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architecture (including tight junction disruption, cytosol 
vacuolisation, and the apoptosis of endothelial cells). Skin 
and visceral fibrosis are due to the abnormal deposition 
of extracellular matrix, and connective tissue remodelling 
by myofibroblasts and fibroblasts. Pericytes establish close 
connections with vascular or stromal cells, and may acquire 
various distinct phenotypes as they are capable of trans-
forming themselves into myofibroblasts (2). Furthermore, 
although there is little concrete evidence, the activation of 
pericytes may largely contribute to the pathogenesis of SSc 
by favouring micro-vessel dysfunction and fibrosis. The aim 
of this review is to summarize the biological properties of 
pericytes and their hypothetical role in the development 
of SSc.

The pericyte: a multifaceted cell

Pericytes are a pool of vascular cells that mainly populate 
the pre-capillary, capillary and post-capillary abluminal side 
of non-muscular micro-vessels, although they have also been 
detected in human large vessels, vasa vasorum, and lymphatic 
vessels. The efficiency of the vascular barrier depends on the 
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Introduction

Systemic sclerosis (SSc) is a connective tissue disease 
characterized by micro-vessel dysfunction, immune activa-
tion, and fibrosis of the skin and visceral organs. Unlike oth-
er autoimmune diseases, SSc seems to be mainly driven by 
vascular insult, and the immune system seems to play a less 
important role in its pathogenesis (1). Raynaud’s phenome-
non, digital ulcers, pulmonary artery hypertension (PAH) and 
telangiectasias, which are some of the particular manifes-
tations of SSc, are due to profound changes in micro-vessel 
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means of epigenetic regulation. The pericyte plasmalemma is particularly rich in caveolae containing caveolin-1, 
a deficit of which has been associated with defective vessel tone control and lung fibrosis in mice. Consequently, 
dysfunctional pericytes may underlie the microangiopathy and fibrosis observed in SSc patients. However, given 
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number of pericytes surrounding each vessel, which varies 
depending on the anatomical district of the vessels them-
selves: many in the central nervous system (CNS) and lungs, 
and much fewer in skeletal muscles (3).

Pericytes are intimately associated with endothelial and 
vascular smooth muscle cells, with which they share some 
phenotypical characteristics. Pericytes and pericyte-like cells 
such as myofibroblasts and fibroblasts belong to a heteroge-
neous population derived from mesenchymal tissue. During 
embryogenesis, pericytes originate from stem cells mainly as 
a result of transforming growth factor-beta (TGF-β) stimula-
tion (4). It has been shown that the stimulation of different 
cytokines (e.g., TGF-β or platelet-derived growth factor-beta, 
PDGF-β) may lead to the divergent differentiation of stem 
cells into pericytes or endothelial cells. Furthermore, stimula-
tion with TGF-β and PDGF-β may promote the initiation of 
neoangiogenesis at a different rate and the transition of peri-
cytes into fibroblasts with different biological properties (5). 
Both TGF-β and PDGF-β are abundantly expressed in SSc, 
and may contribute to protecting vessel stability or encour-
aging extracellular matrix deposition (6, 7). It has also been 
shown that there is a high degree of transition from other 
mesenchymal cells into pericytes and vice versa during adult 
angiogenesis, and pericytes may also derive from circulating 
progenitor cells, fibroblasts or myofibroblasts. Under certain 
conditions, neural crests may be a further local source of peri-
cyte progenitors in the CNS (8).

After maturation, pericytes express PDGF-β receptors 
(PDGFβR). The pericytes derived from tissue stem cells also 
express alpha-smooth muscle actin (α-SMA), whereas those 
derived from blood pluripotent stem cells express cluster of 
differentiation (CD)45 and CD11b (3).

Given their heterogeneity and high degree of phenotypical 
transition, as well as the fact that no specific pericyte marker 
is available, identifying pericytes in tissue sections is quite dif-
ficult because they may express different proteins depending 
on the species, vessels, state of activation, pathological condi-
tion and culture medium. Alpha-SMA, desmin and tropomyo-
sin characterise a contractile phenotype, whereas regulator 
of G protein signalling 5 (RGS-5), nestin, high-molecular 
weight melanoma-associated antigen (HMWMAA) are mainly 
expressed during angiogenesis (9). Similarly, the phenotype 
of pericytes (including their size, form, distribution, extracel-
lular processes) varies according to their location.

Various markers have been used to detect pericytes in 
histological studies that have particularly focused on peri-
vascular cells in the blood-brain and blood-retina barriers, in-
cluding PDGFβR, nerve/glial antigen-2 (NG2), CD13, desmin, 
vimentin, Kir 6.1 (10). Renal pericytes express α-SMA and 
NG2 in new-borns and after a kidney injury, whereas adult 
kidney pericytes become negative for α-SMA and positive for 
Col1a1-GFP, PDGFRβ and CD73 (11). In renal fibrosis, peri-
cytes have been investigated as the source of the myofibro-
blasts responsible for the deposition of extracellular matrix 
in the interstitium and glomeruli; however, the results are 
heterogeneous as pericytes have been variously identified as 
CD73-, PDGFR-β-, NG2- and/or α-SMA-positive stromal cells, 
and different transgenic mice models have been used (12).

The expression of some of these markers may therefore 
vary in vitro and in vivo, and depending on their anatomical 

site. The expression of α-SMA has been detected in pre- and 
post-capillary pericytes populating the microvascular beds 
of rat mesentery and bovine retina, but not in capillary peri-
cytes in vivo, whereas large amounts have been reported in 
in vitro pericyte experiments involving large vessels, thus un-
derlining the differences in biological functions depending on 
localisation (13).

Biological properties of pericytes

A single pericyte, generally located at the gap between two 
consecutive endothelial cells and far from the gas-exchange 
site, can interact with multiple endothelial cells, with the peri-
cyte/endothelial cell ratio depending on activation, the angio-
genic process, the type of vessel, and its location. Adherent 
gap junctions between pericytes and endothelial cells allow a 
dense exchange of molecular and ionic signals, and redistrib-
ute mechanical stresses. An abnormal interaction between 
pericytes and endothelial cells has been observed in diabetic 
microangiopathy, leading to vessel dilatation, rigidity and the 
formation of micro-aneurysms (14), and similar findings are 
usually observed in the terminal nailfold circulation of SSc pa-
tients during a nailfold capillaroscopy examination (15).

Pericytes are fundamental for the control of vessel tone, 
integrity, reparation or regeneration. They may also help the 
chemotaxis and diapedesis of peripheral blood leukocytes by 
expressing adhesive molecules, such as intercellular adhe-
sion molecule 1 (ICAM-1), vascular cell adhesion molecule  
1 (VCAM-1) and E-selectin, and seem to be involved to some 
extent in immune defence and coagulation processes (3). As 
they share the characteristics of contractile and phagocytic 
cells, pericytes not only respond to endothelin, norepineph-
rine, angiotensin II (ATII), nitric oxide (NO), adenosine and 
reactive oxygen species (ROS), but also to complement re-
siduals, cytokines and antigen ligands. Pericytes show active 
phagocytosis and pinocytosis, and may recognise antigens 
as a result of class I and II major histocompatibility complex 
(MHC) activating the pool of naïve lymphocytes. Further-
more, pericytes may synthesise tissue factor, and participate 
in extrinsic coagulation by recruiting and activating platelets, 
which in turn may induce pericyte activation and fibrosis by 
synthesising PDGF-β and TGF-β (16). In a murine model of 
kidney tubule interstitial fibrosis, it has been demonstrated 
that the over-expression of TGF-β precedes and amplifies the 
infiltration of PDGFβR−positive perivascular cells, including 
myofibroblasts and pericytes (17). Moreover, treatment with 
PDGF-β antagonists prevents fibrosis in mouse models (18), 
thus underlining the concept that blocking pericyte functions 
may help to counteract fibroblast activation and extracellular 
matrix deposition.

Pericytes contribute to vascular stability, and any reduc-
tion in their number or activity may compromise the regen-
erative properties of small vessels. It has been shown that pre-
treatment with an antagonist of TGF-β, one of the strongest 
pericyte stimulators, can impair neo-angiogenesis in experi-
mental models of kidney fibrosis (17). During the first phases 
of angiogenesis, pericytes lose contact with endothelial cells, 
grow and proliferate, and increase their metabolic activity. 
They also acquire an amoeboid-fibroblastic phenotype that 
enables them to guide and scaffold the advance of the future 
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endothelial wall. Angiogenesis is governed by a specific inter-
play of molecular signals between endothelial cells and pericytes 
that is ordered in a time-frame that proceeds from pericyte  
recruitment and vessel coating to pericyte detachment. The ex-
pression of TGF-β seems to be crucial in the first phase of vessel 
sprouting, whereas PDGF-β and vascular endothelial growth 
factor (VEGF) are involved later. Following a complex cascade 
that is partly mediated by the Ang protein family, VEGF seems 
to antagonise TGF-β signalling, prevent pericyte covering, and 
favour vessel destabilisation (7, 19). Animal experiments have 
shown that pericytes are actively involved in cutaneous angio-
genesis following third-degree skin burns, during which they 
may progressively transit from a pro-angiogenetic to a con-
tractile and pro-fibrotic phenotype as they are also capable of 
becoming part of the new vessel muscle tunic and producing 
collagen IV (20). At the same time, it has been demonstrated 
that pericytes may also participate in vessel involution. In the 
early phase of diabetic retinopathy, pericytes and endothelial 
cells may disappear from retinal capillaries, giving rise to the 
formation of acellular tubes, occlusion, micro-aneurysms and 
haemorrhages that contribute to visual loss. The mechanism 
underlying the disappearance of pericytes has been explained 
on the basis of direct hyperglycaemic toxicity, although other 
causes such as oxidative and mechanical stress, the participa-
tion of the renin-angiotensin system, pericyte migration into 
perivascular space, and the presence of autoantibodies against 
pericyte markers have also been suggested (21). Pericyte de-
generation in other districts such as the brain has also been 
investigated. Various neurodegenerative disorders (including 
dementia, Alzheimer’s disease, amyotrophic lateral sclerosis 
and ischemic stroke) are characterised by a loss of the peri-
cyte coating of brain vessels, and one experiment involving 
pericyte-deficient mice showed reduced cerebral blood flow in 
response to neuronal stimuli, thus favouring metabolic stress 
and alterations in neuronal excitability over time (22).

Pericytes also seem to participate actively in fibrotic 
processes. In an experiment using mice models, Birbrair  
et al found two distinct pericyte subsets in the pulmonary, 
renal, cardiac and brain vascular tree: type-1 (Nestin-GFP-/
NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+). These 
responded differently to tissue injuries insofar as type-1 
pericytes were involved in collagen deposition in the lungs 
and brain but not in other districts (23). Other authors have 
demonstrated that murine lungs are populated by a pool of 
pericyte progenitors expressing the transcriptional factor 
forkhead transcription factor-d1 (Foxd1), PDGFβR and NG2, 
which may proliferate after exposure to bleomycin and favour 
the deposition of collagen (24).

In brief, pericytes seem to play a key role in vasculogene-
sis, fibrosis and scar tissue repair (25), and show considerable 
plasticity when trans-differentiating from one mesenchymal 
phenotype to another. Pericyte dysfunction could therefore 
underlie many pathological conditions and the clinical mani-
festations of SSc.

Pericytes in systemic sclerosis

Despite all the evidence suggesting that pericytes play a 
central role in angiogenesis and tissue repair, their exact con-
tribution to the pathogenesis of SSc is still a matter of debate. 

Given their particular characteristics of presiding over micro-
vessel integrity and controlling vessel tone, participating in 
fibrosis, and being involved in immune cell recruitment and 
tissue repair, there is a clear rationale underlying the hypoth-
esis that they participate in each step of the pathogenesis of 
the disease. There are some certainties concerning the ori-
gin of the cells that give rise to skin and visceral fibrosis in 
SSc: pericytes share a common derivation from mesenchymal 
cells with endothelial cells, myofibroblasts and fibroblasts, 
are highly plastic, and lack a single distinctive marker. The 
bone marrow mesenchymal stem cells (BM-MSCs) of SSc pa-
tients can be induced to differentiate and behave as pericytes 
after stimulation with TGF-β and PDGF-BB and, depending on 
the micro-environment, can be reprogrammed from a more 
pro-fibrotic phenotype to a more vasculogenic phenotype 
(26). Some authors have hypothesized that the fibroblasts 
and myofibroblasts actively involved in the pathogenesis SSc 
may derive from a common pericyte progenitor (27). Upon 
stimulation with TGF-β, pericytes from skin and bone mar-
row samples of SSc patients express A disintegrin and metal-
loproteinase domain 12 (ADAM-12), which is a marker of a 
pro-fibrotic phenotype. The activated pericyte phenotype in 
SSc is characterised by the expression of PDGF-β receptors, 
which are not seen in normal skin. The activation of cutane-
ous pericytes in affected and unaffected skin is characterised 
by an increased expression of PDGF-AB/BB, and PDGFβRs 
represent a distinctive trait of early SSc that cannot be seen in 
skin samples of subjects affected by primary Raynaud’s phe-
nomenon (28). Moreover, the blockade of PDGF receptors by 
means of crenolanib, an inhibitor of PDGF receptor signalling, 
attenuates collagen deposition and fibroblast proliferation 
in cultured fibroblasts and murine models of angiotensin II-
induced skin and heart fibrosis (29). It has also been dem-
onstrated that myofibroblasts and pericytes in skin sections 
taken from SSc patients share the same pattern of molecular 
markers (α−SMA, the extra-domain A [ED-A] splice variant of 
fibronectin, and Thy-1), which is not observed in pericytes ob-
tained from normal skin samples (30). The expression of the 
ED-A variant of fibronectin and Thy-1 in SSc pericytes (two 
markers of myofibroblast activation) seems to strengthen the 
hypothesis of the common origin of pericytes and myofibro-
blasts in SSc patients.

Telocytes, a newly described population of stromal cells 
involved in tissue repair, immunomodulation and angiogen-
esis, may establish close interactions with pericytes, and 
activate them by means of a paracrine or a cell-cell contact 
pathway (31). Although telocytes are characterised by the ex-
pression of other molecular markers than those of pericytes 
(essentially CD34) (32), it has been demonstrated that they 
may lose the expression of CD34 and acquire α−SMA during 
some pathological conditions such as tumours (30). Telocyte 
levels have recently been found to be considerably reduced in 
SSc patients depending on the severity of fibrosis in the skin 
and visceral organs (33, 34).

The origin of myofibroblasts from epithelial and endothe-
lial cells has also been recently described. During endothelial 
to mesenchymal transition (EndoMT), endothelial cells mod-
ify their phenotype, acquiring the expression α-SMA, vimen-
tin, and type I collagen, and losing that of CD31/PECAM-1, 
von Willebrand Factor (vWF), and VE-cadherin (35). This cell 
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population has been associated with endothelial dysfunction, 
pulmonary artery hypertension, and lung fibrosis in SSc pa-
tients (36-38) but, like telocytes, EndoMT cells seem to be 
distinct from pericytes and may synergistically contribute to 
vasculopathy and fibrosis.

Pericytes may control angiogenesis by favouring or block-
ing new vessel sprouting by means of a C-X-C motif chemokine 
receptor 3 (CXCR3) pathway (39). Pericytes may express CXCR3 
ligands IP-9 and IP-10, which limit endothelial cell migration 
and promote vessel involution. Under normal conditions, ma-
ture and pericyte-coated vessels do not express CXCR3, but 
it is highly expressed by endothelial cells following vascular 
injury. The final vascular tree architecture could therefore be 
guided by the expression of CXCR3 and its ligands by endothe-
lial cells and pericytes. A number of studies have underlined 
the association between the IP-10/CXCR3 pathway and fi-
brotic involvement in SSc (40, 41), and the delayed healing of 
digital ulcers observed in SSc patients may be associated with 
impaired pericyte functioning in terms of a disturbed chemo-
kine pathway (42). However, the IP-10/CXCR3 pathway is not 
unique to SSc, as it is also associated with other pathological 
conditions such as malignancies or infections characterized by 
tissue injury and attempted repair (43).

A recent study by Toyama et al has revealed a deficit in 
Friend leukaemia virus integration 1 (Fli-1) in SSc patients, 
which has been related to defective angiogenesis, fibrosis 
and immune system abnormalities, and prevents the migra-
tion of endothelial cells or fibroblasts in response to VEGF-A 
and PDGF-BB stimulation (44). More specifically, the reduced 
expression of Fli-1 has been associated with a reduced peri-
cyte coating of micro-vessels, which reflects an acceleration 
of the first four steps of angiogenesis (during which vessels 
lose pericyte cover) and a defect in the last two steps, when 
mature vessels re-acquire pericyte cover. It has been demon-
strated in in vitro human and animal models that pericytes 
selectively express miRNA-145, which targets and regulates 
the expression of Fli-1 (45). However, an epigenetic study of 
SSc fibroblasts and skin tissues has found a reduced concen-
tration of miRNA-145 in comparison with normal fibroblasts 
(46). It is unclear whether the expression of miRNA-145 is 
concomitantly altered in pericytes and fibroblasts taken from 
SSc subjects, but it can be hypothesized that an epigenetic 
imbalance in Fli-1 expression in the pericytes of SSc subjects 
would favour the development of a pro-fibrotic phenotype, 
thus reducing the contribution of these cells to angiogenesis.

One of the distinctive characteristics of pericytes is the 
presence of plasmalemma caveolae, rich in caveolin-1. It has 
been extensively pointed out in several studies of SSc that a 
possibly genetically caused deficit in caveolin-1 may be a trig-
gering factor of the disease. According to these data, the ca-
veolin-1 rs959173 C minor allele seems to confer protection 
against the limited form of SSc in Caucasian populations (47). 
Caveolin-1, which is located in specialised microdomains of 
the plasma membrane known as lipid rafts, promotes en-
docytosis, lipid transport and signal transduction by means 
of plasmalemma invaginations (48). Mice lacking the ex-
pression of caveolin-1 gene experience alterations in ves-
sel tone control in the cardiovascular system and progres-
sive lung fibrosis, thus mimicking the pathogenetic pathway 
of SSc (49). As studies of mice and humans have shown a 

ubiquitous distribution of caveolin-1 with a similar level of 
expression on epithelial and vascular cells (50, 51), a genet-
ic deficit in its synthesis may account for the combination 
of micro-vessel dysfunction and fibrosis. Although no clear 
evidence is yet available, pericytes lacking caveolin-1 may 
have impaired interactions with other vascular cells, includ-
ing endothelial cells. Experiments involving murine models 
have shown a reduced expression of caveolin-1 in lung fibro-
blasts undergoing proliferation when exposed to hyperoxic 
conditions (52). Other authors have demonstrated that a 
deficit in caveolin-1 may induce mitochondrial dysfunction 
and accelerate the senescence of fibroblasts, thus leading in 
the generation of ROS and endothelial damage (53). On the 
other hand, oxidative stress may induce epithelial cell and 
fibroblast senescence by up-regulating the expression of ca-
veolin-1, which arrests the cell cycle and inhibits mitosis (54, 
55). It can be hypothesized that a genetically determined 
deficit in caveolin-1 in SSc subjects promotes the prolifera-
tion of fibroblasts following an oxidative insult. Some experi-
ments involving humans and animal models have found that 
the administration of caveolin scaffolding domain peptide 
can prevent monocyte migration via the chemokine recep-
tor type 4-positive (CXCR4+)/stromal cell-derived factor 1 
(CXCL12) pathway and fibroblast accumulation in a bleo-
mycin model of lung fibrosis (56). A recent study by Cipriani  
et al showed that bone marrow mesenchymal stem cells 
(SSc-MSCs) of SSc patients (used as surrogates for pericytes) 
had lower levels of caveolin-1 that were significantly associ-
ated with a reduced degradation of the VEGF/VEGFR2 com-
plex, and led to their more pronounced transition towards a 
pro-fibrotic phenotype (57).

Pericytes are abundantly expressed in the vasculature of 
the CNS, where they contribute to reducing vascular perme-
ability. However, the presence of neurological vascular suf-
ferance in SSc is still uncertain, although many studies have 
demonstrated the involvement of both the CNS and the pe-
ripheral nervous system during the course of the disease, and 
white matter lesions have often been documented in asymp-
tomatic SSc patients (58). Several studies have more recently 
found a close interaction between the peripheral terminations 
of nerve fibres and the microvasculature. It has been shown 
that the down-regulation of neuropilin-1 (NRP-1),which was 
initially identified as an axonal growth factor (59), may reduce 
angiogenesis in endothelial cells by complexing with the VEG-
FR-2 co-receptor (60). Following stimulation with basic fibro-
blast growth factor (b-FGF), human vascular smooth cells may 
become a source of NRP-1 (61), and topically applied recom-
binant b-FGF has been successful in healing SSc ulcers (62). 
There is some evidence that, after stimulation with NRP-1 and 
PDGF-BB, pericytes may develop from mesenchymal cells in 
tumorigenesis models (63), and that their correct interaction 
with endothelial cells depends on co-stimulation with NRP-1 
and VEGFR-2 (64). Moreover, stimulation with PDGF-D (mainly 
produced by arterial endothelial cells) but not PDGF-B may fa-
vour the formation of a receptor complex involving NRP-1 and 
PDGFRβ co-expressed in trans on pericytes and endothelial 
cells, thus giving rise to the more efficient recruitment of peri-
cytes and the formation of pericyte-coated new vessels (65).

Finally, given their ability to differentiate and adapt their 
phenotype to the requirements of their microenvironment, 
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pericytes may be key cells in the regenerative medicine that 
is currently being applied to the therapeutic algorithm of 
SSc. The autologous transplantation of adipose tissue in-
jected into the subcutaneous layer of the fingers has led to 
promising outcomes in the case of digital ulcers (66). Adipose 
tissue contains a large number of perivascular cells, includ-
ing pericytes, and it has been shown that pericytes isolated 
from adipose tissue retain stem cell regenerative proper-
ties insofar as they are capable of de-differentiating into 
bone and cartilage under specific conditions (67, 68). How-
ever, the final phenotype of the transplanted mesenchymal 
cells and their local biological properties still need further  
elucidation.

Figure 1 shows the network of pericytes, endothelial cells, 
myofibroblasts, fibroblasts and blood cells in a hypothetical 
micro-vessel.

Conclusions

The biological and anatomical properties of pericytes 
make them candidates for being active participants in the on-
set and progression of SSc, although it is still not clear to what 
extent they contribute to the pathogenesis of the disease. 
Many of the unanswered questions concerning their exact 
role in SSc arise from the difficulty of identifying and isolating 
them, which indicates that their phenotypes and behaviours 
may vary in different biological and pathological situations. 
Further studies electively focusing on pericytes from different 
anatomical sites and in different stages or forms of the dis-
ease are now required.
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