of various marketed anticancer drugs bearing 1,2,4-triazole and s-triazine scaffolds.
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containing the s-triazine motif that are FDA-approved such as
tretamine,68 gedatolisib,69 HL 010183,70 enasidenib,71 altret-
amine,72 and KY-0403173 (Figure 2).
Microwave-assisted organic synthesis (MAOS) has been

widely used in green chemistry in recent years.74 Microwave
irradiation is an eco-friendly approach without hazardous

solvents. It helps in the synthesis of various heterocyclic
compounds rapidly and in high yields.75,76 In addition, MAOS
has a great contribution in chemical selectivity, catalyst-free
conditions, and the absence of side products during the
synthesis processes of various aromatic and heterocyclic
compounds.77,78 Based on the above-mentioned knowledge

Figure 3. The structure of the ATP-binding site of EGFR-TK.

Figure 4. The designed molecular structures of new benzimidazole, 1,2,4-triazole, and 1,3,5-triazine derivatives.
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Scheme 1. Synthesis of New Substituted Benzimidazole Derivatives Utilizing the Microwave Irradiation Synthetic Approach

Scheme 2. Synthesis of New Substituted 1,2,4-Triazole and 1,3,5-Triazine Derivatives Utilizing the Microwave Irradiation
Synthetic Approach
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and in continuation of our previous efforts in the field of design
and generation of new bioactive heterocyclic compounds,79−84

this study deals with the design and microwave-assisted organic
synthesis of a new set of benzimidazole, 1,2,4-triazole, and s-
triazine derivatives targeting the wild-type EGFR-TK
(EGFRWT) and the mutant EGFR-TK (EGFRT790M).
1.1. Rational and Design. Computational studies

represented that the ATP active pocket of EGFR-TK possesses
mainly five regions, as follows: (1) an adenine binding pocket
bearing the key amino acid residues that can interact with the
adenine ring via hydrogen bond formation, (2) a sugar zone
(hydrophilic ribose pocket), (3) hydrophobic zone I (this area
is not used by ATP but displays a pivotal role in the inhibitor
selectivity), (4) hydrophobic region II (this area is also not
used by ATP and can be used to determine the inhibitor
specificity), and (5) a phosphate binding area that is important
for improving the characteristics of inhibitor pharmacoki-
netics85,86 (Figure 3).
Additionally, various studies demonstrated that the main

pharmacophoric features shared by multiple EGFR-TKIs are
four common areas: (i) a flat hetero-aromatic ring system,
fitting in the adenine binding pocket and that can participate in
H-bonding interactions with different amino acids such as
Met793, Thr854, and Thr790 residues; (ii) a terminal
hydrophobic head that occupies the hydrophobic zone I;
(iii) an imino moiety (NH− spacer) that can participate in
generating hydrogen bonds with different amino acid residues
present in the linker region; and (iv) a hydrophobic tail that
fits in the hydrophobic region II87−89 (Figure 4).
Since benzimidazole, 1,2,4-triazole, and s-triazine are bio-

isosteric, this work deals with the design and MAOS synthesis
of new sets bearing one of the previously mentioned
heterocyclic nuclei possessing the essential pharmacophoric
features of EGFR-TKIs. The first position was the
benzimidazole moiety (as compounds 3 and 4), and this
scaffold was replaced by 1,2,4-triazole (as compounds 5 and 6)
and 1,3,5-triazine nuclei (as compounds 7 and 8) to fit in the
adenine binding pocket, where the heterocyclic nitrogen atoms
act as hydrogen-bond acceptors leading to excellent EGFR-TK
potency.90 The second position was the terminal benzyl moiety
(hydrophobic head) (as compounds 3 and 4), which might be
replaced with aliphatic, heterocyclic, or substituted phenyl
structures (as compounds 5−8). The third position was the
NH linker, as a site for the creation of different hydrogen
bonds. The used linkers may be an imino group as in
compounds 5−8 or a carbonothioyl-acetamide linker (as in
compound 4). The fourth position was the phenyl group
(hydrophobic tail), where a phenyl ring was incorporated at
position-2 of the benzimidazole nucleus as in compound 4 or
replaced by a benzyl ring at positions-5/3 of the 1,2,4-triazole
nucleus or position-6 of the triazine ring to occupy the
hydrophobic zone II of the ATP binding site. The fourth
position of the benzimidazole 3 was left unsubstituted to find
out the impact of the phenyl substitution on the target activity
(Figure 4).
All the newly synthesized compounds were screened for

their anti-proliferative activities against a panel of human
cancer cell lines. Furthermore, the most promising compounds
as cytotoxic agents were assessed as EGFRWT, EGFRT790M, and
p53 ubiquitination inhibitors. Since compound 6b represented
the most promising cytotoxic activity as well as EGFRWT and
EGFRT790M inhibition activity, it was selected as a representa-
tive example to emphasize its possible binding patterns in the

active pockets of EGFRWT and EGFRT790M via a molecular
docking study.

2. RESULTS AND DISCUSSION
2.1. Chemistry. The new target compounds 3−8 were

synthesized in short reaction times and with high yields
utilizing a microwave irradiation process (Schemes 1 and 2,
Table 1). The chemical structures of the new compounds were

elucidated using microanalytical and spectral data (IR, 1H, 13C
NMR, MS). 2-Phenylacetyl isothiocyanate (1) was utilized as a
key starting material and treated with different aliphatic,
heterocyclic, and/or aromatic amines, namely, isopropylamine,
2-aminothiazole, o-phenylenediamine, m-aminophenol, and o-
chloro-p-nitroaniline, in acetonitrile at room temperature91 to
afford the corresponding thiourea derivatives 2a−e, respec-
tively. IR spectra of 2a−e represented characteristic absorption
bands at the regions 3370−3135, 1690−1660, and 1173−1146
cm−1 due to NH, CO, and CS groups, respectively. 1H
NMR spectra of the new compounds 2a−e revealed singlet
signals at the range δ 3.43−3.82 ppm representing the two
methylene protons of CH2-ph. In addition, the expected signals
of the aromatic protons appeared at the corresponding region
δ 7.20−8.61 ppm, while the two NH protons appeared as D2O
exchangeable signals at the range δ 12.11−13.0 ppm.
Compound 2a exhibited a doublet signal at δ 1.06 ppm and
another multiplet at δ 3.80−3.84 ppm that is an evidence of
the presence of the −CH(CH3)2 group. Compounds 2c and
2d exhibited two additional D2O exchangeable signals at δ 5.01
and 9.66 ppm due to NH2 and OH groups, respectively.
Microwave irradiation of the thiourea derivative 2c in DMF

for 2 min led to its cyclization, forming the corresponding N-
(1H-benzo[d]imidazol-2-yl)-2-phenylacetamide benzimidazole
(3), while its microwave irradiation with benzoyl chloride
afforded92,93 the corresponding N-(2-phenyl-1H-benzo[d]-
imidazole-1-carbonothioyl) benzamide (4) (Scheme 1). IR
spectra of the later derivatives 3 and 4 exhibited absorption
bands at the ranges 3220−3128 and 1670−1699 cm−1

correlated to NH and CO groups, respectively. Further-
more, 4 represented an additional band at 1266 cm−1 due to its
CS moiety. 1H NMR spectra of compounds 3 and 4
exhibited singlet signals at the region δ 3.70−3.91 due to CH2-
ph and D2O exchangeable signals at the range δ 11.74−12.78

Table 1. The Reaction Times and the Yields of the Newly
Synthesized Compounds Using the Microwave Irradiation
Technique

microwave irradiation method

compound no. time (min) yield (%)

3 2 80
4 3 96
5a 2 98
5b 5 96
5c 7 86
6a 6 95
6b 9 85
6c 10 89
7 5 97
8a 4 96
8b 9 97
8c 7 92
8d 10 98
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ppm representing NH groups, while the aromatic-Hs appeared
as multiplet signals at their expected up-field region δ 7.36−
8.24 ppm. Moreover, 13C NMR spectra of both 3 and 4
showed signals at the corresponding regions δ 40.06 and 40.32
ppm referring to CH2-ph and δ 173.30 and 167.0 due to CO
groups as well as various signals at the range δ 114.05−166.53
ppm representing the aromatic carbons.
On the other hand, treatment of compounds 2a, b, d, and e

with hydrazine hydrate or phenyl hydrazine under microwave
irradiation afforded the corresponding 1,3,4-triazole derivatives
5a−c and 6a−c, respectively, as the reported methods.91−94 IR
spectral data of the latter triazole derivatives were devoid of
any absorption bands correlated to CO or CS groups;
instead, they exhibited absorption bands at 3288−3199 cm−1

contributing to NH groups, 3328 cm−1 referring to OH of
compound 5c, and 1664−1639 cm−1 due to CN groups.
Furthermore, 1H NMR data of compounds 5 and 6 showed
singlet signals at the region δ 4.23−3.50 ppm representing the
presence of the two methylene protons of CH2-ph and D2O
exchangeable signals at the range δ 7.21−12.31 ppm due to
NH and OH protons, in addition to the expected multiplet
signals at δ 6.60−8.38 ppm representing the aromatic protons.
The −CH(CH3)2 residue of 5a was confirmed by the presence
of doublet−multiplet signals at δ 1.06 and 3.39 ppm. 13C NMR
spectra of compounds 5 and 6 represented singlet signals at the
range δ 38.83−42.07 ppm ascribed to CH2-ph and different

signals at the region δ 102.52−170.51 ppm referring to the
aromatic carbons. Also, the isopropyl residue of 5a appeared as
two additional singlets at δ 22.86 and 39.84 ppm.
Furthermore, cyclization of the thiazolyl derivative 2b with

urea using microwave irradiation gave the corresponding 1,3,5-
triazin-2-one derivative 7. On the other hand, microwave
irradiation of compounds 2a, b, d, and e with thiourea led to
the formation of the corresponding 1,3,5-triazin-2-thione
analogues 8a−d, respectively (Scheme 2), following the
reported reactions.91−94 The IR spectrum of compound 7
showed a characteristic absorption band at 1685 cm−1

characteristic for the carbonyl group of the triazine ring, in
addition to an absorption band at 3206 cm−1 due to NH
moieties. IR spectra of compound 8 exhibited the CS group
as an absorption band at the region1177−1127 cm−1.
Moreover, 1H NMR data of compound 8 exhibited CH2-ph
protons as a singlet signal at δ 3.51−3.82 ppm, the aromatic
protons as multiplet signals in the down field expected region δ
6.65−7.76 ppm, and NH and OH protons as D2O
exchangeable singlets at the region δ 7.96−12.35 ppm. The
isopropyl protons of compound 8a appeared as a doublet−
multiplet signal at δ 1.05 and 3.36 ppm. In addition, 13C NMR
spectra showed signals at δ 40.06−42.15 ppm due to CH2-ph,
22.85 and 40.15 due to −CH(CH3)2 of compound 8a, and
113.65−170.75 related to the aromatic carbons. Further
support for the suggested structures of the new compounds

Table 2. In Vitro Cytotoxic Potency of the Newly Synthesized Compounds 2−8 against Various Human Cancer Cell Lines and
Normal Cells Representing SI of the Most Active Derivativesa

IC50 (mean ± SEM) (μM)

compd.
no. HepG-2 PC-3 MCF-7 A-549 PBMC

2a 57.85 ±
0.07

26.82 ±
2.21

37.73 ±
0.08

34.57 ±
0.06

121.34 ± 11.35

2b 60.85 ±
0.06

44.50 ±
3.51

55.44 ±
0.04

57.48 ±
0.05

133.30 ± 13.67

2c 47.66 ±
0.04

25.44 ±
0.04

21.76 ±
0.08

27.81 ±
0.04

144.56 ± 14.89

2d 34.77 ±
0.03

39.32 ±
0.0

24.74 ±
0.08

20.84 ±
0.04

157.78 ± 16.35

2e 37.76 ±
0.05

40.56 ±
0.05

25.64 ±
0.08

25.96 ±
0.05

168.54 ± 17.36

3 37.73 ±
0.02

17.29 ±
0.03

6.59 ±
0.07

10.42 ±
0.05

179.25 ± 18.75

4 56.65 ±
0.04

25.41 ±
0.05

8.32 ±
0.04

15.61 ±
0.06

186.68 ± 19.36

5a 35.66 ±
0.04

16.49 ±
0.05

5.42 ±
0.05

10.37 ±
0.04

174.90 ± 18.24

SI = 4.90 SI =
10.60

SI =
32.26

SI =
16.86

5b 38.49 ±
0.02

18.22 ±
0.03

4.18 ±
0.03

8.27 ±
0.03

165.76 ± 17.36

SI = 4.30 SI = 9.09 SI =
39.65

SI =
20.04

5c 27.59 ±
0.04

18.44 ±
0.04

4.33 ±
0.04

12.30 ±
0.04

146.32 ± 16.15

SI = 5.23 SI = 7.93 SI =
33.79

SI =
11.89

6a 10.48 ±
0.03

16.30 ±
0.09

4.30 ±
0.04

5.20 ±
0.03

157.45 ± 16.89

SI =
15.02

SI = 9.65 SI =
36.61

SI =
30.27

6b 5.47 ±
0.02

13.21 ±
0.06

1.29 ±
0.03

3.18 ±
0.03

178.23 ± 17.69

SI =
32.58

SI =
13.49

SI =
138.16

SI =
56.04

IC50 (mean ± SEM) (μM)

compd.
no. HepG-2 PC-3 MCF-7 A-549 PBMC

6c 7.73 ±
0.04

26.41 ±
0.05

2.51 ±
0.06

5.80 ±
0.05

187.67 ± 19.76

SI =
24.27

SI = 7.10 SI =
74.76

SI =
32.35

7 29.75 ±
0.03

17.90 ±
0.03

4.65 ±
0.07

7.43 ±
0.04

165.23 ± 18.05

8a 59.84 ±
0.05

36.55 ±
0.03

13.75 ±
0.08

25.46 ±
0.05

173.45 ± 18.95

SI = 2.91 SI = 4.74 SI =
12.61

SI = 6.81

8b 60.48 ±
0.05

42.56 ±
0.06

17.95 ±
0.04

37.21 ±
0.03

196.67 ± 20.67

SI = 3.25 SI = 4.62 SI =
10.95

SI = 5.28

8c 45.49 ±
0.04

32.48 ±
0.04

10.31 ±
0.04

8.29 ±
0.03

188.89 ± 19.86

SI = 4.15 SI = 5.81 SI =
18.32

SI =
22.78

8d 47.86 ±
0.05

39.55 ±
0.08

14.77 ±
0.05

9.50 ±
0.06

179.09 ± 18.96

SI = 3.74 SI = 4.52 SI =
12.12

SI =
18.85

DOX 4.51 ±
0.26

8.11 ±
0.05

4.17 ±
0.2

8.20 ±
0.08

250.00 ± 26.56

SI =
55.43

SI =
30.82

SI =
59.95

SI =
30.48

erlotinib 8.19 ±
0.4

8.89 ±
0.6

4.16 ±
0.2

3.76 ±
0.2

45.75 ± 26.56

SI = 5.58 SI = 5.14 SI =
10.99

SI =
12.16

aDOX: doxorubicin; IC50: compound concentration required to
inhibit the cell viability by 50%; SEM: standard error mean; each
value is the mean of three independent determinations; SI: selectivity
index.
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was gained by their mass spectra, which were in accordance
with the proposed structures representing their correct
molecular ion peaks beside some other important peaks (cf.
Experimental Section).
2.2. Biological Activity. 2.2.1. In Vitro Evaluation of

Cytotoxic Potentials of the Newly Prepared Derivatives. The
newly synthesized compounds 2−8 were investigated for their
potential cytotoxic activities against a panel of four different
human cancer cell lineshepatocellular carcinoma (HepG-2),
prostate carcinoma (PC-3), breast adenocarcinoma (MCF-7),
and non-small cell lung cancer cells (A-549)and the normal
peripheral blood mononuclear cells (PBMCs) using an MTT
assay.95 Doxorubicin and erlotinib served as reference
standards. The concentrations of the tested derivatives that
induced 50% inhibition of the cell viability (IC50, μM) were
determined and tabulated in Table 2.
Based on the resultant data, the examined compounds

showed versatile antiproliferative activities against the tested
cell lines. It could be noted that the benzimidazole derivatives
3 and 4, the triazole derivatives 5 and 6, and the triazine
derivatives 7 and 8 elicited superior cytotoxicity against MCF-
7 and A-549 cell lines. The N-phenyl-1,2,4-triazole compounds
6a−c exhibited the most potent cytotoxic activity against
MCF-7 of IC50 values ranging from 1.29 to 4.30 μM that were
evidently near those of the reference drugs (doxorubicin and
erlotinib) of IC50 4.17 and 4.16 μM, respectively. Furthermore,
the latter derivatives reduced the viability of A-549 cells with
1.3−2.6-folds more potency than doxorubicin and approx-
imately equivalent potency to erlotinib, exhibiting IC50’s
ranging from 3.18 to 5.80 μM and IC50doxorubicin, erlotinib of
8.20 and 3.76 μM, respectively. The 3-OH-phenyl derivative
6b was 3.2-folds more potent than doxorubicin and erlotinib
against MCF-7 cells and 2.6-folds more potent than
doxorubicin against the A-549 cell line. The oxygen atom of
the hydroxyl group might produce an additional H-binding
interaction with the target protein. In addition, the HepG-2
cell line exhibited promising sensitivity against 6a−c that was
slightly higher than its sensitivity against erlotinib but slightly
less than that against doxorubicin, exhibiting IC50’s of 5.47−
10.48 μM and IC50doxorubicin, erlotinib of 4.51 and 8.19 μM.
Both MCF-7 and A-549 cell lines displayed an equipotent or

a slightly less sensitivity against the 1,2,4-triazole analogues
5a−c than that against the reference drugs, displaying IC50’s
ranging from 4.18 to 5.42 and 7.43 to 12.30 μM, respectively.
Moreover, the 1,3,5-triazinone 7 was nearly equivalent to
doxorubicin against MCF-7 and A-549 cell lines with IC50’s of
4.65 and 7.43 μM, but it showed nearly 2-folds less potency
against A-549 compared to erlotinib.
With the exception of compounds 8c and 8d that were as

potent as doxorubicin against the A-549 cell line, a detectable
drop in the cytotoxic activity was observed by the 1,3,5-triazin-
2-thione derivatives 8 against both MCF-7 and A-549 cell lines
with IC50 values of 10.31−25.46 and 37.21−25.46 μM,
respectively. On the other hand, the tested compounds
showed moderate to weak antiproliferative activities against
hepatocellular carcinoma (HepG-2) and prostate carcinoma
(PC-3) cell lines. On the other hand, all the tested derivatives
produced low cytotoxicity against the normal PBMC cell line
with IC50 values <100 μM, confirming the safety margin of the
newly synthesized derivatives.
2.2.2. In Vitro Inhibition of EGFRWT and EGFRT790M Activity.

Following the primary screening for cytotoxic potentials, the
most active congeners 5a−c, 6a−c, and 7 that revealed the

most promising antiproliferative activities were further
investigated for their possible mechanism of actions against
cancer cells. They were assessed in terms of in vitro kinase
inhibitory efficiencies against the wild-type EGFRWT and the
mutant form EGFRT790M using a homogeneous time resolved
fluorescence (HTRF) assay.96,97 The results are summarized as
IC50 values (μM) in Table 3 using erlotinib and AZD9291 as
positive controls.

Excellent inhibitory activities were obtained by the examined
compounds 5 and 6 against EGFRWT, which were about 2−6.5
times more potent than AZD9291 representing IC50 values
ranging from 0.08 to 0.25 μM and IC50AZD9291 of 0.52 μM. On
the other hand, erlotinib (IC50 of 0.095 μM) represented about
2.7−1.6-folds more potency against the wild form of EGFR
compared with 5a−c and 6a and c. Interestingly, compound
6b appeared to be a 1-fold more potent EGFRWT inhibitor
than erlotinib with an IC50 value of 0.08 μM. Additionally, the
resultant data investigated that compounds 5a−c, 6a−c, and 7
were 6.1−3.2-folds more active against the mutated form of
EGFRT790M than the reference drug erlotinib, exhibiting IC50’s
ranging from 0.09 to 0.18 μM and IC50 erlotinib of 0.55 μM.
Reversely, the tested analogues 5, 6, and 7 appeared to be less
potent EGFRT790M suppressors compared to the reference drug
AZD9291 with IC50 of 0.03 μM. It is evident that the 3-
hydroxyphenyl derivative 6b represented the most promising
suppression activity against the wild and the mutant form
T790M of EGFR compared with the reference standards
erlotinib and AZD9291 (Figure 4). The obtained results were
in agreement with the data of cytotoxicity evaluation. The
docking study correlated the enhanced activity of 6b to its
hydroxyl oxygen that was a site for H-bonding in the active
regions of EGFRWT and EGFRT790M, while the N-phenyl
moiety increased the hydrophobic interaction with the target
enzyme.
Moreover, it could be detected that all the compounds

exhibited more potent inhibitory activity against the mutant
form EGFRT790M over the wild-type form EGFRWT, which can
overcome the resistance problem to EGFR-TKIs that develops
due to the T790M mutation of the EGFR gene.

2.2.3. In Vivo Inhibition of p53 Ubiquitination. The p53
protein plays a crucial role in the regulation of cancer
development through its action as a suppressing molecule that
binds to E3 ubiquitin ligase, thus inhibiting its role as a

Table 3. Kinase Inhibitory Assay of the Newly Synthesized
Derivatives 5−7 in Comparison with Erlotinib and
AZD9291 against EGFRWT and Mutant EGFRT790Ma

IC50 (mean ± SEM) (μM)

compound no. EGFRWT EGFRT790M

erlotinib 0.09 ± 0.05 0.55 ± 0.10
AZD9291 0.52 ± 0.03 0.03 ± 0.01
5a 0.25 ± 0.01 0.17 ± 0.05
5b 0.22 ± 0.15 0.13 ± 0.11
5c 0.24 ± 0.30 0.14 ± 0.50
6a 0.18 ± 0.10 0.12 ± 0.18
6b 0.08 ± 0.05 0.09 ± 0.01
6c 0.15 ± 0.02 0.13 ± 0.07
7 0.22 ± 0.05 0.18 ± 0.11

aIC50: compound concentration required to inhibit the enzymes’
activities by 50%; SEM: standard error mean; each value is the mean
of three independent values.
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transcription activator.98,99 Therefore, interfering with p53
binding on E3 ligase can interfere with tumor development and
progression. Following the reported methodology,99 the
obtained results exhibited that the compounds 5−7 showed
moderate inhibitory actions toward in vivo p53 ubiquitination
compared to the reference diphenyl imidazole (DPI).
According to Table 4, compounds 5a−c have recorded IC50

values greater than the reference drug of IC50’s of 0.68, 0.62,
and 0.60 nM and IC50DPI of 0.26 ± 0.005 nM. A higher
potency was reported by the compounds 6a−c and 7 affording
IC50 values ranging from 0.59 to 0.48 nM. Accordingly, these
results revealed that the tested analogues can still act as p53
ubiquitination inhibitors and thus can intervene with cancer
cell growth and development.
2.3. Molecular Modeling Study on EGFRWT and

Mutant EGFRT790M. In the current docking simulation, the
potent kinase inhibitors 5−7 were selected based on the
potency and scaffold type to correlate the structure−activity
relationship with their behavior and the possible binding
interactions within the active sites of EGFRWT and mutant
EGFRT790M. Thus, the domains of EGFRWT and mutant
EGFRT790M kinase complexed with erlotinib and AZD9291
(PDB ID: 1M17 and 6JX0)100,101 were downloaded from the
Protein Data Bank. The docking calculations were done using
MOE-Dock (Molecular Operating Environment) software
version 2014.0901.102,103 At the beginning, redocking of the
native ligands (erlotinib and AZD9291) was achieved within
their own binding sites of EGFRWT and EGFRT790M, giving
energy scores −11.40 and −12.66 kcal/mol with RMDS values
(root mean square deviation) of 0.91 and 1.02 Å, respectively.
It was noted that the compounds 5−7 approximately displayed
similar binding poses with promising energy scores that are
depicted in Tables 5 and 6.
All the screened derivatives 5−7 afforded H-bonding with

the key amino acids Met769 and Met793 within the active
sites of EGFRWT and mutant EGFRT790M kinases like the
original ligands erlotinib and AZD9291, respectively. Fur-
thermore, the existence of 1,2,4-triazoles in compounds 5 and
6, in addition to the 1,3,5-triazine moiety in compound 7,
potentiates fixation within the binding pockets of EGFRWT and
EGFRT790M enzymes through extra H-bonding with Lys721
and Met793, respectively.
By focusing upon compound 6b as the most active inhibitor,

it fulfilled the key interactions in the active site of EGFRWT

with energy score −10.88 kcal/mol, where hydrogen bonding
was established between N-2 of the 1,2,4-triazole moiety and
the side chain of Lys721 (distance: 3.63 Å), as well as the Pi-
cation interaction of the phenolic ring with the Val702 residue.

The presence of the H-bond acceptor between the hydroxyl
oxygen and the backbone of the key amino acid Met769
improved the fitting within the active site of the enzyme
(distance: 3.27 Å) (Figure 5).
Regarding the docking of 6b within the ATP-binding pocket

of EGFRT790M allowing energy score −13.27 kcal/mol, it was
found that N-2 of the 1,2,4-triazole scaffold and the NH linker
at position-5 played a vital role in the binding through a
bidentate hydrogen-bonded interaction with the backbone of
the hinge Met793 (distance: 3.65 and 3.06 Å, respectively).
Moreover, the phenolic ring shared fixation through Pi-cation
interaction with Leu718 (Figure 6).
The analysis of the docking results demonstrated that

compound 6b with the highest EGFRWT and EGFRT790M

inhibitory activities adopted good binding mode through its
characterized structure of the 1,2,4-triazole core and the
phenolic ring linked via the NH group forming hydrophilic and
hydrophobic interactions.

3. CONCLUSIONS
A new set of benzimidazole, 1,2,4-triazole, and 1,3,5-triazine
derivatives was designed and synthesized using microwave
irradiation. The cytotoxic activity of all the new analogues was
evaluated against a panel of four human cancer cell lines
HepG-2, PC-3, MCF-7, and A-549in addition to the normal
peripheral blood mononuclear cells (PBMCs) using doxor-
ubicin and erlotinib as standard drugs. The gained results
represented the significant selective cytotoxicity of some of the
examined derivatives against MCF-7 and A-549 cell lines. The
most potent cytotoxic activity against MCF-7 cells was
revealed by the N-phenyl-1,2,4-triazole analogues 6a−c,
exhibiting IC50 values ranging from 1.29 to 4.30 μM that

Table 4. IC50 Values Obtained Due to In Vivo p53
Ubiquitination Inhibition of MCF-7 Cells

IC50 (mean ± SEM) (nM)

compound no. p53 ubiquitination

DPI 0.26 ± 0.005
5a 0.68 ± 0.01
5b 0.62 ± 0.05
5c 0.60 ± 0. 03
6a 0.59 ± 0. 01
6b 0.50 ± 0.05
6c 0.48 ± 0.02
7 0.48 0 ± 0.05

Table 5. Docking Study of Compounds 5−7 within EGFRWT

(PDB Code: 1M17) Using MOE Software Version
2014.0901

compd.
no.

docking
score (kcal/

mol)

amino acid
residues (bond

length Å)
atoms of
compound

type of
bond

erlotinib −11.40 Met769(2.70) N1(quinazoline) H-acc
5a −10.15 Lys721(2.92) N-4(1,2,4-

triazole)
H-acc

Met769(2.75) N(thiazole) H-acc
5b −10.32 Lys721(2.65) N-4(1,2,4-

triazole)
H-acc

Met769(2.95) N(linker NH) H-acc
5c −9.85 Lys702 phenol arene-

cation
Lys721(2.75) N-4(1,2,4-

triazole)
H-acc

Met769(2.60) O(OH) H-acc
6a −10.50 Lys721(3.22) N-2(1,2,4-

triazole)
H-acc

Met769(2.88) N(thiazole) H-acc
6b −10.88 Val702 phenol arene-

cation
Lys721(3.63) N-2(1,2,4-

triazole)
H-acc

Met769(3.27) O(OH) H-acc
6c −10.25 Lys721(3.20) N-2(1,2,4-

triazole)
H-acc

Met769(3.60) O(NO2) H-acc
7 −10.36 Lys721(2.70) N-3(1,3,5-

triazine)
H-acc

Met769(2.80) N(thiazole) H-acc
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were evidently near those of the reference compounds
(doxorubicin and erlotinib) of IC50 of 4.17 and 4.16 μM,
respectively. Moreover, A-549 cancer cells represented about
1.3−2.6-folds more sensitivity against the latter derivatives
than that against doxorubicin and approximately equal
sensitivity to that obtained against erlotinib exhibiting IC50’s
ranging from 3.18 to 5.80 μM and IC50; doxorubicin, erlotinib of 8.20
and 3.76 μM, respectively. On the other hand, both MCF-7
and A-549 cell lines displayed an equipotent or a slightly less
sensitivity against the 1,2,4-triazole analogues 5a−c and the
1,3,5-triazinone 7 than that against the reference drugs
displaying IC50’s ranging from 4.18 to 5.42 and 7.43 to 12.30
μM, respectively. With the exception of compounds 8c and 8d
that were as potent as doxorubicin against the A-549 cell line,
an observable decrease in the cytotoxic activity was detected in
the 1,3,5-triazin-2-thione derivatives 8 against both MCF-7 and
A-549 cell lines with IC50 values of 10.31−25.46 and 37.21−
25.46 μM, respectively. Moreover, moderate to weak
antiproliferative activity against hepatocellular carcinoma
(HepG-2) and prostate carcinoma (PC-3) cell lines was
detected by the tested compounds. All the tested derivatives
represented low cytotoxicity against the normal PBMC cell line

with IC50 values <100 μM, confirming the safety margin of the
new derivatives.
Furthermore, the new target compounds showing the most

promising anticancer activity (5, 6, and 7) were evaluated as in
vitro EGFRWT and EGFRT790M inhibitors compared to the
reference drugs erlotinib and AZD9291. Generally, the target
derivatives represented a promising inhibitory effect against
EGFRWT and EGFRT790M with more potency against the
mutant form EGFRT790M, which is a good property to
overcome the EGFR-TKI resistance problem. Also, derivative
6b represented the most potent suppression effect against both
EGFRWT and EGFRT790M.
Moreover, compounds 5−7 down-regulated the oncogenic

parameter p53 ubiquitination, representing approximately an
equivalent suppression potency to the reference diphenyl
imidazole (DPI). The docking simulation study was performed
for the promising inhibitors 5−7, giving energy scores of
−11.40 and −12.66 kcal/mol with RMDS values of 0.91 and
1.02 Å, respectively. Compound 6b was chosen as a
representative example to find out the binding modes of the
compound in the active pocket of EGFRWT and the mutant

Table 6. Docking Study of Compounds 5−7 within
EGFRT790M (PDB Code: 6JX0) Using MOE Software
Version 2014.0901

compd. no.

docking
score (kcal/

mol)

amino acid
residues (bond

length Å)
atoms of
compound

type of
bond

AZD9291 −12.66 Val726 indole arene-
cation

Met793(2.88) N-
1(pyrimidine)

H-acc

Asp800(3.27) N(N(CH3)2) H-don
5a −11.20 Leu718 thiazole arene-

cation
Met793(2.95) N-1(1,2,4-

triazole)
H-don

Met793(2.80) N(linker NH) H-don
5b −10.74 Met793(3.15) N-1(1,2,4-

triazole)
H-don

Met793(3.00) N(linker NH) H-don
5c −10.70 Leu718 phenol arene-

cation
Met793(2.77) N-1(1,2,4-

triazole)
H-don

Met793(2.60) N(linker NH) H-don
6a −11.45 Leu718 thiazole arene-

cation
Met793(3.55) N-4(1,2,4-

triazole)
H-acc

Met793(3.26) N(linker NH) H-don
6b −11.75 Leu718 phenol arene-

cation
Met793(3.65) N-4(1,2,4-

triazole)
H-acc

Met793(3.06) N(linker NH) H-don
6c −11.35 Leu718 2-Cl-4-NO2-

C6H3

arene-
cation

Met793(3.22) N-4(1,2,4-
triazole)

H-acc

Met793(2.90) N(linker NH) H-don
7 −11.20 Leu718 thiazole arene-

cation
Met793(3.15) N-1(1,3,5-

triazine)
H-don

Met793(2.85) N(linker NH) H-don
Figure 5. 2D and 3D schematic binding interactions (A and B) of
compound 6b into EGFRWT (PDB code: 1M17) using the MOE
software.
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EGFRT790M. It adopted promising binding interactions with the
active sites of the tested proteins through its 1,2,4-triazole
scaffold and the phenolic ring linked via the NH group forming
various hydrophilic and hydrophobic interactions in the active
pocket of the wild EGFRWT and its mutated form EGFRT790M.
As an overview on the obtained results, it has been

investigated that 6b is a new potent antitumor agent exhibiting
a safety profile against the normal cells as well as a promising
inhibitory impact against EGFRWT and EGFRT790M. These
advantages together indicated that 6b could be considered as
an auspicious lead compound for the future evolution of new
more potent anticancer candidates inhibiting EGFR mutations.

4. EXPERIMENTAL SECTION
4.1. Chemistry. The instruments used for measuring the

melting points, spectral data (IR, mass, 1H NMR and 13C
NMR, X-ray) and elemental analysis are provided in detail in
the Supplementary Information.
4.1.1. Synthesis of the Thiourea Derivatives 2a−e. A

mixture of 2-phenylacetyl isothiocyanate (1) (0.01 mol) and
different amine derivatives, namely, isopropylamine, 2-amino-
thiazole, o-phenylenediamine, m-aminophenol, and o-chloro-p-
nitroaniline (0.01 mol) in dry acetonitrile (20 mL), was stirred
at room temperature for 3 h. The solid product obtained was

filtered and recrystallized from ethanol to give the correspond-
ing thiourea derivatives 2a−e, respectively.

4.1.1.1. N-(Isopropylcarbamothioyl)-2-phenylacetamide
(2a). Pale yellow crystals; yield 98%, m.p. 70−72 °C. IR
(KBr) (υ, cm−1): 3287, 3192 (NH), 3064 (CHarom), 2974,
2930, 2875 (CHaliph), 1660 (CO), 1639 (CN), 1173
(CS); 1H NMR (DMSO-d6) δ: 1.06 (d, 6H, CH3), 3.43 (s,
2H, CH2-ph), 3.80−3.84 (m, 1H, CH(CH3)2), 7.20−7.33 (m,
5H, Ar-H, J = 7.27 Hz), 7.96 (br.s, 1H, NH, D2O
exchangeable), 11.35 (br.s, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) δ: 22.85, 42.89, 46.86, 126.70, 128.63,
129.33, 137.11, 169.56, 179.12; MS (70 eV) m/z (%): 236
(M+, 19). Anal. calcd for C12H16N2Os (236.33): C, 60.99; H,
6.82; N, 11.85. Found: C, 60.86; H, 7.12; N, 11.67.

4.1.1.2. 2-Phenyl-N-(thiazol-2-ylcarbamothioyl) Acet-
amide (2b). Pale brown crystals; yield 90%, m.p. 242−244
°C; IR (KBr) (υ, cm−1): 3267, 3171 (NH), 3080 (CHarom),
2947, 2893 (CHaliph), 1685 (CO), 1567 (CN), 1166
(CS); 1H NMR (DMSO-d6) δ: 3.78 (s, 2H, CH2-ph), 7.20−
7.26 (d, 2H, thiazole-H4, H5), 7.34−7.63 (m, 5H, Ar-H, J =
7.67 Hz), 8.01 (br.s, 1H, NH, D2O exchangeable), 12.37 (br.s,
1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ: 42.12,
113.96, 130.36, 138.06, 127.27, 128.88, 129.70, 135.47, 158.46,
169.62; MS (70 eV) m/z (%): 277 (M+, 18). Anal. calcd for
C12H11N3OS2 (277.36): C, 51.97; H, 4.00; N, 15.15. Found:
C, 51.62; H, 3.87; N, 14.86.

4.1.1.3. N-((2-Aminophenyl)carbamothioyl)-2-phenylace-
tamide (2c). Yellow crystals; yield 94%; m.p. 188−190 °C; IR
(KBr) (υ, cm−1): 3370, 3327, 3135 (NH, NH2), 3030
(CHarom), 2950, 2830 (CHaliph), 1690 (CO), 1670 (C
N), 1167 (CS); 1H NMR (DMSO-d6) δ: 3.82 (s, 2H, CH2-
ph), 5.01 (br.s, 2H, NH2, D2O exchangeable), 6.57−7.80 (m,
9H, Ar-H, J = 7.10 Hz), 11.63 (br.s, 1H, NH, D2O
exchangeable), 12.13 (br.s, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) δ: 42.80, 109.96, 116.32, 127.40, 127.67,
128.87, 129.90, 132.80, 134.45, 143.70, 173.30, 180.67; MS
(70 eV) m/z (%): 285 (M+, 14). Anal. calcd for C15H15N3Os
(285.37): C, 63.13; H, 5.30; N, 14.73. Found: C, 63.09; H,
5.27; N, 14.69.

4.1.1.4. N-((3-Hydroxyphenyl)carbamothioyl)-2-phenyla-
cetamide (2d). Beige powder; yield 98%, m.p. 260−262o C;
IR (KBr) (υ, cm−1): 3304 (OH), 3246, 3199 (NH), 3063
(CHarom), 2906, 2820 (CHaliph), 1684 (CO), 1609 (CN),
1146 (CS); 1H NMR (DMSO-d6) δ: 3.83 (s, 2H, CH2-ph),
6.67−7.36 (m, 9H, Ar-H, J = 7.05 Hz), 9.66 (br.s, 1H, OH,
D2O exchangeable), 11.67 (br.s, 1H, NH, D2O exchangeable),
12.41 (br.s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-
d6) δ: 39.94, 111.28, 113.86, 114.90, 127.48, 128.93, 129.95,
134.74, 139.13, 157.98, 173.75, 178.85; MS (70 eV) m/z (%):
286 (M+, 39). Anal. calcd for C15H14N2O2S (286.35): C,
62.92; H, 4.93; N, 9.78. Found: C, 61.21; H, 5.21; N, 9.67.

4.1.1.5. N-((2-Chloro-4-nitrophenyl)carbamothioyl)-2-
phenylacetamide (2e). Yellow powder; yield 97%, m.p.
105−107o C; IR (KBr) (υ, cm−1): 3275, 3198 (NH), 3091,
3009 (CHarom), 2921, 2815 (CHaliph), 1684 (CO), 1625
(CN), 1147 (CS); 1H NMR (DMSO-d6) δ: 3.86 (s, 2H,
CH2-ph), 6.84−7.35 (m, 5H, Ar-H, J = 7.69 Hz), 7.94−8.63
(m, 3H, Ar-H, J = 7.31, 7.63 Hz), 12.11 (br.s, 1H, NH, D2O
exchangeable), 12.85 (br.s, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) δ: 42.77, 120.43, 122.98, 125.13, 126.92,
130.02, 134.44, 136.36, 145.35, 151.83, 173.98, 180.07; MS
(70 eV) m/z (%): 349 (M+, 29). Anal. calcd for

Figure 6. 2D and 3D schematic binding interactions (A and B) of
compound 6b into EGFRT790M (PDB code: 6JX0) using the MOE
software.
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C15H12ClN3O3S (349.79): C, 51.51; H, 3.46; N, 12.01. Found:
C, 51.13; H, 3.67; N, 11.69.
4.1.2. Synthesis of N-(1H-Benzo[d]imidazol-2-yl)-2-phe-

nylacetamide (3). A solution of compound 2c (2.85 g; 0.01
mol) in ethyl alcohol (5 mL) was irradiated under MW for 2
min at 80 °C. After cooling at room temperature, the
precipitate was filtered and recrystallized from ethanol to
give the corresponding compound 3.
White crystals; yield (80%); m.p. 206−208 °C; IR (KBr) (υ,

cm−1): 3200, 3128 (NH), 3067, 3028 (CHarom), 2910, 2820
(CHalkyl), 1670 (CO), 1512 (CN); 1H NMR (DMSO-d6)
δ: 3.76 (s, 2H, CH2-ph), 6.57−7.80 (m, 9H, Ar-H, J = 7.28,
7.68 Hz), 11.74 (br. s, 1H, NH, D2O exchangeable), 12.11
(br.s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ:
40.06, 116.32, 116.50, 127.43, 128.87, 128.90, 129.88, 130.01,
134,70, 143.66, 173.30; MS (70 eV) m/z (%): 251 (M+, 5).
Anal. calcd for C15H13N3O (251.29): C, 71.70; H, 5.21; N,
16.72. Found: C, 71.53; H, 5.03; N, 16.48.
4.1.3. Synthesis of 2-Phenyl-N-(2-phenyl-1H-enzo[d]-

imidazole-1-carbonothioyl)acetamide (4). A mixture of
compound 2c (2.85 g; 0.01 mol) and benzoyl chloride (0.01
mol) in ethyl alcohol (5 mL) was irradiated under MW
radiation for 3 min at 80 °C, and then it was treated with cold
water. The formed solid was filtered, washed with water, dried,
and recrystallized from ethanol to give compound 4. Yellow
crystals; yield 96%, m.p. 260−280 °C; IR (KBr) (υ, cm−1):
3219 (NH), 3063, 3026 (CHarom), 2960, 2820 (CHaliph), 1699
(CO), 1625 (CN), 1266 (CS); 1H NMR (DMSO-d6)
δ: 3.91 (s, 2H, CH2-ph),7.36−8.24 (m, 14H, Ar-H, J = 7.48,
7.94 Hz), 12.78 (br.s, 1H, NH, D2O exchangeable); 13C NMR
(DMSO-d6) δ: 40.32, 114.05, 125.02, 128.92, 129.09, 129.37,
129.60, 129.87, 129.98, 131.99, 134.18, 144.71, 166.53, 167.0;
MS (70 eV) m/z (%): 371 (M+, 68). Anal. calcd for
C22H17N3OS (371.46): C, 71.14; H, 4.61; N, 11.31. Found:
C, 71.11; H, 4.58; N, 11.28.
4.1.4. Synthesis of 1,2,4-Triazole Derivatives 5a−c and

6a−c. A mixture of 2a, b, and d (0.01 mol) and hydrazine
hydrate or phenyl hydrazine (0.01 mol) was heated in MW for
2−10 min at 120−150 °C in the presence of DMF as a solvent.
After cooling, the reaction mixture was poured into ice water.
The obtained precipitate was filtered and recrystallized from
ethanol to give corresponding products 5a−c and 6a−c,
respectively.
4.1.4.1. 5-Benzyl-N-isopropyl-4H-1,2,4-triazol-3-amine

(5a). White needles, yield 98%, m.p. 84−86 °C; IR (KBr)
(υ, cm−1): 3288 (NH), 3065, 3029 (CHarom), 2975, 2930,
2874 (CHaliph), 1639 (CN); 1H NMR (DMSO-d6) δ: 1.06
(d, 6H, CH3), 3.39 (m, 1H, CH), 3.82 (s, 2H, CH2-ph), 7.21
(br. s, 1H, NH, D2O exchangeable), 7.22−7.31 (m, 5H, Ar-H,
J = 7.26, 7.30 Hz), 7.95 (br. s, 1H, NH, D2O exchangeable);
13C NMR (DMSO-d6) δ: 22.86, 39.84, 42.90, 126.69, 128.62,
129.34, 137.13, 155.40, 169.51; MS (70 eV) m/z (%): 216
(M+, 69). Anal. calcd for C12H16N4 (216.28): C, 66.64; H,
7.46; N, 25.90. Found: C, 66.60; H, 7.40; N, 25.88.
4.1.4.2. N-(5-Benzyl-4H-1,2,4-triazol-3-yl)thiazol-2-amine

(5b). White powder; yield 96%, m.p. 220−222 °C; IR (KBr)
(υ, cm−1): 3199 (NH), 3056, 3020 (CHarom), 2922, 2850
(CHaliph), 1663 (CN); 1H NMR (DMSO-d6) δ: 3.84 (s, 2H,
CH2-ph), 7.16, 7.25 (2d, 2H, thiazole-H4, H5), 7.30−7.32 (m,
5H, Ar-H, J = 7.17, 7.23, 7.30 Hz), 7.45 (br. s, 1H, NH, D2O
exchangeable), 12.31 (br. s, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) δ: 42.07, 114.09, 127.39, 128.95, 129.64,
135.26, 138.04, 158.37, 159.04, 169.86; MS (70 eV) m/z (%):

257 (M+, 18). Anal. calcd for C12H11N5S (257.31): C, 56.01;
H, 4.31; N, 27.22. Found: C, 55.97; H, 4.29; N, 26.98.

4.1.4.3. 3-((5-Benzyl-4H-1,2,4-triazol-3-yl)amino)phenol
(5c). Pale brown crystals; yield 86%, m.p. 110−112 °C; IR
(KBr) (υ, cm−1): 3328 (OH), 3270, 3145 (NH), 3086, 3027
(CHarom), 2964, 2840 (CHaliph), 1662 (CN). 1H NMR
(DMSO-d6) δ: 3.50 (s, 2H, CH2-ph), 6.62−7.31 (m, 9H, Ar-
H, J = 7.37, 7.74 Hz), 8.10 (br. s, 1H, NH, D2O exchangeable),
9.30 (br. s, 1H, NH, D2O exchangeable), 9.60 (br. s, 1H, OH,
D2O exchangeable); 13C NMR (DMSO-d6) δ: 38.83, 102.52,
110.41, 115.98, 125.06, 128.07, 130.15, 136.49, 143.80, 156.12,
159.54, 160.08, 165.13; MS (70 eV) m/z (%): 266 (M+, 81).
Anal. calcd for C15H14N4O (266.30): C, 67.65.17; H, 5.30; N,
21.04. Found: C, 67.40; H, 5.18; N, 20.98.

4.1.4.4. N-(3-Benzyl-1-phenyl-1H-1,2,4-triazol-5-yl)-
thiazol-2-amine (6a). Brown powder, yield 95%, m.p. 170−
172 °C; IR (KBr) (υ, cm−1): 3285 (NH), 3084, 3026
(CHarom), 2919 (CHaliph), 1664 (CN). 1H NMR (DMSO-
d6) δ: 3.50 (s, 2H, CH2-ph), 6.67, 7.10 (2d, 2H, thiazole-H4,
H5), 7.26−7.74 (m, 10H, Ar-H, J = 7.10, 7.37 Hz), 10.23 (br.
s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) δ:
40.08, 112.49, 126.99, 128.53, 128.71, 128.75, 129.12, 129.48,
129.83, 136.38, 149.75, 170.43; MS (70 eV) m/z (%): 333
(M+, 10). Anal. calcd for C18H15N5S (333.41): C, 64.84; H,
4.53; N, 21.01. Found: C, 64.81; H, 4.50; N, 20.97.

4.1.4.5. 3-((3-Benzyl-1-phenyl-1H-1,2,4-triazol-5-yl)-
amino)phenol (6b). White powder, yield 85%, m.p. 158−
160 °C; IR (KBr) (υ, cm−1): 3285 (OH), 3206 (NH), 3084,
3027 (CHarom), 2915 (CHaliph), 1664 (CN); 1H NMR
(DMSO-d6) δ: 3.51 (s, 2H, CH2-ph), 6.66−7.73 (m, 14H, Ar-
H, J = 6.68, 7.16 Hz), 9.09 (br. s, 1H, NH, D2O exchangeable),
9.90 (br. s, 1H, OH, D2O exchangeable); 13C NMR (DMSO-
d6) δ: 40.94, 112.52, 118.98, 127.02, 128.77, 129.15, 129.49,
136.36, 149.73, 170.51; MS (70 eV) m/z (%): 342 (M+, 25).
Anal. calcd for C21H18N4O (342.39): C, 73.67; H, 5.30; N,
16.36. Found: C, 73.96; H, 5.15; N, 15.96.

4.1.4.6. 3-Benzyl-N-(2-chloro-4-nitrophenyl)-1-phenyl-1H-
1,2,4-triazol-5-amine (6c). White powder, yield 89%, m.p.
180−182 °C; IR (KBr) (υ, cm−1): 3284 (NH), 3084, 3026
(CHarom), 2915, 2840 (CHaliph), 1664 (CN); 1H NMR
(DMSO-d6) δ: 4.23 (s, 2H, CH2-ph), 6.67−7.60 (m, 10H, Ar-
H, J = 8.18 Hz), 8.22−8.38 (d, 2H, Ar-H, J = 7.59 Hz), 9.22 (s,
1H, Ar-H), 9.90 (br. s, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) δ: 40.39, 118.43, 122.26, 124.83, 126.12,
128.04, 136.14, 138.36, 139.25, 151.83, 158.32, 162.15; MS
(70 eV) m/z (%): 406 (M+, 49). Anal. calcd for C21H16ClN5O2
(405.84): C, 62.15; H, 3.97; N, 17.26. Found: C, 62.11; H,
3.95; N, 17.24.

4.1.5. Synthesis of 4-Benzyl-6-(thiazol-2-ylamino)-1,3,5-
triazin-2(5H)-one (7). A mixture of 2b (2.77 g; 0.01 mol) and
urea (0.60 g; 0.01 mol) in DMF (5 mL) was heated under MW
irradiation for 5 min at 130 °C. After cooling to room
temperature, the reaction mixture was poured onto ice. The
obtained precipitate was filtered and recrystallized from
ethanol to give the corresponding compound 7.
Pale brown crystals, yield 97%, m.p. 242−244 °C IR (KBr)

(υ, cm−1): 3206 (NH), 3081 (CHarom), 2950, 2885 (CHaliph),
1686 (CO), 1626 (CN); 1H NMR (DMSO-d6) δ: 3.77
(s, 2H, CH2-ph), 6.93−7.47 (m, 7H, Ar-H, J = 7.32 Hz), 11.19
(br. s, 1H, NH, D2O exchangeable), 12.35 (br. s, 1H, NH,
D2O exchangeable); 13C NMR (DMSO-d6) δ: 40.13, 113.96,
127.27, 128.88, 129.69, 135.47, 138.10150.41, 158.44, 169.63;
MS (70 eV) m/z (%): 285 (M+, 32). Anal. calcd for
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C13H11N5OS (285.32): C, 54.72; H, 3.89; N, 24.55. Found: C,
54.70; H, 3.86; N, 24.51.
4.1.6. Synthesis 1,3,5-Triazin-2-thione Derivatives 8a−d.

An equimolar ratio of 2a, b, d, and e (0.01 mol) and thiourea
(0.74 g; 0.01 mol) in DMF (5 mL) was heated in MW for 2−
10 min at 130−150 °C. After cooling to room temperature, the
reaction mixture was poured onto ice. The obtained precipitate
was filtered and recrystallized from ethanol to give
corresponding products 8a−d, respectively.
4.1.6.1. 6-Benzyl-4-(isopropylimino)-3,4-dihydro-1,3,5-tri-

azine-2(1H)-thione (8a). Pale brown crystals, yield 96%, m.p.
260−262 °C; IR (KBr) (υ, cm−1): 3289, 3110 (NH), 3065,
3030 (CHarom), 2975, 2930, 2875 (CHaliph), 1639 (CN),
1175 (CS); 1H NMR (DMSO-d6) δ: 1.05 (d, 6H, CH3),
3.36 (m, 1H, CH), 3.82 (s, 2H, ph-CH2), 7.21−7.30 (m, 5H,
Ar-H, J = 7.12 Hz), 7.96 (br. s, 1H, NH, D2O exchangeable),
11.35 (br. s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-
d6) δ: 22.85, 40.15, 42.88, 126.71, 128.60, 128.64, 129.27,
129.33, 132.66, 137.11, 169.56; MS (70 eV) m/z (%): 260
(M+, 29). Anal. calcd for C13H16N4S (260.36): C, 59.97; H,
6.19; N, 21.52. Found: C, 59.93; H, 6.15; N, 21.49.
4.1.6.2. 6-Benzyl-4-(thiazol-2-ylimino)-3,4-dihydro-1,3,5-

triazine-2(1H)-thione (8b). Brown crystals, yield 97%, m.p.
151−153 °C; IR (KBr) (υ, cm−1): 3220 (NH), 3072, 3028
(CHarom), 2918, 2862 (CHaliph), 1620 (CN), 1164 (CS);
1H NMR (DMSO-d6) δ: 3.77 (s, 2H, CH2-ph), 7.20−7.28 (m,
5H, Ar-H, J = 7.34 Hz), 7.35−7.48 (2d, 2H, thiazole-H4, H5, J
= 7.20, 7.27 Hz), 8.33 (br. s, 1H, NH, D2O exchangeable),
12.35 (br. s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-
d6) δ: 40.06, 113.97, 127.28, 128.88, 129.69, 135.47, 138.11,
158.42, 169.62; MS (70 eV) m/z (%): 301 (M+, 42). Anal.
calcd for C13H11N5S2 (301.39): C, 51.81; H, 3.68; N, 23.24.
Found: C, 51.78; H, 3.79; N, 23.22.
4.1.6.3. 6-Benzyl-4-((3-hydroxyphenyl)imino)-3,4-dihydro-

1,3,5-triazine-2(1H)-thione (8c). Brown crystals, yield 92%,
m.p. 147−149 °C. IR (KBr) (υ, cm−1): 3357 (OH), 3216
(NH), 3050, 3022 (CHarom), 2925, 2815 (CHaliph), 1603(C
N), 1177 (CS); 1H NMR (DMSO-d6) δ: 3.51 (s, 2H, ph-
CH2), 6.65−7.76 (m, 9H, Ar-H, J = 6.68, 7.28 Hz), 8.73 (br. s,
1H, NH, D2O exchangeable), 9.09 (br. s, 1H, NH, D2O
exchangeable), 9.90 (br. s, 1H, OH, D2O exchangeable); 13C
NMR (DMSO-d6) δ: 41.90, 112.20, 113.65, 114.65, 127.40,
128.95, 129.90, 134.74, 139.13, 150.42, 156.90, 170.75; MS
(70 eV) m/z (%): 310 (M+, 32). Anal. calcd for C16H14N4OS
(310.37): C, 61.92; H, 4.55; N, 18.05. Found: C, 61.89; H,
4.52; N, 18.03.
4.1.6.4. 6-Benzyl-4-((2-chloro-4-nitrophenyl)imino)-3,4-di-

hydro-1,3,5-triazine-2(1H)-thione (8d). Yellow powder, yield
98%, m.p. 70−72 °C. IR (KBr) (υ, cm−1): 3198 (NH), 3098,
3066 (CHarom), 2923, 2850 (CHaliph), 1625 (CN), 1127
(CS); 1H NMR (DMSO-d6) δ: 3.60 (s, 2H, CH2-ph), 6.66−
7.74 (m, 8H, Ar-H, J = 7.01 Hz), 8.73 (br. s, 1H, NH, D2O
exchangeable), 9.09 (br. s, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) δ: 42.15, 112.28, 113.80, 114.78, 127.80,
128.90, 129.70, 135.04, 138.83, 147.60, 156.75, 169.95 ; MS
(70 eV) m/z (%): 374 (M+, 19). Anal. calcd for
C16H12ClN5O2S (373.82): C, 51.41; H, 3.24; N, 18.74.
Found: C, 51.39; H, 3.21; N, 18.70.
4.2. Biological Activity. 4.2.1. In Vitro Cytotoxic Assay

(MTT). The potential cytotoxic properties of the prepared
compounds 2−8 were evaluated against a panel of four human
cancer cell lines, including hepatocellular carcinoma (HepG-
2), prostate carcinoma (PC-3), breast adenocarcinoma (MCF-

7), and non-small cell lung cancer cells (A-549), and the
normal peripheral blood mononuclear cells (PBMCs) using
the MTT assay95 depending on the development of purple
formazan crystals by mitochondrial dehydrogenases. More
details were provided in Supporting Information.

4.2.2. In Vitro Inhibition Assay of EGFRWT and Mutant
EGFRT790M Activities. The compounds that exhibited the most
potent cytotoxic activity were further examined for their
inhibitory activities against both EGFRWT and EGFRT790M. A
homogeneous time resolved fluorescence (HTRF) assay96,97

was applied in this test with EGFRWT and EGFRT790M (Sigma).
More details were provided in Supplementary Information.

4.2.3. In Vivo Determination of p53 Ubiquitination. The
potential of different prepared derivatives as potent p53
ubiquitination inhibitors was evaluated using the standard
procedure and protocol previously applied.98,99 Briefly, cells
were allowed to grow for 24 h to reach 50% confluency.
Thereafter, of 1 μg p53, 4 μg MDM2 and 1 μg HIS-ubiquitin
were transfected with the Gene Juice reagent, and then cells
were grown for another 20 h. More details were provided in
Supplementary Information.

4.3. Molecular Modeling Study on EGFRWT and
Mutant EGFRT790M. The domains of EGFRWT and mutant
EGFRT790M kinase complexed with erlotinib and AZD9291
(PDB ID: 1M17 and 6JX0)100,101 were downloaded from the
Protein Data Bank. The docking calculations were done using
MOE-Dock (Molecular Operating Environment) software
version 2014.0901.88,89 More details were provided in the
Supplementary Information.
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C. T.; Kawiak, A.; Wieczór, M.; Zielin ́ska, J.; Bączek, T.;
Bartoszewska, S. Novel 2-(2-arylmethylthio-4-chloro-5-methylbenze-
nesulfonyl)-1-(1,3,5-triazin-2-ylamino) guanidine derivatives: Inhib-
ition of human carbonic anhydrase cytosolic isozymes I and II and the
transmembrane tumor-associated isozymes IX and XII, anticancer
activity, and molecular modeling studies. Eur. J. Med. Chem. 2018,
143, 1931−1941.
(65) Hashem, H. E.; Amr, A. E.-G. E.; Nossier, E. S.; Elsayed, E. A.;
Azmy, E. M. Synthesis, antimicrobial activity and molecular docking
of novel thiourea derivatives tagged with thiadiazole, imidazole and
triazine moieties as potential DNA gyrase and topoisomerase IV
inhibitors. Molecules 2020, 25, 2766.
(66) Zhou, X.; Lin, K.; Ma, X.; Chui, W. K.; Zhou, W. Design,
synthesis, docking studies and biological evaluation of novel dihydro-
1,3,5-triazines as human DHFR inhibitors. Eur. J. Med. Chem. 2017,
125, 1279−1288.
(67) Narva, S.; Chitti, S.; Amaroju, S.; Bhattacharjee, D.; Rao, B. B.;
Jain, N.; Alvala, M.; Sekhar, K. V. G. C. Design and synthesis of 4-
morpholino-6-(1,2,3,6-tetrahydropyridin-4-yl)-N-(3,4,5-trimethoxy-
phenyl)-1,3,5-triazin-2-amine analogues as tubulin polymerization
inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 3794−3801.
(68) Wong, J. R.; Morton, L. M.; Tucker, M. A.; Abramson, D. H.;
Seddon, J. M.; Sampson, J. N.; Kleinerman, R. A. Risk of subsequent
malignant neoplasms in long-term hereditary retinoblastoma survivors
after chemotherapy and radiotherapy. Am. J. Clin. Oncol. 2014, 32,
3284.
(69) Dehnhardt, C. M.; Venkatesan, A. M.; Chen, Z.; Delos-Santos,
E.; Ayral-Kaloustian, S.; Brooijmans, N.; Yu, K.; Hollander, I.;
Feldberg, L.; Lucas, J.; Mallon, R. Identification of 2-oxatriazines as
highly potent pan-PI3K/mTOR dual inhibitors. Bioorg. Med. Chem.
Lett. 2011, 21, 4773−4778.
(70) Koh, M.; Lee, J. C.; Min, C.; Moon, A. A novel metformin
derivative, HL010183, inhibits proliferation and invasion of triple-
negative breast cancer cells. Bioorg. Med. Chem. 2013, 21, 2305−2313.
(71) Kim, E. S. Enasidenib: first global approval. Drugs. 2017, 77,
1705−1711.
(72) Keldsen, N.; Havsteen, H.; Vergote, I.; Bertelsen, K.; Jakobsen,
A. Altretamine (hexamethylmelamine) in the treatment of platinum-
resistant ovarian cancer: a phase II study. Gynecol. Oncol. 2003, 88,
118−122.
(73) Guo, H.; Diao, Q. P. 1, 3, 5-Triazine-azole Hybrids and their
Anticancer Activity. Curr. Top. Med. Chem. 2020, 20, 1481−1492.
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