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Performance of the biomaterials used for regenerative medicine largely depends on biocompatibility; however,
the biological mechanisms underlying biocompatibility of a biomaterial within the host system is poorly under-
stood. In addition to the classical immune response against non-self-entities, the sterile inflammatory response
could limit the compatibility of biological scaffolds. Whereas the immediate to short-term host response to a
biomaterial implant have been characterized, the long-term progression of host–biomaterial relationship has not
been described. This article explores the novel concept of biomaterials-driven sterile inflammation (BSI) in
long-term biodegradable implants and throws light for possible explanation for the onset of BSI and the asso-
ciated damage-associated molecular patterns. The understanding of BSI would advance the current strategies to
improve biomaterial–host tissue integration and open novel translational avenues in biomaterials-based tissue
regeneration.
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Impact Statement

Understanding the novel concept of biomaterials-driven sterile inflammation and associated damage-associated molecular
patterns in long-term biodegradable implants would determine their success and improves the tissue engineering and
regenerative strategies.

Introduction

B iomaterials for regenerative medicine is an emerg-
ing field that is essentially encompassed in biocompat-

ibility. The specific biological mechanisms underlying the
biocompatibility of a biomaterial within the host system is
poorly understood. Indeed, the concept of biocompati-
bility has often been misinterpreted to be a characteristic
of the biomaterial itself instead of a characteristic of the
biomaterial–host system. The widely accepted implanted
device is thereby commonly characterized by their highly
inert chemical and biological properties, including specific
grades of polyethylene, polypropylene, polydimethylsilox-
ane, polyethylene terephthalate, polytetrafluoroethylene,
alumina, zirconia, carbon, titanium–aluminum–vanadium,
cobalt–chromium, and platinum–iridium.1

This understanding may be acceptable for implantable
devices that do not require a dynamic bioactive profile.
However, scaffolds used for therapeutic purposes such as
gene and drug delivery, tissue engineering, and regenerative
medicine necessarily require bioactivity.2 Therefore, proper

understanding of immunobiology is required for the devel-
opment of a biomaterial scaffold aiming to function opti-
mally until the processes of repair and regeneration is
completed.3

Williams et al. (2014) suggests mandatory and optional
specifications for these biocompatible systems. Among the
specifications for the ideal biomaterial, this article explores
the inflammatory pathways associated with biomaterial
implants, specifically the novel concept of biomaterials-
driven sterile inflammation (BSI). Sterile inflammation has
been described as an inflammatory pathway that results from
trauma or biochemically induced injury, however, devoid of
any pathogen/microorganism or foreign infectious agents.
During sterile inflammation, damage-associated molecular
patterns (DAMPs), indicators of tissue injury, are released
into the extracellular matrix (ECM) and recruit cells such as
macrophages and neutrophils to further increase the pool
of chemokines and cytokines.4

Sterile inflammatory signals from the implant procedure
may resolve and lie dormant until the biomaterial degrada-
tion begins. Hence, the consideration of BSI associated with
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a biomaterial, especially one that requires extended resi-
dence in its host system, is necessary for improved biolog-
ical performance. Although the initial inflammatory events
facilitate the healing responses, the hyperactivation of in-
flammatory signals compromises the biocompatibility of the
biomaterial. Herein, this article provides insights on the
principles and possible biological mechanisms underlying
the BSI and its impact on the success of biomaterials with
extended residence in the host tissue.

Biomaterials in Tissue Regeneration

Significant progress has been achieved in the field of bio-
materials science and versatile biomaterials with improved
performance has been introduced.5 However, much consider-
ation needs to be given to the specific biomaterial to be used
for a particular biomedical application. For instance, bio-
compatibility, biomimicry, bioactive features, and biodegrad-
ability are only a few qualities to be considered.6 Depending
on the specific application, biomaterials with definitive char-
acteristics are preferred. For example, in cases of bone tissue
regeneration, the mechanical properties of the biomaterial of
interest need to be similar to the bone tissue that differs sig-
nificantly for cardiovascular tissue engineering. Moreover, in
the setting for a myocardial infarction, hydrogels become an
ideal choice to address the free radicals, oxygen tension, and
inflammatory cytokines while providing the three-dimensional
microenvironment for delivered cell to function.7

In general, the biomaterial needs to be porous to allow
cell migration and nutrients/waste to traverse, be nontoxic to

cells, and be immunocompatible.8 The expectation of a
biomaterial implants is to survive in the damaged anat-
omy, facilitate an instructive healing microenvironment
for recruiting stem cells/progenitor cells, and support the
cells to differentiate and proliferate for tissue repair.6

Broadly, biomaterials are grouped into natural or synthetic
materials. Regardless of their origin, they are expected to
be incorporated into the biological host system without
any adverse effects.

Natural Biomaterials

Natural biomaterials have been used for their ability to
facilitate tissue regeneration by supporting the host tissue
function. They are derived from other living systems and
can be polysaccharide-based, protein-based, or decellular-
ized tissue-derived biomaterials.9 Natural biomaterials
contain inherent availability of specific binding cues and
provide the biochemical signals for cell recruitment and
communication. However, the residual antigens elicit im-
munogenic complications. Nonetheless, the natural bio-
materials are biocompatible, biodegradable, and possess
the ability to remodel damaged structures/tissues in vivo.
However, the immunogenic response after implantation,
adverse decomposition properties, poor mechanical prop-
erties, and the relative difficulty to manipulate its shape
and size form hurdles while dealing with natural bioma-
terials.10,11 Characteristics of commonly used natural bio-
materials are given in Table 1.

Table 1. Characteristics of Natural Biomaterials

Natural
biomaterial Properties Limitations Cytokines References

Collagen High resistance to tensile forces
High conductivity

Extraction decreases
mechanical properties

IFN-g, IL-13 10,12,13

Alginate Can be made into a gel
Structure similar to ECM
Minimal immunogenic response
Slow degradation

Requires additional methods
for its degradation in
mammals

TNF-a, IL-1, IL-6,
IL-12, GM-CSF

10,12,13

Chitosan Products of degradation can be
easily absorbed

Poor mechanical properties IFN-g, IL-2, TNF-a,
IL-10

10,12,13

Silk Elasticity
Mechanical strength
Manipulatable degradation rate

Mild foreign body responses
Long-term immune

response is unknown

IFN-g, IL-2, TNF-a,
IL-1b

10,13

Cellulose Insoluble in water
Strong mechanical properties
Anti-inflammatory and

anticancer effects

Requires additional
mechanism for
degradation

IL-10, IL-6 10,14

Bacterial
cellulose

High surface-to-mass ratio
Strong mechanical properties
High crystallinity
Low cytotoxicity,

immunogenicity

Limited cell ingrowth
capacity due to dense
mesh structure

Requires additional
mechanism for
degradation

No significant
proinflammatory
cytokines

10,15

Fibrin Controllable degradation rate
Protective effects against

nonbiocompatible materials
Facilitates leukocytes,

fibroblasts, and endothelial
cells functions

IL-12, IL-1b, TNF-a
GM-CSF, IL-1RA,
IL-4, IFN-g, eotaxin,
and IL-6

10,16

ECM, extracellular matrix; IFN-g, interferon-g; IL, interleukin; TNF-a, tumor-necrosis factor-a.
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Synthetic Biomaterials

Synthetic biomaterials are easy to reproduce, highly
available, and can be chemically modified. Owing to their
structural difference from the native tissue, a number of
limitations include improper cell adhesion, ability to pro-
mote adverse tissue remodeling, and immunogenicity and
toxicity. Despite the limitations, synthetic biomaterials are
widely used for biomedical applications.10 Polyesters of
a-hydroxy acids (polyglycolic acid [PGA], poly-l-lactic
acid, poly-lactic-co-glycolic acid [PLGA]) have been ap-
proved by the U.S. Food and Drug Administration (FDA)
for human clinical use in various applications including su-
tures.17 They are considered immunocompatible, but there
are concerns about the toxic affect from the accumulation of
the acidic degradation products.18

Synthetic biomaterials lack cell-recognition signals, giv-
ing it a distinct foreign body response that results in fibrous
capsule formation around the implant, isolating it from the
host environment.19–21 Characteristics of commonly used
synthetic biomaterials are given in Table 2.

With advancement in material science, the distinction
between natural and synthetic biomaterials has been blurred
for several biomedical applications. For example, biologic or
synthetic coating has been shown to improve biocompati-
bility and biological performance of implants.26,27 Moreover,

the hybrid systems comprising natural and synthetic com-
ponents has been reported to be superior than their individual
applications.11 For instance, Fukunishi et al. developed a
hybrid nanofiber system using polycaprolactone and chitosan
blend for vascular tissue engineering, which was successfully
tested in a sheep model.28 As discussed previously, the
specification for the biomaterial of choice differs and de-
pends significantly on the type of tissue and application.
Hence, any generalization made across organ systems should
be taken with a grain of salt.

Biomaterial Implants and Inflammation

A series of cellular events rapidly unfold once the bio-
material is implanted into the host system. The process
begins with the adsorption of blood proteins such as albu-
min, immunoglobulin G, and fibrinogen to the biomaterial
surface forming a protein coat before host cells interact with
the biomaterial. It is believed that adsorbed host fibrinogen
triggers histamine release from mast cells to promote the
recruitment of phagocytes to the implant surface and sub-
sequently activates the acute inflammatory response.29 In
addition, the newly formed protein corona activates the
complement system, platelets, coagulation proteins result-
ing in a short-lived matrix/thrombus at the tissue–material

Table 2. Characteristics of Synthetic Biomaterials

Synthetic biomaterials Properties Limitations Cytokines References

Polyglycolic acid High melting point
Very high tensile strength

Rapid degradation
compromises
mechanical strength

Susceptible to
inflammatory response
from increase in
glycolic acid

Hydrolytic instability

IL-1b, IL-6, GM-CSF,
TNF-a

10,13

Polylactic acid Thermoplastic
Manipulatable degradation

rate

Long-term implants IL-6, IL-12/23,
IL-10

10,13,22

Poly-lactic-co-glycolic
acid

Modifiable qualities to meet
specific requirements

Degrades into metabolic
monomers: lactic acid and
glycolic acid

Degradation products may
be a source of
inflammation

TNF-a, IL-6, TGF-b1 13

Polycaprolactone Able to mimic ECM structure
Slow degradation rate

Not effective on its own TNF-a, IL-1b, IL-6 10,13

Polyetheretherketone Thermoplastic
Chemically stable
Elastic
Radiolucent

High stiffness may be
unsuitable for many
applications

TNF-a, IL-1b, IL-6,
IL-4, IFN-g

23

Polyethylene glycol Water soluble
Organic solvents soluble
Nontoxic
Nonimmunogenic
Nonantigenic

Requires cross-linked
groups to create
insoluble structure

10

Polymethyl
methacrylate

Lightweight
Good mechanical properties
Low toxicity
Inert
Slow degradation
Nonbiodegradable

Degradation products has
been a concern for
aseptic loosening

Thermal necrosis

GM-CSF, IL-6, TNF-a,
and MMPs

24,25

MMP, matrix metalloproteinase; TGF-b1, transforming growth factor-b1.
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interface.30,31 This temporary matrix composed of mitogens,
chemoattractants, cytokines, and growth factors mediates
the further recruitment and activation of macrophages and
other immune cells to facilitate inflammatory responses.30

Meanwhile, DAMPs are released by dying cells into the
environment as a result of the surgical/implantation proce-
dure. These DAMPs are recognized by pattern recognition
receptors (PRRs) on macrophages and dendritic cells (DCs)
to further promote inflammation.32

Upon the release of DAMPs and bioactive signals, the
acute inflammatory responses are elicited, which is charac-
terized by the increased recruitment of polymorphonuclear
leukocytes followed by the macrophages. Neutrophils act
as first line of defense against the implantation injury;
however, because of their short life span macrophages are
recruited within 48 h. Hence, these acute inflammatory
episodes are resolved within a week in the absence of
infection.33 In addition, in the presence of persisting inflam-
matory stimuli, the macrophages are recruited to implanta-
tion site by complement factors, platelet-derived growth
factor (PDGF), macrophage chemoattractant protein 1–4,
macrophage inflammatory protein-1a (MIP-1a), MIP-1b,
and transforming growth factor (TGF)-b.34 Because of their
plasticity, macrophages orchestrate the inflammatory re-
sponse by changing their phenotypes in response to the
tissue microenvironment. These macrophages are proinflam-
matory phenotypes and secrete additional proinflammatory
cytokines, such as tumor necrosis factor (TNF)-a, interleu-
kin (IL)-1b, IL-8, MCP-1, and MIP-1b.2

Tissue macrophages are among the first responders to foreign
invasion, including implants. As first responders their function
is to phagocytose the cellular debris and foreign particles,
present antigens to adaptive immune cells, and produce cyto-
kines. Superior plasticity upgrades the macrophages to be the
excellent effector cell; however, challenges do exist to charac-
terize the multiple coexisting phenotypes under pathological
conditions. The term ‘‘classically activated’’ macrophage is
used to refer to effector macrophages in cell-mediated immune
responses. Classically activated macrophages (M1) require
the combination of interferon-g (IFN-g) and TNF signaling to
develop microbicidal or tumoricidal abilities and to secrete
proinflammatory signals.35 M1 macrophages are short lived
because of the transient nature of IFN-g production by natural
killer (NK) cells; however, they can undergo transition to
adaptive immunity by utilizing the sustained production of IFN-
g by the T helper 1 cell that maintains their phenotype.35

Classically activated (M1) macrophages are further character-
ized by the increased levels of inflammatory cytokines such as
IL-1, IL-6, and TNF-a.36

Moreover, the macrophages utilize IL-4 and IL-13 for
their differentiation to the wound healing phenotype (M2).
The IL-4 from mast cells, basophils, and neutrophils pro-
motes the differentiation of naive T cells into Th2 cells,
which are the major source of IL-4, forming a strong posi-
tive feedback loop.35,37 In addition, IL-4 and IL-13-treated
macrophages do not present antigens to T cells, produce
significantly less proinflammatory cytokines than their M1
counterpart, and are less effective at removing intracellular
pathogens with oxygen and nitrogen radicals.35 Instead, the
wound healing macrophages downregulate proinflammatory
pool to facilitate tissue healing through activation of fibro-
blasts to promote tissue remodeling.35,38,39

A third major category of macrophages has been de-
scribed as the regulatory macrophage (Mreg). The predomi-
nant function of Mreg is the production of the inflammatory
signal attenuating IL-10 activity. A battery of differentia-
tion signal for Mreg including PGE2, adenosine, dopa-
mine, histamine, melanocortin, and vasoactive intestinal
peptide has been identified. Furthermore, there has been
evidence of bacterial and viral pathogens exploiting reg-
ulatory macrophages to limit proinflammatory signals to
permit intracellular growth.35,40–42 Hence, the understanding
regarding the macrophage phenotype switch and underlying
regulatory signals highlight the pathological consequence
resulting in impaired regenerative responses after biomaterial
implantation.

Certainly, the plasticity of macrophages paves the way to
immunomodulation and the predominance of a certain
phenotype could be a key determinant of the course of
BSI.38,43 This presentation of macrophages is an oversim-
plification when in reality their phenotype is most adequ-
ately characterized on a spectrum; however, this topic
remains controversial in the literature and requires further
study. Nonetheless, after macrophage activity, the formation
of granulation tissue displays multiple functions in the
wound healing process.32,44 Several cell types are part of the
granulation tissue; endothelial cells to form new blood
vessels for nutrient and leukocyte transport, leukocytes to
clear away contamination, and fibroblasts that make up the
majority of the cells. Fibroblasts secretes neo-ECM at the
damaged site to support the activity of healing elements
including growth factors and cells.44 An overview of mac-
rophage profiles is given in Table 3, the relative concen-
tration of each will determine the host response.

The foreign body reaction is a unique process that occurs
in response to biomaterial implants that is associated with
foreign body giant cells (FBGCs).33 Major observation
regarding the formation of FBGC are the multinucleated
fusion products of macrophages after ‘‘frustrated phagocy-
tosis.’’32,48 The adhesion receptors (aM-, b1-, and b2-
integrins on chemically supportive surfaces) for unfused
monocyte attachment and IL-4 and IL-13 signaling facilitate
the formation of FBGC.38,49–51 Because implanted bioma-
terials are coated with host proteins upon implantation, the
adsorbed proteins on the biomaterial surface is what signals
macrophage fusion. In addition, surface topography of the
biomaterial plays a very significant role in the subsequent
development of inflammation by FBGC formation.34

Veiseh et al. demonstrated that spherical biomaterial that
are 1.5 mm in diameter were more biocompatible than smaller
sized or different-shaped materials, independent of materials
tested and total surface area.52 Among the adsorbed proteins,
vitronectin was superior to encourage the macrophage adhe-
sion and fusion to form FBGC.34,53 Because the FBGC is
associated with entire lifespan of the biomaterial, it is logical
that they confer an evolutionary advantage (that is not yet well
understood) either for their biodegradation or for the macro-
phages to escape apoptosis.34 Regardless, the presence of
FBGC poses a challenge for biocompatibility for implants and
additional strategies are warranting to address FBGC forma-
tion associated with implant rejection.

As a result of the preceding inflammatory reactions, a
fibrous and collagenous capsule forms around the biomate-
rial by PDGF, vascular endothelial growth factor, TGF-b1
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signaling from M2 macrophages, FBGCs, fibroblasts, en-
dothelial cells, and adipocytes.34,54 Matrix metalloprotei-
nases (MMPs) were reported to be active in restructuring the
ECM around the implant, attracting fibroblasts and endo-
thelial cells to secrete collagen resulting in fibrous capsule.34

A fibrous capsule encasing the biomaterial implant prevents
any interaction with the surrounding tissue and rendering it
incapacitated for its purpose.55 In the normal wound healing
process, apoptosis and senescence of myoblasts and fibro-
blasts along with collagen decreasing activity of fibrinolytic
macrophage resolves the fibrous capsule.56,57 However, this
response is absent in the biological response because of the
persisting presence of the biomaterial along with proin-
flammatory and profibrotic signals.34 Hence, the possibili-
ties of operating the sterile inflammatory events in the
vicinity of implant site are higher; however, the concept of
BSI is very novel and warrants further understanding.

Biomaterials-Driven Sterile Inflammation

Biodegradable implants are advantageous as they elimi-
nate the need for additional surgical intervention and the
associated risks in removing the engineered scaffolds once
healing has completed.58 With the goal that the implanted
degradable biomaterial scaffold would facilitate host tissue
healing and eventually be replaced by the host cells, con-
sideration regarding the interaction between host and the
degraded scaffold products are essential. In general, multi-
ple adverse inflammatory phenomenon has been reported in
the literature under the terms such as ‘‘non-specific foreign
body response,’’ ‘‘sterile sinus formation,’’ and ‘‘particle
disease.’’59–62 These reports refer to an inflammatory re-
sponse induced by a biomaterial implant as a result of deg-
radation products of biomaterials. The concept of BSI is novel
and the scientific literature regarding the molecular immu-
nology underlying BSI is largely unavailable.

The major focus of section aims to give insights into
the basic understanding regarding the biology of BSI
by presenting commonly used polymers as representative

biomaterials. However, the chemistry of biomaterials and
the interface biology plays a significant role in the induction
of BSI. We propose that BSI opens a novel research avenue
dealing with the immunobiology of biomaterials implant.

Sterile inflammation has mostly been characterized as a
result of ischemia reperfusion injuries, crystal deposition
diseases, and chronic particle-induced diseases like asbes-
tosis and silicosis.63 The sterile inflammatory responses are
characterized by the absence of microorganisms/pathogens
to trigger an inflammatory response; however, it is instead
initiated by endogenous DAMPs.64 Therefore, the inflam-
mation induced by the long-term implant can be a sterile
inflammation that is considered to be BSI. Of importance,
the inflammation cascades into immune pathology in sterile
inflammation with an imbalance of proinflammatory and
resolution signaling. The major concern with biomaterial
implants has been attributed to their extended residence in
the host system and the persistent release of degradation
products that may be harmful to healthy host cells and/or act
as danger signals to immune cells. Such adverse events not
only create a hostile environment for the damaged tissue but
also sustain chronic inflammation.

The DAMPs that signal sterile inflammation are classified
into two types: (1) signals that are normally contained
within living cells and are released into the microenviron-
ment upon cell death and (2) hidden molecular fragments
that are exposed after ECM fragmentation.65 Three possible
and nonmutually exclusive pathways have been reviewed
for sterile danger signals to trigger inflammation: (1) rec-
ognition by PRR such as TLRs that sense both endogenous
and exogenous signals, (2) through release of intracellular
cytokines such as IL-1 and relevant inflammasome activa-
tion, and (3) through direct activation of receptors that are
normally unrelated to microbial recognition by intracellular
content or ECM structures.66 The mechanisms of BSI is in
accordance with the known sterile inflammatory disease
such as chronic inhalation of asbestos, Alzheimer’s disease,
and atherosclerosis.67 Hence, these existing frameworks has
been under consideration to understand biology of the novel

Table 3. Macrophage Profiles

Macrophage
classification

Surface
marker

Cytokine
production

Activation
signal Functions References

Classically
activated
(M1)

CD80
CCR7
CD68

IL-1, IL-6,
TNF, IL-12,
IL-1b

IFN-g
TNF
LPS

Proinflammatory cytokine
production

Nitrogen and oxygen
intermediates production

Microbicidal or tumoricidal
activity

43,45–47

Wound
healing
(M2)

CD163
CD206

(mannose
receptor)

IL-1ra
Arginase

IL-4
IL-13
TGF-b
VEGF

Tissue architecture
remodeling

Immunoregulation
Limit parasitic activity
Tumor progression

36,46

Regulatory
(Mreg)

CD80
CD86

IL-10
TGF-b

Dopamine
Histamine
Adenosine
Sphingosine 1-phosphate
Melanocortin
Vasoactive intestinal peptide

Immunoregulation 35

Mreg, regulatory macrophage; VEGF, vascular endothelial growth factor.
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BSI paradigm. Table 4 provides an overview of the com-
mon DAMPs and their known stimulus of release. How-
ever, the specific DAMPs that are released by biomaterial
degradation products are still unknown that warrants further
research.

In general, integration of biomaterial implants depends on
the activation and signaling by immune cells and cytokines
released at the site of implantation and much attention has
been given to attenuate the postimplant immune response.
Several strategies have been developed to modify the bio-
material surface using biological cues to improve the immu-
nocompatibility and biological performance. For instance,
the improved regenerative performance was observed in
bioceramics coated with bone ECM calcium-binding pro-
teins exhibiting reduced proinflammatory cytokines pro-
moting accelerated regeneration within a 2-week period.27

Herein, we delineate the onset of BSI by a different mech-
anism centered around the protein corona.

After the exposure/deposition of serum proteins and soluble
mediators at the implant surface, the chemical composition of
the biomaterial contributes less to the inflammatory response
than to the protein corona.80,81 In addition to serum proteins,
endogenous DAMPs that are released as a result of the surgi-
cal trauma also adhere to the biomaterial surface.82,83 The

behavior of the protein coat is predicated on the redistribution
of charged proteins on the surface, structural changes made to
the protein molecule, polarity changes on the protein surface,
and the dehydration status of the biomaterial surface.67,84,85

These variables make it difficult to map out the mechanism of
action for any given biomaterial at an implant site.

In general, prominent proteins found on among the ad-
hered proteins are plasmin, fibrinogen, and fibronectin that
act as ligands for TLR4 pathway in sterile inflamma-
tion.83,86–89 After TLR4 activation, the adapter protein
MyD88 facilitates activation of nuclear factor kappa B
(NF-kB) and MAPKs for the production of inflammatory
cytokines such as TNF-a and IL-6.90,91 Although this model
of pattern recognition is described for the onset of acute
inflammation, to the best of our knowledge, the literature
regarding the fate of the adsorbed protein coat upon bio-
material degradation is rare. However, the possibilities of
the re-release of the adsorbed DAMPs into the local envi-
ronment are greater during the course of biodegradation.
Hence, it is logical that the injectable biomaterial scaffold
elicits minimal BSI warrants extensive research. A hypoth-
esized pathway of DAMP release is given in Figure 1.

The release of DAMPs from the protein corona will lead
to an immune response in the surrounding tissue as any

Table 4. Sterile Inflammation Signals

Molecular pattern Receptor Stimulus of release References

IL-1 IL-1R Necrotic cells
Microbial stimuli

65,68

Uric acid CD14 Necrotic cells via xanthine oxidase 69–71

HMGB1 RAGE
TLR2
TLR4
TLR9
CD24

Cell necrosis
Macrophage
Monocytes
Dendritic cells

66,72,73

Mitochondrial contents TLR9
FPR1
RAGE
NLRP3

Intracellular mediators 74–76

ATP/ADP/adenosine P2X and P2Y receptors 77

S100 RAGE
TLR4

Cell necrosis 78,79

FIG. 1. Proposed BSI pathway: (A) DAMPs released from injured cells from the implant procedure adhere to the
biomaterial surface immediately. Some DAMPs are recognized by immune cells and contribute to the acute inflammation.
Others remain ‘‘dormant’’ owing to their orientation. (B) Chronic inflammation is characterized by the dominant presence
of macrophages that can recognize DAMPs through PRR. Macrophages may also fuse to form FBGC. (C) The degradation
of the biomaterial causes adhered DAMPs to be released into the microenvironment. BSI, biomaterials-driven sterile
inflammation; DAMP, damage-associated molecular pattern; FBGCs, foreign body giant cells; PRR, pattern recognition
receptor. Color images are available online.
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viable cell can respond to DAMPs.92 Of more interest in
recent years is the involvement of mast cells in the immune
response to biomaterials. Mast cells possess an abundance of
receptors, including the five main classes of PRRs that are
likely to be activated by DAMPs: TLRs and C-type lectin
receptors on the membrane, NLRs (nucleotide oligomeri-
zation domain-like receptor) and RLRs (retinoic acid-
inducible gene-I-like receptor) in the cytoplasm, and DNA
sensors.93,94 Tang et al. demonstrated the important role
of mast cells and histamine release in the acute inflamma-
tory response and their role in tissue repair such as bone
healing.95–97 The critical role of mast cells and mast cell
degranulation at the implant surface, and response to DAMP
activation and their prohealing/regenerative effects warrant
further research.

In addition, aseptic loosening in joint replacements is dri-
ven by implant-derived wear debris resulting in progressive
osteolysis mediated by macrophage-driven activation of os-
teoclasts, ultimately leading to loss of implant stability, bone
erosion, and joint instability owing to the destruction of soft
tissue.98 At present, the mechanism underlying the onset of
aseptic loosening is unclear; however, recent/emerging in-
sights into the expanded role of mast cells contributes to
further understanding. In aseptic loosening and other particle-
induced inflammation such as asbestos and silica, the sterile
inflammatory component NLRP3 has been upregulated.99,100

The inflammasome NLRP-3 signals the activation of the
proinflammatory cytokine IL-1b that involves the action of
caspase-1.73 The activation of NLRP-3 signaling is triggered
by reactive oxygen species, lysosomal content leakage, and
alterations in ionic influx/efflux.101 Subsequently, IL-1b re-
cruits additional neutrophils and monocytes to the implant
zone and upregulates other proinflammatory cytokines.

The NLRP-3 activation involves the priming signal that
could be biomaterials-driven DAMPs leading to the in-
flammasome assembly and the proteolytic activation of
pro-IL-1b to IL-1b.102 TNF produced by particle-challenged

macrophages in the implant degrading environment act as
prime signal for NF-kB activation when wear particles were
insufficient to activate NLRP-3.102 Figure 2 shows how
biomaterial debris can contribute to activation of the NLRP3
inflammasome.

HMGB1 is a well-characterized endogenous DAMP re-
leased upon cell damage, shown to be highly expressed and
released by mononuclear cells after surgical trauma into
the serum, leading to elevated IL-6 secretion.103 Normally,
HMGB1 functions in the maintenance of chromatin archi-
tecture and modulation of gene expression.104 HMGB1 is
released from multiple cell types, including monocytes,
macrophages, DCs, NK cells, endothelial cells, and plate-
lets.79 HMGB1 upregulation occur as a result of phagocy-
tosis of apoptotic cells by macrophages, macrophage release
after activation of NLRP3, and in response to proinflam-
matory cytokines.105–107 HMGB1-mediated signaling oper-
ates mainly through TLR4 axis and RAGE axis. In general,
HMGB1/TLR4 axis induces macrophage activation108 and
HMGB1/RAGE activates the ERK MAP kinase pathway for
cell migration and expression of MMPs.79

In a seminal study, HMGB1 was detected at higher levels
in animals that received a poly lactide-co-glycolide acid
(PLGA) scaffold implant compared with naive controls,109

suggesting that HMGB1 is released by necrotic cells in re-
sponse to the implant. In our recent study on mitochondrial
DAMPs, the HMGB1 mitochondria homolog, mitochondrial
transcription factor A (mt-TFA), caused a similar immune
response as HMGB1 that ultimately lead to vein graft fi-
brosis and failure.64 Although these agents have been
widely acknowledged to be a part of sterile inflammatory
pathways, their release and activation upon biomaterials
implantation are largely unknown and warrants further in-
vestigation.46,110

Molecular fragments of the ECM serve as danger signals
in sterile inflammation. MMPs degrade structural compo-
nents of the ECM to produce changes in cell behavior and

FIG. 2. Release of IL-1b
and IL-18 by NLRP3 in-
flammasome activation: The
production of mature IL-1b
and IL-18 requires two sig-
nals. Signal 1: biomaterial
degradation products cause
local cell necrosis leading to
the release of DAMPs. Re-
cognition of DAMPs by TLR
eventually leads to NF-kB-
induced transcription of pro-
IL-1b and pro-IL-18.
Signal 2: Endocytosis of
crystals has been shown to
activate NLRP3 inflamma-
some pathway. We speculate
that endocytosis of biomate-
rial debris can lead to similar
activation. NF-kB, nuclear
factor kappa B. Color images
are available online.
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are actively secreted by biomaterial adherent macrophages
and FBGCs. The profile of MMPs and tissue inhibitors of
matrix metalloproteinases (TIMPs) is largely determined by
the chemistry of the biomaterial, although the mechanisms
are still unknown.111 It is possible that in biomaterial deg-
radation, changes in material chemistry overtime leads to a
differential MMP/TIMP profile that may be challenging to
predict and warrants extensive research.

Biodegradation and BSI

Understanding of the biomaterial degradation may be
helpful to determine the initiation of BSI. The processes
of biomaterial degradation includes photodegradation, hy-
drolytic, thermal, oxidative, mechanical, and biodegrada-
tion.58,112 Naturally, biodegradation is complicated by the
presence of blood, interstitial fluids, the diverse cell types,
and the location of the implant. In addition, the chemical
profile of degradation products by hydrolysis or enzymatic
digestion are more challenging to predict because their
mechanistic interactions are largely unknown.113 This sec-
tion attempts to create a model for the onset of BSI using the
reported findings from the commonly studied homopoly-
mers and copolymers of lactic and glycolic acid (polylactic
acid [PLA], PGA, and PLGA) as model biomaterials by
reviewing their degradative components and the presence of
inflammatory cells and cytokine profile in situ.

PGA is a polyester that has been successful in a versatile
of biomedical applications including tissue engineering as
scaffolds.114–117 The degradation profile of PGA is similar
in vivo and in vitro; however, the rate of degradation var-
ies.118 PGA degrades initially to glycolide molecules, fol-
lowed by glyoxylic acid, and finally to glycine, which is a
standard amino acid.119 Although the temporal and spatial
degradation of PGA implants were uniform in an in vivo
study in rabbits, it was found that the tissue response was
inconsistent.119 For instance, for orthopedic implants of
PGA, there is a 5% incidence of a local foreign body re-
action during the final stage of in vivo degradation. The
clinical symptoms range from a painful erythematous papule
to development of extensive osteolytic lesions.61,120 The
FBGC were reported to be the dominant cell type from 3 to
6 weeks of implantation that was then overshadowed by
macrophages at week 12.121 Furthermore, the giant cells pre-
dominantly operated on the surface of the implant, whereas
the macrophages were found within the interstices.121

The degradation time of PLA is significantly longer than
PGA121 because of its higher resistance to hydrolytic attack,
making PLA an ideal choice for biomedical applications.58

Upon degradation, PLA releases lactic acid (LA) into the
local environment. The local concentration of LA is mini-
mal initially, which gradually increases to significant
amounts as PLA is broken down into small oligomers. The
increases in LA concentration results in the drop in pH and
can lead to inflammation or tissue necrosis.122 PLGA is
derived from the racemic mixture of PLA and PGA. PLGA
exhibits a heterogeneous degradation pattern initiated with
autocatalysis and the carboxylic acid monomers released
from degradation reduces pH and further induces hydrolytic
degradation.122 This is seen in the in vivo hydrolysis of
PLGA microspheres in drug delivery applications where the
lower internal pH leads to denaturation of the encapsulated

proteins.123 PLGA erosion is facilitated by the uptake of
water resulting in hydrolysis and leads to the formation of
acidic oligomeric fragments.124 Zolnik et al. demonstrated
that the topographic changes occurring in PLGA-based
biomaterials at physiologic pH (7.4) initiates the surface
erosion, followed by agglomeration, and finally forming a
large block polymer fragment.

At present, limited information is available regarding the
immune cell interaction with biomaterial-degraded products.
A recent study demonstrated that DCs interact with bioma-
terials and the degradation products through TLRs (mainly
TLR4, TLR2, and TLR6).125 Of interest, the silencing of
TLR4 on DCs greatly reduced expression of IL-1b, IL-6, IL-
10, IL-12p40, RANTES, and TNF-a.125 In addition, the
polydopamine degradation products suppressed inflamma-
tion of macrophages by downregulating TLR-4-MyD88-NF-
kB pathway.126 These studies suggest the potential of bio-
material degradation products to elicit a chronic immune
response. A further understanding is required to advance
implant design and possibly serve as a therapeutic target.

In a study of cell viability in response to the acidic deg-
radation products of PLGA and PCL (poly e-caprolactone),
mouse aortic smooth muscle cells were observed to respond
more poorly in relation to the faster degradation rate of
PLGA in vitro.127 Furthermore, the in vivo study showed
that PCL exhibited significantly higher levels of inflamma-
tion, correlating to its higher degree of angiogenesis ob-
served.127 It is speculated that the acidic environment
functions as an impediment to cellular migration, including
inflammatory cells. Although establishment of new vascu-
lature is necessary for cell recruitment for tissue healing,
inflammatory cells are also able to use these channels to
form undesirable inflammation. The detailed mechanism of
how pH affects immune cell function and biomaterial–tissue
interface remains to be studied.

Translational Significance

We believe that the deciphering the knowledge regarding
BSI biology paves the way for novel strategies in the de-
velopment of compatible biomaterial implants. Under-
standing the mechanisms underlying DAMP release and
inflammasome activation further advances the design of
biomaterial implants. A better understanding of BSI first
involves characterizing the degradation chemistry of bio-
materials and the interface biology in vivo. This requires
observation of chemical breakdown of biomaterials in ani-
mal models, specifically the identity/composition of degra-
dation products and its effect on the tissue environment.
Moreover, those degradation products warrant to be corre-
lated with specific DAMP molecules, whether through cell
necrosis, ECM breakdown, and/or direct interaction with
cells. Hence, intervention steps such as incorporating sterile
inflammation inhibitors with the scaffold, chemical/biological
tuning of biomaterials, and altering the implantation pro-
cedure need to be adopted for addressing the BSI-driven
adverse immune reactions after biomaterials implantation.

This will be a steppingstone in developing treatment for
patients suffering from BSI and prevent BSI in future patients,
ultimately leading to the design of effective biomaterial-based
therapeutics. With its wide array (drug delivery, tissue grafts,
implants, and scaffolds) of clinical applications, advancement
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in the implant design improves the quality of treatment for
many patients. Hence, the concepts of BSI provide a novel
framework to consider biocompatibility for the safer appli-
cations of biomaterial implants.

Summary and Future

This review highlights the need for further studies on the
events of long-term implant failure. Current reviews are very
rare making the characterization of BSI difficult and specu-
lative. Much of the research available are focused on the
initial biocompatibility of the implant and the characteriza-
tion of the immune response and thus little attention has been
given to biodegradable implants requiring extended residence
in the host. Numerous potential studies are required for the
full characterization of BSI requiring the collaboration of the
scientific community. Further research on the degradation
products of biomaterials in vivo would reveal novel danger
signals for the onset of BSI. The complex environment in a
living host necessitates in vivo observations, particularly the
fate of the initially adsorbed protein layer containing DAMPs
upon biomaterial degradation.

Studies including cytokine profile in BSI would reveal the
key mediators triggering the immune responses through im-
mune cells primed by BSI signals. Understanding regarding
the molecular signaling underlying the BSI-mediated immune
responses and identifying the biomaterials derived/triggered
priming signals possesses immense translational potential in
next-generation tissue engineering; however, it warrants fur-
ther investigations. In addition, it is logical that the chemistry
of biomaterials and initial interface biological reactions are
crucial for immunocompatibility of tissue engineering im-
plants. Hence, the development of tunable and intelligent
biomaterials capable of sensing the BSI that subsequently
respond by favoring/activating immunocompatible signaling
is warranted. Moreover, effective strategies for taming the BSI
need to be discovered, which provide opportunity for the
design and fabrication of BSI-free/BSI-resistant biomaterials
for improving the immunocompatibility. Altogether, unveiling
the mystery of BSI opens novel avenues for improving the
compatibility and biological performance of tissue engineer-
ing biomaterials.
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