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Abstract

Despite the value of recombinant inbred lines for the dissection of complex traits, large panels can be difficult to maintain, distribute, and
phenotype. An attractive alternative to recombinant inbred lines for many traits leverages selecting phenotypically extreme individuals
from a segregating population, and subjecting pools of selected and control individuals to sequencing. Under a bulked or extreme segre-
gant analysis paradigm, genomic regions contributing to trait variation are revealed as frequency differences between pools. Here, we de-
scribe such an extreme quantitative trait locus, or extreme quantitative trait loci, mapping strategy that builds on an existing multiparental
population, the Drosophila Synthetic Population Resource, and involves phenotyping and genotyping a population derived by mixing hun-
dreds of Drosophila Synthetic Population Resource recombinant inbred lines. Simulations demonstrate that challenging, yet experimentally
tractable extreme quantitative trait loci designs (�4 replicates, �5,000 individuals/replicate, and selecting the 5–10% most extreme ani-
mals) yield at least the same power as traditional recombinant inbred line-based quantitative trait loci mapping and can localize variants
with sub-centimorgan resolution. We empirically demonstrate the effectiveness of the approach using a 4-fold replicated extreme quantita-
tive trait loci experiment that identifies 7 quantitative trait loci for caffeine resistance. Two mapped extreme quantitative trait loci factors
replicate loci previously identified in recombinant inbred lines, 6/7 are associated with excellent candidate genes, and RNAi knock-downs
support the involvement of 4 genes in the genetic control of trait variation. For many traits of interest to drosophilists, a bulked phenotyp-
ing/genotyping extreme quantitative trait loci design has considerable advantages.
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Introduction
There has been tremendous progress in understanding the
genetic underpinnings of complex, polygenic trait variation in the
last 20–30 years. This has been particularly true for complex hu-
man disease (Visscher et al. 2017), where the pioneering work of
the Wellcome Trust Case-Control Consortium (Wellcome Trust
Case Control Consortium 2007) led to an ever expanding catalog
of thousands of replicable genome-wide association study
(GWAS) hits for a wide spectrum of human disorders and
disease-relevant traits (Buniello et al. 2019). Equally, the effi-
ciency and power of studies dissecting complex trait variation in
animal and plant systems have been enhanced by inexpensive,
sequencing-based genotyping solutions (e.g. Davies et al. 2016),
and an array of readily available genetic mapping populations
(e.g. Kover et al. 2009; Aylor et al. 2011; Svenson et al. 2012; King
et al. 2012b; Baud et al. 2013; Huang et al. 2014; Noble et al. 2021).

Whereas GWAS is the dominant mapping paradigm in humans,
the experimental flexibility of animal and plant systems—particu-
larly, the traditional “model systems” (e.g. Drosophila melanogaster,

Caenorhabditis elegans, mice)—has facilitated the development of an
array of mapping approaches with varied strengths and weak-
nesses. GWAS-based methods, such as the Drosophila Genetic
Reference Panel (DGRP; Huang et al. 2014), a set of 200 inbred lines
derived from wild-caught flies, can have high power to identify
intermediate-frequency loci of large effect (e.g. Magwire et al. 2012),
and fine mapping resolution since they leverage the extensive an-
cestral recombination experienced by the sampled population. But
as with all GWAS approaches such methods will struggle when
functional alleles are rare (Pritchard 2001; Spencer et al. 2009;
Thornton et al. 2013), or variant effects are low (Long et al. 2014;
Mackay and Huang 2018). Other strategies in experimental plants
and animals use multiparental populations (MPPs), collections of
recombinant individuals, or inbred lines derived from intercrossing
a modest number of founding genotypes for several generations.
One example of a D. melanogaster MPP is the Drosophila Synthetic
Population Resource (DSPR; King et al. 2012a, 2012b), which consists
of 2 sets of RILs, each derived from an independent set of 8 founding
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inbred strains. MPP-based methods sample less population diversity
than GWAS designs, yet can have high quantitative trait loci (QTL)
mapping power (King et al. 2012a; Gatti et al. 2014; Keele et al.
2019). This is true even when causative variants are rare in the pop-
ulation, since those captured in the founders are present at higher
frequency in the mapping panel. In addition, the design and analy-
sis of MPPs explicitly enables the detection of loci segregating for
multiple functional alleles (Long et al. 2014); when directly assessed,
such allelic heterogeneity appears to be common for complex traits
(King et al. 2014; Hormozdiari et al. 2017).

Despite the range of tools available, a complete empirical pic-
ture of the genetic basis of complex traits is lacking. One practical
barrier to the use of available mapping panels in the D. mela-
nogaster system is that power is a strong function of sample size,
so several hundred strains must be maintained, and multiple
individuals must be phenotyped from each strain. Methods that
mitigate some of the burden of phenotyping can be enabling.

One attractive alternative to depending on inbred lines is to
employ a mapping approach that leverages a bulked phenotyping

strategy (Fig. 1). Such methods are clearly inspired by the bulked
segregant mapping approaches widely used in plant and insect
genetics (Michelmore et al. 1991; Martin et al. 2012; Zou et al.
2016) and are akin to the extreme QTL (X-QTL) approach used by
yeast geneticists (Ehrenreich et al. 2010). These approaches entail
creating a large “base” population of recombinant individuals
and subjecting a sample to a bulked phenotyping regime that
selects the top (say) 5–10% of individuals. The selection step
enriches for haplotypes that harbor phenotype-increasing alleles
closely linked to a causative gene. Haplotype frequencies are
then estimated in pooled DNA samples obtained from the base
and selected populations, and at sliding windows throughout the
genome, a statistical test identifies regions showing significant
divergence between the populations. In contrast to mapping us-
ing an individual- or RIL-based strategy, where single individuals
or sets of genetically identical individuals are phenotyped, an
X-QTL approach is attractive for several reasons. First, an investi-
gator need only handle/maintain/track a single population as op-
posed to several hundred separate RILs. Second, deriving a

Fig. 1. Overview of the DSPR X-QTL approach. A segregating base population is created by mixing a series of DSPR RILs. For each of several replicates
(Nrep), a set of NDNA individuals are randomly sampled from the base population (control pool), along with a set of NDNA phenotypically extreme
individuals (selected pool) in—for instance—the top 5% of the phenotype distribution (i). Following DNA extraction, each pool is sequenced to �30�
coverage, and haplotypes are estimated in windows through the genome. Haplotype frequencies are then compared between paired control and
selected pools, and QTL are evident as significant differences in frequency.
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selected population has the potential to be straightforward, espe-
cially for traits that “phenotype themselves,” such as survival or
preference traits. Third, phenotyped individuals are outbred dip-
loids raised in a common garden environment, so any effects of
inbreeding depression are alleviated, and batch/vial effects are
mitigated. Fourth, the sequencing effort required to accurately
estimate haplotype frequencies from pooled samples initiated via
a small number of founders, perhaps counter-intuitively, is mod-
est and explored in this work.

Here, we consider an X-QTL experiment utilizing the set of
DSPR RILs (King et al. 2012b). Our design consists of intercross-
ing several hundred RILs (NRIL) to create a base population,
expanding this population for several generations to both grow
the total number of flies available for testing, and further re-
combine the RILs utilized (Fig. 1). We then impose a selective re-
gime on the base population, select for the i% most extreme
individuals, obtain pooled DNA preps (of size NDNA individuals)
from both the base and selected samples, sequence, and repeat
the entire experiment Nrep times. Based on the observed fre-
quencies of SNPs throughout the genome, and the known
sequence of the 8 highly characterized inbred DSPR founders
(King et al. 2012b; Chakraborty et al. 2019), a vector of 8 haplo-
type frequencies can be estimated at locations throughout the
genome for each pooled sample. Finally, at those same loca-
tions we carry out a statistical test for differentiation in those
haplotype frequencies between the selected and control popu-
lations. Loci associated with large values of the test statistic in-
dicate the presence of a QTL. The X-QTL strategy we propose
here is analogous to earlier work (Ehrenreich et al. 2010; Huang
et al. 2012; Burga et al. 2019) but differs in having multiple
founder alleles segregating in the base population, and in estab-
lishing the base from RILs derived from an advanced generation
intercross to obtain higher mapping resolution. Below we ex-
plore—in theory and in practice—the utility of this approach
relative to typical RIL-based mapping as a function of achiev-
able experimental designs.

Materials and methods
The Drosophila Synthetic Population Resource
The DSPR consists of a series of RILs derived from a pair of ad-
vanced generation synthetic, recombinant populations (popula-
tions A and B, or pA and pB), each of which was founded by a set
of 8 highly inbred founder strains (King et al. 2012b; Chakraborty
et al. 2019). The synthetic populations were each maintained as
duplicate subpopulations (pA1, pA2, pB1, pB2) at large census
size for 50 generations of free recombination, after which RILs
were derived with 25 generations of strict brother-sister mating.
The collection of RILs is highly inbred. Only an estimated 1–2% of
the genome, primarily in difficult to homogenize and character-
ize centromeric regions, is segregating in any given RIL (King
et al. 2012b).

Power and false positive rates
To assess the power of the X-QTL approach, in comparison with
RIL-based mapping using the DSPR, we simulated the distribution
of �log10(P) scores for a complex trait with 50% heritability, 2%
heritability due to a focal gene, and variation at this gene due to 8
equally frequent founder haplotypes with additive Gaussian ge-
notypic effects. These assumptions are reasonable since QTL
exhibiting >2% heritability are commonly observed in RIL-based
QTL mapping studies employing the DSPR (see for instance

Najarro et al. 2015; Everman et al. 2019). Beavis effects are subtle
for large experiments (Beavis et al. 1991; Beavis 1994; King and
Long 2017), and QTL mapped in the DSPR often appear to exhibit
an allelic series (King et al. 2014). Changing the trait heritability
while holding the heritability of the focal gene constant should
not impact the power of the X-QTL approach. But for RIL-based
mapping, replicate phenotypic measures for each strain will in-
crease power, since the ratio of environmental to genetic varia-
tion is decreased. To estimate power at a marker located in a
single focal QTL, we need only simulate the QTL itself and can ig-
nore any flanking information. To efficiently calculate the distri-
bution of �log10(P) values for a range of experimental designs, for
these power simulations we only track and test genotypes at the
causative gene and assume all 8 haplotypes are equally frequent.

To simulate an RIL-based experiment, for each of 1,000 repli-
cates we simulate a 500 RIL mapping experiment, obtain 10 phe-
notype measures per RIL, and derive genome-wide P-values via
one-way ANOVAs with founder allele as a factor and mean phe-
notype as a response variable. To simulate the X-QTL experiment
we create 4, 8, or 12 large replicate (Nrep) diploid base populations
by mixing the above 500 RILs, instantaneously expand the popu-
lation, and then choose the 5% or 10% most phenotypically ex-
treme individuals from each replicate population to create
selected pools. Instantaneous expansion implies no recombina-
tion occurs during the expansion of the base population (recom-
bination is not relevant as we only consider tests at the causative
site), nor does sampling variation change the frequency of QTL
alleles. These assumptions are relaxed below where we explore
QTL localization for a smaller number of replicates and a more
modest set of parameter combinations. For each replicate we
randomly choose 150, 300, or 600 diploid individuals from the se-
lected pool, and an equivalent number from the expanded base
population to create a control pool [control vs selected ¼ treat-
ment (trt)]. The parameter combinations explored were chosen to
encompass a series of experimental designs that could realisti-
cally be carried out. The 8 known founder haplotype (h) arcsine
square-root transformed frequencies (asf) at each position are
tested for differentiation between control and selected pools us-
ing an ANOVA (i.e. asf�h*trt, with h:trt tested using replicate:h:trt
as an error term). Minus log base 10 P-values, �log10(P), associ-
ated with the X-QTL- and RIL-based statistical tests are
compared.

We repeated the entire set of power simulations with a QTL
explaining zero percentage of phenotypic variation to derive a
distribution of test statistics under the null hypothesis of no QTL
being located at the marker. For each parameter set, we calculate
the per chromosome false positive rate (FPR) as the proportion of
scans out of 250 pure replicates in which a single marker has a
�log10(P) score of greater than 4. Similarly, we calculate the ge-
nome-wide false positive rate as gFPR ¼ 1�(1 � FPR)5, since our
test chromosome 3L is roughly 1/5th of the D. melanogaster ge-
nome. At a �log10(P) threshold of 4, the gFPR is 7.1% (i.e. 7.1% of
all genome scans will result in a single interval with a �log10(P) >
4). But the false positive rate is a subtle function of the manipu-
lated parameters, with the number of flies contributing to a DNA
pool having a measurable impact on the gFPR. Conditioning on
effective pools of 300 or 600 flies, mimicking census sizes of per-
haps 500 or 1,000 (discussed below), results in an gFPR of 3.9%.
Thus, a �log10(P) score of 4 seems to be an appropriate threshold
over a much of our recommended parameter space, but it is im-
portant to note that smaller pools may result in a slightly liberal
false positive rate.
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Localization
The power simulations above that only consider a causative
marker locus are efficient and can explore a large parameter
space but lack the necessary realism to explore localization. We
thus carried out additional simulations with fewer replicates and
a reduced parameter space where we tracked entire chromosome
3L haplotypes. The chromosome 3L haplotypes used to initiate
the simulated base populations were sampled from the actual
chromosome-wide DSPR RIL genotypes (King et al. 2012b), and
thus, realistically model founder haplotype frequencies and pat-
terns of linkage in experimental DSPR-derived mixed popula-
tions. We sampled (NRIL) 200, 400, 600, or 800 DSPR pA RILs
(http://www.flyrils.org), extracting haplotype probabilities every
200 kb along chromosome 3L. At each location haplotype, calls
are represented by 8 additive dose probabilities (i.e. the vector
sums to 1), but here we more simply define the founder haplo-
type at each position in each RIL as the largest of the 8 dosage
calls. Since doses are typically near 0 or 1 (King et al. 2012b),
switching from “soft” to “hard” calls does not discard a great deal
of information while greatly speeding up simulations. Sampling
only every 200 kb (as opposed to the native 10-kb marker spacing
in the DSPR) makes the simulation machinery 20�more efficient,
and since adjacent test statistics are often correlated at sub-cM
sampling densities, there is no great need to sample at a higher
marker density for much of the parameter space we explore (see
Supplementary Fig. 2a). We simulated a Gaussian QTL in the
middle of the chromosome contributing 2% to heritable variation.
In addition, we placed additive Gaussian polygenic “background”
loci of equal variance at each of the 200 marker locations such
that the total background variance was 8%, and environmental
variation was set equal to 90% (Ve in this manner includes genetic
variation due to the remainder of the genome as well as variance
due purely to the environment). Unlike for power calculations
(above), after expansion of the base population to 20 thousand
individuals, we allow 4, 8, or 16 generations of random mating,
with exactly 1 recombination event per female chromosome per
generation to mimic recombination events occurring during pop-
ulation expansion.

For each starting number of RILs (NRIL), we simulated the
proportion of individuals selected—the intensity—as 5%, 10%,
and 20% (i) and randomly sampled 2 sets of 150, 300, or 600
individuals (NDNA) from a set of 20,000 simulated individuals
(i.e. a mock treatment vs control) to “make DNA.” Errors in the
haplotype estimator and/or differences in the number of DNA
molecules per individual that make their way into the Illumina
sequencing library are likely to reduce the number of individu-
als being tested. Thus, we consider the simulated values of
NDNA to reflect the idea of an effective sample size that is lower
than the actual number of individuals that would be used in an
experiment. We guess, without evidence, that NDNA values of
150/300/600 perhaps represent census sizes of 250/500/1,000.
The concept of an effective sample size smaller than the cen-
sus size will reduce both the power and localization ability of
the X-QTL approach and is thus a conservative assumption.
We repeated the simulation 4, 8, or 12 times for each parame-
ter combination mimicking an experiment replicated to differ-
ent levels, with each experiment producing the same �log10(P)
as the power calculations described above. We estimated local-
ization ability in kilobases as the number of markers within a 3
�log10(P) drop of the most-significant marker (MSM) in a scan,
conditional on the MSM being greater than 4, multiplied by 200
(since markers are spaced every 200 kb).

False positives due to polygenic background
In the simulation described above, for some “high power” param-
eter combinations, we further examined the distribution of
�log10(P) scores at markers greater than 7 Mb from the causative
site. Elevated �log10(P) scores at such loosely linked sites likely
reflect signal due to linkage disequilibrium between founder hap-
lotypes at the locus and chromosome-wide polygenic scores. In
the results below, we show that this is a weak force, provided
there are a few generations of recombination during establish-
ment of the base population.

Higher-resolution localization
For some of the above parameter combinations, the localization
ability was approaching the marker density of one every 200 kb.
As a result we repeated the localization experiment for a subset
of the parameter combinations, but changed the marker density
to one every 10 kb, and only examined the middle third of chro-
mosome 3L. We further only considered 4 generations of random
mating following derivation of the base population. These
changes held the considerable computation effort roughly con-
stant allowing us to more precisely examine localization ability.
For each set of experimental design parameters (i.e. NRIL, NDNA, i,
Nrep) we estimated the localization ability in kilobases as 10 times
the number of markers (since markers are spaced every 10 kb)
within a 2 or 3 �log10(P) drop of the MSM in a scan, conditional on
the MSM being greater than 4. This served as a benchmark for
the idea that a 2 or 3 �log10(P) drop from the MSM includes the
QTL 95% of the time (analogous to the 2-LOD drop widely used in
interval QTL mapping). Next, we carried out ANOVAs on the aver-
age interval size as a function of the parameters we varied (NRIL, i,
NDNA, Nrep), and included the average �log10(P) score per parame-
ter combination as a covariate to identify factors that impact
localization ability.

Development of a mixed DSPR population
To create an experimental mixed population of RILs, we manu-
ally collected 10 eggs from each of 663 pA RILs (365 from subpop-
ulation pA1, 298 from subpopulation pA2), placing �400 eggs into
each of a series of Drosophila stock bottles (6 oz; ThermoFisher,
AS355) containing �50ml of cornmeal-yeast-molasses medium.
All bottles were placed inside a 1 cubic foot (12 in. � 12 in. � 12
in.) population cage, and approximately every 2 weeks old bottles
were removed from the cage and replaced with 9–12 fresh bottles.
The first cage generation had a maximum of 6,630 animals, and
anecdotally the density of flies in the cage did not markedly vary,
and stayed very high, through the experiments described below.

Rearing and collecting experimental animals
Four replicates of the experiment were carried out, following 1
(replicate A), 3 (rep. B), 4 (rep. C) and 5 (rep. D) generations of pop-
ulation cage maintenance. In each case we followed the same ba-
sic procedure outlined below (also see Supplementary Table 1).

We placed 5–7 apple juice agar dishes (Supplementary Text
1) supplemented with a small quantity of live yeast paste
(Supplementary Text 1) into the population cage for several
hours. Afterward, any yeast paste was removed from the sur-
face of the agar, the dishes were filled with 1� phosphate-buff-
ered saline (PBS), and a paintbrush was used to dislodge the eggs
from the surface. Subsequently, the egg suspension from all
plates was poured into a 50-ml tube and the eggs allowed to fall
to the bottom. The majority of the PBS was poured off and
replaced 2–3 times until the PBS was relatively clear and free of
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debris. Subsequently, a standard 100-ll pipettor was set to 12 ll,
and a wide-bore tip used to move aliquots of the egg suspension
to rearing vials (narrow, polystyrene; ThermoFisher, AS515) con-
taining �10 ml of cornmeal-yeast-molasses media
(Supplementary Text 1). (Pipetting very aggressively ensures
that eggs are moved along with PBS.) For each replicate, we col-
lected eggs over 2 consecutive days to generate a sufficient
number of vials/experimental females. While we do not know
the exact number of eggs per vial, the level of larval activity
across vials was visually consistent, and in a sample of 10 rear-
ing vials for which all emerging females were counted, the num-
ber of adult females averaged �70 per vial.

Following development, and 2 days after the first evidence of
adults, all flies from each rearing vial were tipped to a mixed-sex
housing vial. Given the density of flies in these vials they were
placed on their side. Two days later, experimental female flies
were manually collected over CO2 anesthesia and sorted into
single-sex housing vials in groups of 19–30.

Caffeine resistance assay
The assay used largely replicated that employed previously to
identify QTL in the set of inbred DSPR RILs (Najarro et al. 2015).
For each of the 4 replicates (A, B, C, and D), we carried out the fol-
lowing procedure.

The day prior to the initiation of the experiment we generated
assay media (Supplementary Text 1), cooled 1 l to �55�C, and
thoroughly mixed in 10 g of caffeine (SigmaAldrich, C0750)
achieving a final caffeine concentration of 1%. Media was then
poured into a series of 100-mm Petri dishes and allowed to cool.
Subsequently, bundles of polycarbonate Drosophila activity moni-
tor tubes (5-mm diameter � 65-mm length; TriKinetics, PPT5x65)
were filled to �10-mm height with solidified media by pressing
them into the media surface, wiped clean, and then sealed by
plunging the tubes individually into molten paraffin wax.

On the day of the experiment, 3–5-day-old females (N¼ 2,337–
2,572 per replicate) were moved from single-sex housing vials
and loaded into monitor tubes and tubes were capped with small
foam plugs cut from Droso-Plugs (Genesee Scientific, 59-200).
Rather placing the monitor tubes into an automated monitoring
system (Najarro et al. 2015), tubes were placed on their side along
the base of a series of cardboard/plastic narrow fly vial trays
(Genesee Scientific, 32-124 or 59-163B), with �160 tubes per tray.
Starting the day following setup, the tubes were surveyed for
dead animals twice each day and dead animals were counted
and removed.

For the first replicate (replicate A), 43% of the animals were
loaded into monitor tubes via manual, oral aspirators, while 57%
were loaded via an automated instrument (FlySorter). By segre-
gating tubes into different trays based on loading method, we no-
ticed that automatically loaded animals had lower lifespan on
average (Supplementary Fig. 6). Since we selected the most resis-
tant animals on a tray-by-tray basis (see below), the impact of
the loading method may be limited (indeed, dropping replicate A
from the final X-QTL analysis has little effect over dropping repli-
cate B—Supplementary Fig. 4). However, for all 3 later replicates
(replicates B, C, and D), we solely loaded flies by manual
aspiration.

Collection of pools of control and caffeine-
resistant animals
For each replicate, we collected 250 “control” females from the
set of single-sex housing vials by randomly selecting 25 vials,

aspirating 10 females per vial into a 15-ml tube on ice, and then
freezing the tube at �20�C to await DNA isolation.

Ideally the pool of “selected” females for each replicate would
be the 250 females surviving the longest under caffeine condi-
tions. This was not possible for 2 reasons. First, we intermittently
monitored the number of dead animals and had to judge the ap-
propriate time to collect the final set of females to avoid collect-
ing many more, or many fewer, than the 250 desired. Second, the
exposure cannot start for all experimental females at the same
time; with 2–3 investigators it took 6–9 h to load all females into
tubes. Since our target was the 250 most resistant animals (i.e.
10% of the starting sample), and since tubes were sequentially
arrayed out into trays at �160/tray, we targeted the collection of
�16 females per tray. The mortality trajectory of each tray was
fairly consistent (Supplementary Fig. 6), aside from trays of flies
that were automatically loaded (see above). When we reached
the target number of live flies per tray (subject to the intermittent
monitoring constraint noted), those monitor tubes were frozen at
�20�C, and subsequently, all selected flies were pooled into a sin-
gle 15-ml tube and refrozen at �20�C. We collected 228–254
females per selected pool (9.0–10.3% of the starting set of flies).

DNA isolation
DNA was isolated from each of the 8 samples of flies using an ad-
aptation of the Gentra Puregene Cell Kit protocol (Qiagen,
158767). Briefly, each pool of flies was homogenized via glass
beads in 1� PBS and subjected to several strokes of a dounce ho-
mogenizer. Then, a small amount of the homogenate was taken
forward through cell lysis, protein precipitation, an RNase step,
and DNA precipitation and resuspension (see Supplementary
Text 2 for more details). DNA integrity was confirmed by running
a small amount of each sample on a 1.5% agarose gel, and DNA
was quantified using a fluorometer (Qubit dsDNA BR Assay Kit,
ThermoFisher, Q32853).

Library preparation and sequencing
Each DNA sample was diluted, and a 50-ll aliquot containing be-
tween 832 and 841 ng was provide to the KU Genome Sequencing
Core for library construction using the NEBNext Ultra II DNA
Library Prep Kit (NEB, E7645L), incorporating unique dual-
indexing (NEB, E6440S). Final library fragment sizes ranged from
303 to 327 bp (Agilent TapeStation 2200), and the genomic DNA-
derived library insert sizes are expected to be around 200 bp.
Libraries were pooled at equal concentrations and sequenced
with PE101 reads on a single S4 lane of an Illumina NovaSeq 6000
(UC Irvine Genomics High-Throughput Facility). We further esti-
mated average insert sizes from the alignment files (using sam-
tools stats) at 197–221 bp over libraries. Given the average insert
sizes relative to read lengths, the F and R reads overlapped for a
large fraction of read pairs. This is not a problem for bcftools mpi-
leup, but in future work, we plan to increase the library fragment
size to greater than 500 bp, as fewer reads from a larger insert
library should provide the same information.

Haplotype estimation from experimental
sequencing data
Haplotypes are estimated using slight modifications to published
software (Linder et al. 2020). In short, we use bwa-mem (Li 2013) to
generate a BAM file for each sequenced pooled sample, and for
each of the highly inbred founder lines from which the pA DSPR
population was derived (King et al. 2012b). We then use bcftools
mpileup and bcftools call (Li 2011; bcftools version 1.9) to gen-
erate a file that reports REF and ALT counts at all SNPs. Finally,
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we employ bcftools query, along with a custom perl script, to
output the frequency of the REF allele in each sample for the set
of SNPs that are not polymorphic within any given founder
strain.

For each pooled sample, for a window size of 200 kb and a step
size of 10 kb, we use the limSolve R library (Soetaert et al. 2009)
to estimate the optimal vector of 8 founder haplotype frequencies
(f) that minimizes the sum of the squares between observed allele
frequencies and predicted allele frequencies. In other words, for
each window Y ¼ Xf, where Y is the vector of allele frequencies in
the pool, and X is an F column matrix (largely 0 vs 1) of genotypes
associated with the F founders. The limSolve library allows us to
constrain solutions to those whose frequencies sum to one, and
where each frequency is >0.0003 (this small mass for every
founder avoids convergence issues). For any given window, the
number of SNP positions is large and dropping subsets of SNPs
does not impact the estimator very strongly. The script to do this
is described more fully in prior work (Linder et al. 2020) and is on
GitHub.

Establishing the level of error in haplotype
estimation
We created a pseudo-pool with an average sequencing coverage
of 240� by combining an equal number of reads from the repli-
cate A and B caffeine experiment control pools (NDNA ¼ 250 in
each case). Using this high coverage data, we estimated allele fre-
quencies at a genome-wide set of SNPs each private to a single
founder. We then down-sampled the number of reads in the pool
to more modest coverage (70�, 35�, 17�) and ran our haplotype
frequency estimator. The frequency of a private SNP at 240� cov-
erage and the frequency of the founder harboring that private
SNP at the window nearest the SNP location are estimators of the
frequency of that founder in the sample. We calculated the mean
square difference between the 2 estimators as a function of cov-
erage as: 0.000708 (full 240� coverage), 0.000711 (70�), 0.000717
(35�), and 0.000725 (17�). The mean squared difference between
frequency estimates (Vardiff) should equal the variance in SNP es-
timating frequency (VarSNP) plus the variance contributed by the
haplotype estimator (VarHAP). Since Vardiff varies little as a func-
tion of coverage; this suggests that error in the haplotype fre-
quency estimator is quite small.

We estimate the expectation of VarSNP as pq /N over all SNPs
at 240� to be 0.000322. But if we alternatively obtain the expecta-
tion of VarSNP as the variance among SNP frequencies within the
same founder allele and within 10 kb of one another (such SNPs
should have almost identical frequency), we obtain 0.000611, a
variance roughly twice as large. We conclude that the error in
SNP frequency estimates obtained from a pooled DNA sample
has an over-dispersed variance relative to binomial expectations,
as is commonly claimed in the literature (King et al. 2012b; Wei
et al. 2017; Zhang and Emerson 2019). If we assume 0.000611
more accurately estimates VarSNP, this implies the variance in
our haplotype estimator is quite small, with an average absolute
error of �0.01 [i.e. sqrt(Vardiff-VarSNP)] irrespective of coverage.

Functional testing of potential candidates
We used the Gal4-UAS-RNAi system to functionally test a series
of genes implicated by mapped X-QTL. We used the ubiquitous,
Actin 5C (Act5C) promoter-driven Gal4 strain (Bloomington
Drosophila Stock Center number 25374), and a strain expressing
Gal4 in the adult anterior midgut (1099 from Nicholas Buchon,
flygut.epfl.ch; Buchon et al. 2013). All UAS-RNAi strains were
from the VDRC (Vienna Drosophila Resource Center) “GD”

collection, which each harbor a P-element-derived UAS transgene
(Dietzl et al. 2007). Transgenes targeted genes Crys (stock ID
37736), Cyp12d1 (50507), Cyp6d5 (12138), Ugt36A1 (9489), E23
(2620), osy (38661), Tlk (46424), and Vha100-5 (6121). We compared
each to a background, transgene-free control strain (stock ID
60000). The UAS-RNAi and control strains have the same genetic
background, aside from the transgene. The 2 Gal4 driver strains
have distinct backgrounds, which could affect phenotype, but we
do not attempt to compare phenotypes between ubiquitous and
gut-specific knockdown of any gene.

We tested the same set of experimental Gal4-UAS genotypes
across 2 batches. In the first batch, we crossed �7 male Gal4 ani-
mals to 10 female UAS (or control) animals, setting up 2 replicate
vials per Gal4/UAS combination (18 genotypes total). Two days
following the first emergence of adults, all flies from each vial
were tipped to a mixed-sex housing vial. After a further 2 days,
experimental females were sorted over CO2 into single-sex vials
housing 20 experimental females. The following day 32 experi-
mental, 3–5-day-old females (16 per replicate cross vial) were
loaded without anesthesia into 1% caffeine monitor tubes (see
above), and we used the Drosophila activity monitoring system to
track movement of each individual, yielding an accurate lifespan
for each (see Najarro et al. 2015).

In the second batch, we crossed 10 female Gal4 animals to �7
male UAS (or control) animals—i.e. the reciprocal cross direc-
tion from the first batch. We set up 3 replicate vials per Gal4/
UAS combination (16 genotypes total; 2 crosses involving the
Act5C-Gal4 strain were not reattempted since in the first batch
no experimental Gal4-UAS-RNAi animals were obtained,
Supplementary Table 2). As described for the first batch, we col-
lected 3–5-day-old experimental females and loaded 48 animals
per genotype (16 per cross vial) into monitors. Caffeine resis-
tance phenotypes for each Gal4-UAS-RNAi genotype and each
batch were compared to the relevant control genotype via
Dunnett’s tests.

Environmental conditions used to rear and assay
X-QTL and RNAi flies
The source X-QTL population cage, the vials used to rear and
house experimental X-QTL and RNAi animals, and the monitor
tubes used to assay caffeine resistance were all resident in the
same laboratory incubator and maintained at 25�C, 50% relative
humidity, on a 12-h light:12-h dark cycle. Media used in popula-
tion cage bottles and in both rearing and housing vials was a
cornmeal-yeast-molasses mix (Supplementary Text 1), while me-
dia used for the resistance assay was a cornmeal-yeast-dextose
mix supplemented with caffeine (Supplementary Text 1).

Results
Powerful DSPR-based X-QTL mapping in
Drosophila
We simulated QTL mapping power under a typical RIL-based QTL
mapping experiment as well as several different X-QTL designs.
Figure 2 depicts the distribution of �log10(P) scores at a QTL con-
tributing 2% to trait variation. The distribution of the X-QTL
�log10(P) scores is presented as a function of the number of indi-
viduals sampled to create the selected and control DNA pools
(150, 300, 600), the proportion of individuals selected during phe-
notyping (10% and 5%), and the number of replicate base popula-
tions (4, 8, 12). We see the expected null distribution of X-QTL
test statistics when comparing 2 equally sized draws from the
control/base population (Supplementary Fig. 1), and provided
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DNA is prepared from a sufficiently large pool of animals (�300),
a �log10(P) threshold of 4 holds the genome-wide false positive
rate at �5%. Using a threshold of 4, the proportion of �log10(P)
scores greater than 4 in Fig. 2 is the power to map a QTL. Power
with the X-QTL framework is routinely higher than a typical RIL-
based experiment employing 500 RILs and 10 replicate phenotype
measures per RIL. Stronger selection, more replicates, and a
greater number of individuals contributing to the DNA pools
strongly impact X-QTL power (Fig. 2) and should be maximized in
any experiment.

The simulated pool sizes of 150, 300, or 600 individuals sam-
pled to make genomic DNA should be thought of as the effective
number of individuals in the pool. Factors such as uneven repre-
sentation of individuals in the pool (e.g. variation in body size,
differential lysis or degradation during the bulk DNA prep), and
errors in haplotype frequency estimation will result in the ef-
fective number of individuals in the pool being lower than the
census number. By only choosing flies of a single sex (to some-
what control for body size variation), using fresh tissue from
living animals, and generating 20–40� sequencing coverage per
pool (see experimental results below), we believe that the dif-
ference between the effective and census population sizes can
be minimized. The relationship between the census and

effective numbers of sampled flies is difficult to estimate, and
likely somewhat a function of the exact details of how flies are
collected and processed. We guess that effective sizes of 150,
300, and 600 may approximate census sizes of 250, 500, and
1,000 individuals, respectively. Overall, our simulations sug-
gest that an X-QTL experiment employing DSPR RILs can be
quite powerful if certain experimental parameters are carefully
optimized.

X-QTL mapping resolution can be high
Although the power of an X-QTL experiment can be high, if the ap-
proach suffers from poor QTL localization ability it may not be suit-
able for the dissection of complex traits. We used the actual
genotypes of DSPR RILs (King et al. 2012b) to simulate a base popu-
lation used for X-QTL mapping. Figure 3 depicts the average
�log10(P) profiles for a simulated QTL on chromosome 3L as a func-
tion of simulated parameters for a base population instantaneously
expanded to a large size, randomly mated for 4 generations, and
then phenotyped/genotyped in an 8-fold replicated experiment.
(Additional generations of random mating were also simulated and
are discussed below.) Localization is not greatly impacted by the
number of individuals used in the DNA prep (NDNA), the number of
RILs used to generate the base population (NRIL), or the proportion

Fig. 2. Distribution of �log10(P) test statistics for RIL-based mapping compared to X-QTL. Analysis assumes a QTL contributing 2% to heritability. X-QTL
�log10(P) distributions are shown as a function of the effective number of individuals contributing to the DNA pools (150, 300, 600), proportion of
individuals selected (10%, 5%), and the number of experimental replicates (4, 8, 12). P-values are routinely much higher under X-QTL mapping
compared to mapping directly with RILs. Larger pools, more extreme selection, and a greater number of replicates further increase X-QTL power. The
vertical dotted blue line represents a 4 �log10(P) threshold for significance.
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of individuals selected (i). As was clear above, power is considerably
higher and the �log10(P) score at the QTL peak is greater, for larger
values of NDNA and i, so these parameters should be maximized re-
gardless. Supplementary Fig. 2a depicts the �log10(P) profiles in a
manner similar to Fig. 3, except shows only a single realization of
our simulation. This illustrates the considerable variation in the
�log10(P) profile of any particular simulation realization, or indeed
of any real QTL mapping experiment.

We carried out additional localization simulations of a
smaller region, at a higher marker density, considering only
DNA preps of 300 or 600 flies, and 4 generations of random mat-
ing following base population creation (focusing on a narrow set
of parameters reduced computational effort considerably).
Supplementary Fig. 2b plots the average 3 �log10(P) support win-
dow size as a function of average QTL peak �log10(P) score, with
each point the average over 250 pure replicate simulations for
any particular parameter combination. This relationship shows
that localization ability is a strong function of peak �log10(P)
score, with highly significant peaks being better localized, much
like QTL mapping in general. An ANOVA (see the GitHub site)
examining the effect of different experimental parameters (NRIL,
NDNA, i, and Nrep) on localization after including average
�log10(P) score as a covariate, shows that only increasing the
number of experimental replicates further impacts localization
ability. That is, although the manipulated parameters all impact
localization ability, their impact on localization largely parallels
their impact on power. It is noteworthy that localization ability
eventually reaches a plateau (at �100 kb) that is likely related to
the average unrecombined block size defining the DSPR RILs
used to create the base population. Figure 3 and Supplementary

Fig. 2b demonstrate that in situations where the X-QTL design is
powerful, there is considerable localization ability, in many
cases approaching sub-cM QTL intervals. For more modestly
sized experiments, localization ability is on the order of 1 cM,
comparable to RIL-based mapping with >500 RILs and multiple
individuals measured per RIL (King et al. 2012a).

Our statistical test for differences in haplotype frequencies be-
tween selected and control pools results in a �log10(P) statistic
that summarizes the evidence for a change in allele frequency.
Provided the degrees of freedom distinguishing the null and alter-
native hypotheses are small, �log10(P) statistics are closely re-
lated to traditional LOD scores. Thus, we used the 10-kb
resolution simulations above to count the proportion of simula-
tion replicates in which the interval harboring the simulated QTL
was within a 2 or 3 �log10(P) drop of the most significant marker
interval (MSM; conditional on the MSM being >4) as a function of
NRIL, i, NDNA, and Nrep. An ANOVA showed that only NRIL signifi-
cantly impacts the probability of a 2 or 3 �log10(P) drop including
the true location of the QTL, so we pooled the simulation results
over the other 3 factors to more precisely estimate properties of 2
and 3 �log10(P) drops. We observed that a 2 �log10(P) drop
includes the true location of the QTL 82% of the time when NRIL ¼
200, increasing to 89% of the time when NRIL ¼ 800. We conclude
that a “2 �log10(P) drop” is slightly liberal in terms of identifying
an interval harboring the true location of the QTL �95% of the
time (as is traditionally believed). However, provided the
NRIL �400, a 3 �log10(P) drop includes the true location of the QTL
94–96% of the time. It is noteworthy that when the number of
RILs used to construct the base population is only 200, a
3 �log10(P) only includes the true location of the QTL 90% of the

Fig. 3. Average QTL localization for an X-QTL experiment. Simulated base populations were derived from DSPR population A RILs and are created via
diallel crosses of the RILs, instantaneous expansion, and then 4 generations of random mating. We only consider 200 positions spanning chromosome
3L, simulating a QTL contributing 2% heritability in the middle of the chromosome, and an 8-fold replicated experiment. Localization is presented as a
function of the effective number of individuals contributing to the DNA pools (N¼ 150, 300, 600), the number of RILs used to derive the base population
(NRIL ¼ 200, 400, 600, 800), and the proportion selected (i¼ 5%, 10%, 20%).
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time, suggesting that the more RILs used to found the base popula-
tion the stronger localization ability is under our X-QTL strategy.

The impact of the number of founding RILs
It is not surprising that increasing the number of replicates of an
experiment yields an increased �log10(P) score at the QTL. It is
also expected that increasing the number of flies contributing to
the DNA pool similarly increases the average QTL �log10(P) score.
As the number of flies contributing to a DNA pool increases, hap-
lotype frequency estimates in the pool approach those of the pop-
ulation from which the pool is sampled, thus increasing the
power of the hypothesis test. It is also intuitive that increasing
the selection intensity while holding NDNA constant will result in
greater power. However, we further observe that the number of
RILs used to create the base population has a large impact on
power, particularly between 200 and 600 founding RILs (Fig. 3). It
is unclear why this is the case. Irrespective of the number of RILs
employed to found the base population the simulated QTL is
scaled to always account for 2% of total phenotypic variation
(while in truth sampling would result in the QTL explaining more
or less of total variation), so one’s intuition is that power would
not be a function of NRIL. This being said, creating the base popu-
lation using a greater number of founder RILs will result in
founder alleles being better represented in terms of their frequen-
cies in the base population, and allows for better estimates of the
frequency changes associated with each allele.

In our initial power simulations, the false positive rate and sig-
nificance threshold are obtained from a comparison of 2 equally
sized draws without phenotypic selection from the base popula-
tion, with other parameters varied. To rule out the possibility
that certain parameter combinations give only the appearance of
increased power, we further examined the distribution of
�log10(P) scores at markers loosely linked to the causative site
(i.e. markers >7 Mb from the causative site; see Supplementary
Fig. 2c). Given the mapping resolution of our experiment, the dis-
tribution of �log10(P) scores at positions distant from the QTL lo-
cation should approach that of 2 equally sized draws from the
base population. However, �log10(P) scores could be elevated at
loosely linked markers if a limited sample of founder RILs led to
linkage disequilibrium between causative loci and the polygenic
background.

In Supplementary Fig. 2c, we observe slightly elevated
�log10(P) scores for certain high power parameter combinations
(i.e. those employing strong selection, large pool sizes, and many
replicates) when the number of generations of random inter-
crossing following base population establishment is �4, consis-
tent with some X-QTL signal coming from polygenic background
variation. Despite our simulations being able to detect this poten-
tial source of false positive mapping signal at loosely linked sites,
this factor appears to have only a subtle impact on the genome-
wide false positive rate, and the force is extremely weak for many
realistic parameter combinations. It is also apparent that 4–8
generations of free recombination after establishment of the base
population is very effective at removing this source of variation.
More than 8 generations of free recombination result in little ad-
ditional gain, and we speculate that this is because recombina-
tion events in an expanding base population remain at low
frequency and do not have nearly the impact on localization as
events present in the RILs.

Theoretical arguments aside, in practice a few generations of
population expansion and recombination are likely unavoidable

given the size of the base population necessary to select harshly
(5% or 10% of individuals) while maintaining a large number of
individuals in the selected pool (ideally up to 600). A corollary is
that maintaining very large populations for extended periods is
challenging and can allow for significant haplotype frequency
shifts (King et al. 2012), so there will likely be a tradeoff between
ensuring several of generations of intercrossing to limit long-
range LD and avoiding major changes to haplotype frequencies
via selection and/or drift.

Accurate haplotype frequency estimation with
modest genome-wide sequencing coverage
Haplotype frequency estimates from pooled resequencing data
with known founders can be quite accurate, depending on the
window size, the number of founder haplotypes, the sequence di-
vergence among haplotypes, and the level of recombination the
population has experienced (Kessner et al. 2013; Tilk et al. 2019;
Linder et al. 2020). We developed a method to estimate haplotype
frequencies from pooled samples composed of known founders
in the context of 4- and 18-way multiparental yeast populations
(Cubillos et al. 2013; Burke et al. 2014b; Linder et al. 2020). In con-
trast to the yeast system, where the DNA pool consists of billions
of cells/individuals, sampling in Drosophila is finite, and technical
factors (body size differences, variation in the level of lysis in a
bulk DNA isolation, etc.) will further lower the effective popula-
tion size in a pool of individuals. On the other hand, the SNP den-
sity relative to the size of nonrecombined haplotype blocks can
be higher in flies than in yeast. Furthermore, different yeast
strains can share long, highly similar genomic segments (Peter
et al. 2018) making unique haplotype assignment difficult. We
sought to quantify the accuracy of haplotype frequency estima-
tion in flies as a function of the particular founders and RILs
actually employed.

Although we cannot measure the effective pool size in any
Drosophila X-QTL experiment, we can measure the average
squared difference between 2 estimates of each founder’s haplo-
type frequency: the frequency of SNPs private to a single founder
in a high coverage (240�) dataset, and the haplotype frequency
estimate for the window nearest this SNP from down-sampled
data. We detail this experiment in the Materials and Methods to
maintain readability. The principal result is that the average
squared difference over millions of private SNPs is not very sensi-
tive to the level of downsampling, implying that estimates of
haplotype frequency are extremely accurate at �35� coverage.
Furthermore, based on the variance in SNP frequency estimates
due to sampling, we estimate that the average absolute error in
haplotype frequency estimates is �1%. This error is approxi-
mately constant for coverages from 17� to 240�.

It is important to point out a perhaps counter-intuitive corol-
lary of the accuracy of haplotype estimates from pooled sequenc-
ing data. Under binomial sampling one would need to sequence
to �1,000� coverage to directly estimate SNP frequencies with
the same degree of accuracy we achieve for haplotypes with only
35� coverage. It is further important to note that the errors on
haplotype frequency estimates are small enough (even at 35�
coverage) that the finite number of flies contributing to a DNA
pool can contribute to noise and lack of power. That is, with 500
individuals equally contributing DNA to a pool, the sampling er-
ror on the estimate of true population frequencies is the same or-
der of magnitude as the error in haplotype estimation,
supporting our claim that it is important to carry out X-QTL
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experiments using large pools of 500–1,000 flies. Counter-
intuitively, estimating haplotype frequencies from pools requires
only modest coverage to be effective.

Experimental test of X-QTL mapping identifies
multiple QTL
We carried out an X-QTL experiment using a population con-
structed by mixing 663 DSPR pA RILs, allowing the population to
undergo free recombination for 1–5 generations, and selecting
for caffeine-resistant females in a 4-fold replicated experiment.
Each replicate tested 2,337–2,572 animals, selecting the 9.0–
10.3% most caffeine-resistant females in each case (228–254 ani-
mals), along with a sample of 250 control animals from the base
population. Full details of each replicate are presented in
Supplementary Table 1. We extracted DNA in bulk from each of
the 8 resulting samples, constructed libraries, and generated
�140� of alignable sequence per pool. We estimated frequen-
cies of the 8 haplotypes in each pool over 200-kb windows with a
10-kb step size and, for each window, carried out a linear model
testing for a change in the arcsin square root allele frequency
between the selected and control pools (see Materials and
Methods for full details).

Unlike the case of RIL- or individual-based QTL mapping, it is
unclear how to create a permutation-based null distribution for
X-QTL mapping (Doerge and Churchill 1996), as a result we em-
ploy the �log10(p) threshold of 4 derived from our simulations.
The �log10(p) threshold of 4 derived from our simulations may be
slightly anti-conservative in this caffeine resistance experiment,
as the number of flies contributing to the DNA pool is <500. To
further investigate an appropriate threshold, we simulated a
dataset that mimicked the precise caffeine experiment carried
out (effective number of individuals in the DNA pool ¼ 150, num-
ber of replicates ¼ 4, selection intensity ¼ 10%, no QTL) and cre-
ated QQ plots (Supplementary Fig. 3). Pools of �250 female flies
(effective NDNA ¼ 150) can be associated with a slightly elevated
false positive rate, and this is observed in the QQ plot with the
simulated data showing some inflation. Nonetheless, for this pa-
rameter combination, a �log10(P) threshold of 4 is associated with
a genome-wide false positive rate of 0.22%. Supplementary Fig. 3
also plots the distribution of observed �log10(P) scores, and
�log10(P) scores after the removal of all test statistics within 2 Mb
of each of our 7 significant QTL peaks (Table 1—discussed below).
The �log10(P) scores associated with actual scans—with or with-
out peak regions removed—show much greater inflation. The
simplest explanations for inflation after mapped QTL regions are
removed are that the signal of linkage extends over regions larger
than 2 Mb, or that there exists a class of subtle effect QTL that

individually do not reach significance, yet are contributing to sig-
nal throughout the genome.

Figure 4 plots the genome-wide �log10(P) values comparing
haplotype frequencies in caffeine-selected and control pools
based on the full-coverage (�142�) pooled sequencing dataset, as
well as for datasets downsampled to �36� or �14�. Two patterns
are immediately apparent: First, we see several significant, well-
localized peaks (Table 1), consistent with our power and
localization simulations (Figs. 2 and 3). It appears that we observe
significant QTL despite our experiment being nonoptimal in
terms of the number of replicates, the selection intensity, and the
number of flies in each DNA pool. These differences were due to
our analytical and experimental approaches moving forward
contemporaneously, and because we elected to employ a fairly
challenging caffeine resistance phenotyping regime for X-QTL
mapping to more closely mimic that used originally in RIL-based
mapping experiment (Najarro et al. 2015). Our assay involved
loading individual flies into single Drosophila activity monitor
tubes (as opposed to bulk testing multiple individuals in standard
fly vials) was only done to copy our previous work. The benefit of
our choice of character is that we can directly compare mapped
QTL identified via a pooled population approach and an RIL-
based approach.

Second, the locations and significance levels associated with
each peak are very similar even for highly downsampled read
data (compare the 3 panels of Fig. 4). This is consistent with our
earlier observation that the error in haplotype frequency esti-
mates are largely independent of coverage over the explored
range. That the downsampled datasets yield similar results to
the full dataset suggests that future experiments can be more ef-
ficiently and inexpensively carried out at 20–40� sequencing per
pool. This may be counterintuitive to some but is consistent with
other published claims that when founders are known, haplotype
frequency estimation from pooled sequencing data can be quite
accurate even with low coverage read data (Kessner et al. 2013;
Tilk et al. 2019; Linder et al. 2020).

Figure 5 presents �log10(P) scores and allele frequency changes
at QTL, and Table 1 provides the properties of these mapped QTL,
for the full-coverage (�142�) dataset. Supplementary Fig. 5
presents mapped QTL and frequency changes using the �35�
dataset. It is apparent that the properties of mapped QTL are
largely the same, except for X-QTL:E, which shifts roughly 1 Mb to
the left when using the downsampled data; the X-QTL:E region
has 2 “peaks” that only just reach significance depending on the
pooled sequencing dataset employed and has a fairly wide 3
�log10(P) support interval. The overall genome-wide similarity of
the �log10(P) profiles, especially for the more significant regions,

Table 1. Properties of mapped QTL.

QTL CHR POSa �log10(P) 3 �log10(P) CI Size (kb) Cand. genes # genesb

Left Right

A X 3,716,075 5.36 2,916,075 4,736,075 1,820 Tlk 131
B 2L 3,370,610 4.72 3,030,610 4,290,610 1,260 E23, Ugt36A1 137
C 2L 11,730,610 4.59 10,710,610 12,170,610 1,460 Vha100-5, Crys 187
D 2R 10,848,099 13.1 10,628,099 11,168,099 540 Cyp12d1 51
E 3L 13,108,478 4.99 12,328,478 16,368,478 4,040 — 463
F 3R 14,067,353 8.81 13,447,353 14,347,353 900 Cyp6d5 105
G 3R 26,287,353 6.77 25,707,353 27,007,353 1,300 osy 144

a Positions (bp) given with respect to release 6 of the D. melanogaster reference genome.
b Number of protein-coding genes.

CHR, Chromosome; CI, Confidence Interval; POS, Position.
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supports our claim that little (but some) additional information is
gained by sequencing libraries to higher coverage. If this experi-
ment was repeated, the impact of additional experimental

replicates, stronger selection, or more flies in the selected pools
would likely dwarf that of additional sequence coverage (see above
simulation results).
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Fig. 4. X-QTL scan for caffeine resistance loci. Each panel shows �log10(P) test statistics derived from comparisons between caffeine-selected and
control pools using the full-coverage pooled sequencing data (�142� per sample), and data where read coverage was downsampled to �36� or �14�.
Points on different chromosome arms are shaded differently, the x-axis scale is proportional to physical location using the D. melanogaster reference
release 6 genome coordinates, and heterochromatic regions (Supplementary Table S3) are not plotted (leading to gaps at centromeres). The statistical
threshold for QTL detection (horizontal blue, dashed line) is set at �log10(P) ¼ 4. Each QTL “peak” is given a letter code, corresponding to codes in
Table 1 and Fig. 5. Orange points correspond to the intervals of caffeine resistance QTL mapped previously by Najarro et al. (2015) using the DSPR pA
RILs directly.
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X-QTL replicates a subset of mapped caffeine
resistance loci
Najarro et al. (2015) resolved several caffeine resistance loci via di-
rectly screening DSPR RILs, 4 of which were mapped in the pA popu-
lation: Q1 mapped to chromosome 2L adjacent to the centromere

(�log10(P) ¼ 9.9, % heritability explained ¼ 5.5%), Q2 mapped to the
centromeric end of 2R (�log10(P) ¼ 27.2, heritability ¼ 14.4%), Q3
mapped �2 cM to the right of Q2 on 2R (�log10(P) ¼ 11.3, heritability
¼ 6.3%), and Q9 mapped to 3R (�log10(P) ¼ 10.2, heritability ¼ 5.7%).
The intervals implicated by these 4 mapped QTL in the original

Fig. 5. Founder haplotype frequencies at caffeine X-QTL. A 2-Mb window of the genome, centered on each of the mapped X-QTL loci a–f) (see Fig. 4 and
Table 1), is presented for the full-coverage sequencing data. The top panel for each X-QTL presents the �log10(P) test statistics across the window, with
the vertical dashed blue line at the QTL peak, and the horizontal dashed blue line at �log10(P) ¼ 4. The bottom panel for each X-QTL presents the
change in frequency of each haplotype, polarized such that positive values correspond to an increase in the frequency of that haplotype in the selected
pool. In panel X-QTL:D, the vertical light blue lines represent the locations of the Q2 (left) and Q3 (right) loci mapped by Najarro et al. (2015) illustrating
the physical proximity of these loci, and the similarity of the haplotype frequencies, which together suggest that Q3 of the prior work may be spurious.
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study are reflected in our X-QTL map with orange symbols, and it
appears that we replicate 2 of them (Fig. 4, top panel, X-QTL:D and
X-QTL:F).

The largest-effect QTL mapped in RILs, Q2, was replicated by
X-QTL:D (Fig. 4 and Table 1). Najarro et al. (2015) found that RILs
carrying the A7 haplotype at this locus had the highest average
caffeine resistance. Similarly, we estimate that, at this position in
our X-QTL study, haplotype A7 exhibits the greatest frequency in-
crease in the selected pools over the control pools (Fig. 5D).
Notably, founder A7 is the only pA founder strain that possesses
2 copies of the Cyp12d1 cytochrome P450 detoxification gene (as
does the D. melanogaster genome reference strain, where the cop-
ies are termed Cyp12d1-d and Cyp12d1-p). Cyp12d1 expression is
known to be induced in response to caffeine (Willoughby et al.
2006; Coelho et al. 2015; Najarro et al. 2015), and experiments us-
ing ubiquitous Gal4-UAS-RNAi knockdown (under the control of
an actin promoter), and adult-specific knockdown (using an
RU486-inducible “GeneSwitch” actin Gal4 driver) indicated that
Cyp12d1 knockdown reduces caffeine resistance (Najarro et al.
2015). In addition, Najarro et al. (2015) found a significant associ-
ation between Cyp12d1 copy number variation (CNV) and caffeine
resistance in both the pA and pB RIL panels. By controlling for
Cyp12d1 CNV status during RIL-based QTL mapping (via the addi-
tion of a covariate into the mapping model), the Q2 QTL was
eliminated, suggesting that the CNV—or something in linkage
disequilibrium with it—is causative.

We also replicated RIL-based QTL Q9 with X-QTL:F (Fig. 4
and Table 1). In our previous RIL-based study, RILs carrying
founder haplotype A2 at this location showed higher average
caffeine resistance, while RILs carrying A4 had among the low-
est resistance. We recapitulate these findings, showing that A2
exhibits the greatest frequency increase in selected pools, while
A4 shows a large frequency decrease in the selected pools
(Fig. 5f). Both the Q9 and X-QTL:F intervals contain Cyp6d5, a
gene that is transcriptionally induced in response to caffeine
exposure (Najarro et al. 2015).

Q1 from our RIL-based study does not replicate here. We previ-
ously estimated its effect to be modest, so easy replication may
not be anticipated (Zhou et al. 2020). In addition, the QTL is ex-
tremely close to the chromosome 2 centromere, a location where
effective mapping is challenging (Noor et al. 2001). As a result,
the original Q1 may not represent a true causative caffeine resis-
tance locus. RIL-based Q3 also fails to replicate, and again it has
a modest effect. In addition, Najarro et al. (2015) mapped Q3 to a
position just 2.5 cM away from the large-effect Q2 QTL, so Q3
may not represent an independent locus. Indeed, the haplotype
frequencies at both these positions are similar in our X-QTL pop-
ulations (Fig. 5d compare frequencies at positions 11,182 and
12,472 kb, which are the locations of Q2 and Q3, respectively).

Functional testing plausible candidate caffeine
resistance genes
Six of the 7 X-QTL we identify are mapped to 540–1,820-kb inter-
vals, each encompassing 51–187 protein-coding genes (Table 1).
In addition to the 2 candidates discussed above—Cyp12d1 (X-
QTL:D) and Cyp6d5 (X-QTL:F)—a number of plausible, novel can-
didate genes emerge from mapped X-QTL. X-QTL:A includes Tlk
(Tousled-like kinase), a gene involved in cell cycle progression and
the DNA damage response, that also contains a caffeine-
sensitive phosphorylation site (Groth et al. 2003). X-QTL:B
includes E23 (Early gene at 23), which encodes an ATP-binding
cassette (ABC) transporter subunit (Hock et al. 2000)—ABC
transporters have important roles in xenobiotic metabolism (Xu

et al. 2005), and Ugt36A1 (UDP-glycosyltransferase family 36 mem-
ber A1), which is a UDP glycosyltransferase detoxification en-
zyme gene. X-QTL:C encompasses Crys (Crystallin), whose gene
product is involved in the formation of the peritrophic matrix
(Kuraishi et al. 2011), a structure that forms a protective layer
lining the midgut epithelium (Terra 2001), and Vha100-5
(Vacuolar Hþ ATPase 100kD subunit 5), which encodes a subunit of
an ATP-dependent proton pump and is expressed in the fly mid-
gut (Overend et al. 2016). X-QTL:G encompasses the gene osy
(oskyddad), which encodes an ABC transporter subunit, is re-
quired to provide a barrier to xenobiotics in D. melanogaster lar-
vae (Wang et al. 2020), and shows reduced gene expression in
adult males exposed to caffeine (Coelho et al. 2015).

To evaluate the effects of each of these 8 genes, we employed
both ubiquitous RNAi knockdown using Gal4 under the control
of an actin promoter and expressed Gal4 specifically in the ante-
rior portion of the adult midgut. Using both drivers, and both re-
ciprocal cross directions (see Materials and Methods), both
Cyp12d1 and Cyp6d5 show a significant reduction in lifespan on
caffeine-containing media compared to the control, no-
knockdown genotype (Dunnett’s tests, 0.05< P< 10�12, Fig. 6),
reconfirming the strong relevance of this pair of detoxification
genes in the response to caffeine challenge. The Tlk gene (X-
QTL:A) only shows a significant reduction in resistance when
knocked down in the gut in 1 of the 2 reciprocal crosses (cross
direction-specific Dunnett’s tests, P< 10�4 and P ¼ 0.08), while
the ubiquitous knockdown was lethal (Supplementary Table 2).
Of the 2 genes tested within the X-QTL:B interval (E23, Ugt36A1)
the E23 ABC transporter subunit gene appears to be the best
candidate based on the RNAi; knockdown of this gene leads to
significantly reduced lifespan in all 4 experiments (Dunnett’s
tests, 0.01< P< 10�8, Fig. 6), while knockdown of Ugt36A1 shows
no effect on phenotype in the gut, and only a minor reduction in
resistance in 1 of the 2 ubiquitous knockdown reciprocal
crosses. Of the 2 genes tested beneath X-QTL:C, Crys shows no
evidence for an effect (Fig. 6), while Vha100-5 gut knockdown
reduces resistance (cross direction-specific Dunnett’s tests,
P< 10�4 and P < 0.01), and resistance is reduced in 1 of the 2 re-
ciprocal crosses of the ubiquitous knockdown tests (Dunnett’s
tests, P ¼ 0.8 and P < 0.001). Finally, osy, the sole gene tested
within the X-QTL:G interval shows no effect with gut knock-
down (Fig. 6), and ubiquitous knockdown led to lethality
(Supplementary Table 2). Ultimately, the novel caffeine resis-
tance candidates E23 and Vha100-5 appear particularly worthy
of additional functional study.

Discussion
Here, we explore an alternative to RIL-based QTL mapping in
Drosophila that is analogous to the X-QTL approach of yeast
(Ehrenreich et al. 2010), and more recently the nematode model
system C. elegans (Burga et al. 2019). Conceptually derived from
the bulked segregant analysis mapping strategy (Michelmore
et al. 1991), X-QTL mapping as employed in yeast utilizes ex-
tremely large pools of haploid segregants from a single-genera-
tion cross between 2 strains. Unlike this 2-parental strain, single-
generation cross, the base population we employ is created by
combining several hundred advanced intercross DSPR RILs (King
et al. 2012a, 2012b), and up to 8 haplotypes segregate at any given
genomic location in the DSPR X-QTL mapping population.

X-QTL mapping draws replicate samples of phenotypically ex-
treme and control individuals from a large base population and
identifies regions of the genome exhibiting consistent differences
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in founder haplotype frequencies between extreme and control
pools following short-read sequencing (Fig. 1). For a QTL contrib-
uting 2% to variation in a complex trait, we explore the power
and localization ability of this X-QTL mapping approach as a
function of the number of experimental replicates, the number of
RILs used to found the base population, the number of individu-
als contributing to a DNA pool, the proportion of individuals se-
lected, and the number of generations of expansion/
recombination prior to phenotyping the intercrossed base popu-
lation. Our simulations suggest that for difficult, but experimen-
tally achievable designs, the X-QTL approach can routinely have
considerably higher power than traditional RIL-based mapping
(Fig. 2), and at least as high QTL localization ability (Fig. 3). This
being said, power and localization ability is impacted by the pre-
cise experimental design employed and the highest power is only
achieved when the number of RILs contributing to a base is
greater than 500, selection intensity is greater than 10% (ideally
one should aim for �5%), the number of flies contributing to the
DNA pool is >500 (implying that the total number of individuals
assayed is �5,000), and 4 (and ideally 8 or more) experimental
replicates are used.

Several other mixed population mapping strategies have pre-
viously been executed in Drosophila. Huang et al. (2012) derived a
population—termed “Flyland”—from 40 inbred strains of the
DGRP (Mackay et al. 2012; Huang et al. 2014). This population
was allowed to undergo recombination for 70 generations, 2,000
individuals were phenotyped for each of 3 complex traits, and

allele frequencies were contrasted between sequenced pools of
300 phenotypically extreme individuals. A similar design has
been employed in studies of a number of other phenotypes (e.g.
Morozova et al. 2015; Zhou et al. 2017; Fochler et al. 2017), each
resulting in tens to hundreds of variants exhibiting allele fre-
quency differences between control and selected pools. No ana-
lytical details of the power or resolution of this approach are
available, and in contrast to our simulated and experimental
data, where increasing numbers of replicates greatly improve
power, these studies are generally unreplicated. Flyland studies
also typically phenotype fewer individuals than our simulations
suggest is optimal for the highest power. And since the strategy
relies on directly contrasting SNP allele frequency between pools,
rather than using the haplotype approach we take (which
improves allele frequency estimates, Tilk et al. 2019), unless se-
quencing coverage is high, the power of the Flyland approach
may be low.

Another group has proposed the use of “hybrid swarm” pop-
ulations. Here, many inbred strains—34 in the case of (Erickson
et al. 2020)—are mixed for 4–5 generations, then recombinant
animals are phenotyped and individually subjected to ultra-
low pass sequencing, facilitating GWAS-type mapping analyses
(Erickson et al. 2020; Weller et al. 2021). This approach has the
advantage of not requiring RILs and needing only a small num-
ber of generations of population maintenance. But, while the
total sequencing effort is reasonable, rather than working with
DNA pools, an investigator would need to efficiently and
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Fig. 6. Effects of candidate gene RNAi knockdown on caffeine resistance. Shows the lifespan (in hours) of replicate females from a series of Gal4-UAS-
RNAi genotypes (and controls, CON) on 1% caffeine media. The genes impacted are listed by their symbols along the x-axes of the plots. Each dot
represents the phenotype of a single individual, and for each genotype, the individual-level scores are overlaid with a boxplot (following the R ggplot2
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male UAS to female Gal4. Within each combination of driver and cross direction, all Gal4-UAS-RNAi genotypes were compared to the control genotype
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inexpensively generate thousands of individually indexed se-
quencing libraries.

Several studies have used various mixed population designs to
genetically dissect body pigmentation, a classic Drosophila trait
impacted by a small set of well-documented candidate genes
(reviewed in Massey and Wittkopp 2016). Bastide et al. (2013) phe-
notyped 8,000 outbred animals derived from thousands of un-
known founders and, after sequencing pools of extremely light or
dark animals, successfully resolved large-effect loci to classic pig-
mentation loci (bric-a-brac, ebony, tan). Dembeck et al. (2015) cre-
ated a population from 3 light and 3 dark pigmented DGRP lines,
maintained this for a few generations and found allele frequency
differences between sequencing pools generated from light and
dark flies that localized to classic pigmentation gene locations, in
addition to other regions of the genome. Bastide et al. (2016) used
a series of 2-way advanced intercross, bulked segregant analysis
mapping populations to yield a similar result; some peaks resolve
to intervals harboring known pigmentation genes, while others
might implicate novel candidates. Collectively, these studies sug-
gest that there are intermediate frequency causative SNPs of
large effect impacting Drosophila pigmentation, and as a result,
frequency differences at single SNPs in mapping populations can
be dramatic, and the effects at QTL sometimes be quite large.
The applicability of these approaches to more polygenic traits is
unknown.

Perhaps the most similar experiment to the one we describe
here is Burke et al. (2014a), who sequenced pools of the 2% most
extreme long-lived individuals in the synthetic populations from
which the DSPR RILs were derived (King et al. 2012b). However,
this aging study only obtained �100 flies for each sequencing
pool, and while 4 populations were used, none were replicated.
The simulations we present here suggest that despite some suc-
cess, this longevity experiment was likely only modestly pow-
ered.

Key features of the X-QTL approach we recommend are that a
large, highly recombinant population is created and that several
pairs of matched extreme and control DNA pools are each gener-
ated from large numbers of animals and sequenced. A great deal
of the power of the design comes from the populations being de-
rived from a modest number of known founders, which allows
tests for differentiation between control and extreme pools to be
carried out on imputed founder haplotype frequencies, as
opposed to using directly ascertained SNP frequencies.

A perhaps nonintuitive, but well-established result (Long et al.
2011; Kessner et al. 2013; Burke et al. 2014b; Tilk et al. 2019;
Linder et al. 2020) is that by virtue of the base population ulti-
mately consisting of genetic material from only 8 highly charac-
terized “founders,” sliding window haplotype frequency
estimates are extremely accurate, even with as little as 20–40� of
short-read sequencing. We show that at 35� sequencing cover-
age, for much of the genome, founder haplotype frequencies are
estimated with absolute errors of roughly 0.01. Accurate haplo-
type frequency estimates strongly impact the power of the X-QTL
approach in flies. If founder haplotypes are ignored or unavail-
able, and SNP frequencies are employed directly, one would re-
quire sequencing coverage of �1,000� to obtain similarly
accurate allele frequency estimates. The modest sequencing cov-
erage necessary under our design means that the sequencing
budget for an 8-fold replicated experiment can be relatively low.
A primary practical limitation of our approach is fly handling; the
pools of flies used to make DNA must consist of 100s of individu-
als, and given the necessary harsh selection regime, thousands of
individuals must initially be targeted (i.e. NDNA/i).

Our 4-fold replicated proof of principle experiment used pools
of �250 female flies either randomly chosen from a base popula-
tion or in the top �10% of individuals surviving following expo-
sure to high levels of caffeine. We chose this demonstration trait
as it has been the subject of past research using an RIL-based
mapping approach (Najarro et al. 2015), and we wished to deter-
mine if QTL identified by the 2 methods mapped to the same
locations; but the assay method involves considerable fly han-
dling and is not ideally suited to X-QTL mapping. As a result, our
empirical test of the approach was carried out with parameters
near the lower end of those our simulations suggest yield the
highest power. Nonetheless, we still mapped 7 X-QTL at a ge-
nome-wide false positive rate of <5% (Table 1). Two of these X-
QTL overlap with 2 of the 4 QTL mapped by Najarro et al. (2015)
in the population A panel of the DSPR RILs, the progenitors of the
X-QTL population employed in the present study. Not only is
there overlap of the QTL intervals for this pair of QTL, but the
founder effects are also consistent over studies; overlapping X-
QTL:D and RIL Q2 is driven by founder A7 (Fig. 5), and overlapping
X-QTL:F and RIL Q9 shows that founders A2 and A4 are associ-
ated with high and low resistance, respectively (Fig. 5). Thus, the
apparent replication of these QTL is supported by their positions,
but also the effects of the haplotypes on phenotype. In addition,
the X-QTL results suggest that one or both of the previously
mapped but unreplicated QTL may be spurious; one is very close
to the centromere and the other is very close to a larger-effect,
replicated locus. Finally, with X-QTL, we were able to map 5 new
caffeine resistance QTL associated with 6 novel and preexisting
candidate genes (Table 1).

Using both general and gut-specific Gal4 drivers, we
attempted to functionally validate implicated genes; both candi-
dates underlying the pair of replicated QTL found here and in
Najarro et al. (2015)—Cyp12d1 and Cyp6d5—yielded reduced caf-
feine resistance on knockdown. Furthermore, 2 new candidate
genes—E23 and Vha100-5—received functional support. Our
RNAi results support the contention that these genes harbor seg-
regating variation that impacts caffeine resistance, but it is obvi-
ous that RNAi cannot specifically demonstrate this. We contend
that our RNAi-based replication of caffeine-associated effects at
genes Cyp12d1 and Cyp6d5 is encouraging, since these genes have
been previously implicated in caffeine resistance by others via or-
thogonal methods; both are transcriptionally induced in response
to caffeine (Willoughby et al. 2006) and have been demonstrated
to impact caffeine metabolism (Willoughby et al. 2006; Coelho
et al. 2015). In addition, since we employ gut-restricted knock-
down, our results may be less impacted by nonspecific RNAi-
induced fitness defects than experiments using ubiquitous driv-
ers, or those employing germline mutations. Validation of candi-
date genes via knockdown can only be considered suggestive, as
genes chosen based on function in a genomic interval harboring
dozens of genes are prone to phenocopies at an unknown rate.
Nonetheless, we suggest that the genes we implicate here are ex-
cellent candidates for studies that can specifically test for the
presence of caffeine-relevant allelic variation.

Comparing 2 caffeine resistance experiments employing near
identical phenotyping regimes, it appears the results from the
X-QTL study provided at least similar, if not superior genetic in-
sight into the phenotype than the RIL-based study. And had we
not wished to compare designs, enforcing use of the same phe-
notyping assay, a less cumbersome bulked phenotyping ap-
proach would likely have been possible for X-QTL mapping (e.g.
exposing groups of flies to caffeine-supplemented media in vials
vs testing flies singly in narrow tubes), yielding larger numbers
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of phenotyped animals, and—as our simulations suggest—
higher power.

Several caveats of X-QTL mapping in flies are apparent, many
resulting from the pooled nature of the phenotyping and geno-
typing that is employed. First, since X-QTL are detected as haplo-
type frequency differences between pooled samples each
consisting of hundreds of outbred animals, one does not obtain
estimates of dominance or epistasis associated with mapped X-
QTL. Dominance and epistasis can be estimated using RILs (or
individuals), although we note that dominance cannot be esti-
mated when RILs are directly phenotyped, the most common
mapping strategy using RILs. Furthermore, in MPPs segregating
for 8 founder alleles, allele-specific dominance and epistatic
terms can be difficult to accurately estimate. Working directly
with 8-way RILs, there are 64 two gene epistatic terms and, if the
RILs are intercrossed to obtain heterozygous genotypes, there are
potentially 28 dominance terms, and a very large number of epi-
static terms. Investigators typically phenotype on the order of
�500 DSPR RILs, so estimating dominance and epistasis in the
MPP framework can quickly result in over-fitted models. The re-
sult is that in practice, dominance and epistasis are rarely stud-
ied using the DSPR or MPPs more generally (although see King
et al. 2012b; Cogni et al. 2016). In addition, while any characteri-
zation of the genetic basis of complex trait variation will be in-
complete without a description of dominance and epistasis
(Ehrenreich 2017), the contribution of nonadditive effects to the
variance of complex traits may not be high in most cases
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium 2014; Bloom et al. 2015; Albert et al. 2018; Nag et al.
2020; Hivert et al. 2021). Finally, when epistatic interactions have
been identified in powerful yeast QTL studies, they generally in-
volve at least 1 locus that also has a main effect (Bloom et al.
2015; Albert et al. 2018), implying that an X-QTL strategy can
identify major players involved in epistatic interactions, and
follow-up studies could identify epistasis.

Second, in a study using inbred lines, one might collect multiple
phenotypes on the same set of lines, allowing examination of ge-
netic correlations among traits (e.g. Dickson et al. 2016; Everman
et al. 2019). Furthermore, with inbred lines it is straightforward to
include known covariates associated with each strain, for instance,
infection status with the common Wolbachia microbe, or inversion
genotype, during mapping (both these covariates are accounted for
as standard by the DGRP analytical machinery; Huang et al. 2014).
Equally, one can statistically account for larger-effect QTL, enabling
more powerful mapping of smaller-effect loci (e.g. Cogni et al. 2016).
Such analyses are not possible with X-QTL mapping given the
pooled nature of the phenotyping and genotyping.

Third, screens of the mouse Collaborative Cross set of 8-way
RILs have identified single RILs having particularly extreme or in-
teresting phenotypes; for example, RILs having high susceptibility
to epileptic seizures (Gu et al. 2020), or high susceptibility to
Salmonella infection (Zhang et al. 2018). Such strains have poten-
tial utility as novel models of disease. But again, given the bulked
phenotyping and genotyping approach that X-QTL relies on, such
interesting phenotypes would not be captured in stable geno-
types via X-QTL mapping.

Finally, not all target traits will be as amenable to bulk pheno-
typing as the resistance trait we empirically explore here. When
every individual must be individually handled/scored (e.g. count-
ing bristle number—Macdonald and Long 2007), an RIL-by-RIL
approach may be more profitable, especially given some of the
other caveats of X-QTL mapping (above). However, X-QTL map-
ping is attractive and can have high detection and localization

ability for traits where some form of “self-selection” is possible
(e.g. measures of toxin/stress resistance, and behaviors such as
negative geotaxis, or oviposition preference). The list of traits
that has been dissected using the DGRP (Table 3 of Mackay and
Huang 2018) suggests that roughly half of the studied traits could
have been phenotyped in bulk, some perhaps quite easily. That
is, many of the trait drosophilists currently study are potentially
suitable for dissection via an X-QTL approach.

Despite some negatives, several additional efficiencies are
obtained with X-QTL mapping. By virtue of working with a single
large population, as opposed to several thousand vials, the accu-
rate tracking of individuals/vials/blocks/strains necessitated in
an RIL-based study is largely avoided. Furthermore, since pheno-
types are all obtained from outbred genotypes, the impact of rare
recessive genotypes and inbreeding depression are muted. In this
regard, the contribution of inbreeding depression to RIL-based
mapping results has rarely been quantified. Furthermore, as all
flies are reared in a common garden, X-QTL mapping can also be
advantageous for traits for which block and/or vial effects are un-
avoidable. Lastly, our simulations suggest that the highest pow-
ered X-QTL designs can enjoy 3 �log10(P) support intervals,
roughly 95% confidence intervals on true QTL location, that ap-
proach 100 kb. This is approaching single gene resolution in
Drosophila. Narrow 3 �log10(P) support intervals can greatly accel-
erate the process of sifting through candidate genes, especially as
the field moves toward stronger validation approaches that are
more time consuming to carry out.

It is important to note that the resolution of the experiments
we simulate and experimentally employ assuming the base pop-
ulation is initiated with highly recombinant genotypes. DSPR RILs
were derived from a population allowed to intercross for 50 gen-
erations prior to RIL initiation, and less recombined material
would be associated with much lower mapping resolution. That
said, the availability of the DSPR need not be a constraint on the
design we outline. Indeed, early MPP-based mapping in D. mela-
nogaster did not employ RILs and instead directly interrogated a
segregating population (Macdonald and Long 2007), much like
the mouse Diversity Outbred population (Svenson et al. 2012). It
would be possible to develop equivalent mixed base populations
for X-QTL mapping by intercrossing the original 8 DSPR founder
strains (or any set of inbred strains), followed by maintenance of
the resulting population for 50 generations (�2 years) to build up
recombination events. Clearly the availability of RILs, and the
ability to skip this population creation step, is a time- and labor-
saving feature of the approach we outline.

X-QTL mapping can provide powerful, high-resolution mapping
of QTL. In concert with emerging CRISPR-Cas9 homologous
recombination-based allele replacements (Gratz et al. 2013, 2014;
Ren et al. 2013; Port et al. 2014; Lamb et al. 2017), prime-editing
strategies (Anzalone et al. 2019; Bosch et al. 2021), and
recombinase-mediated cassette exchange following Cas9 (Bateman
et al. 2006; Voutev and Mann 2018), X-QTL mapping may allow the
field to move from mapped, main effect QTL to a more precise func-
tional characterization of candidate genes than is possible via RNAi
knockdowns. As these replacement/editing technologies become
more mature, especially in model systems, QTL mapping may be-
come more focused on the identification of high-confidence candi-
date genes underlying large, main-effect loci, with the accurate
estimation of the effects associated with mapped factors being left
to specific follow-up experiments. For many characters of interest
to Drosophila geneticists, the X-QTL approach we describe may pro-
vide a blueprint for quickly and cost-effectively identifying candi-
date genes underlying additive QTL.
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Data availability
Simulation, analysis code, and code to reproduce many of the fig-
ures are available from GitHub (https://github.com/tdlong/fly_
XQTL). Short-read sequencing data for all 8 control and caffeine-
selected pools can be obtained from the NCBI SRA under biopro-
ject accession PRJNA714149. RNAi data and R analysis scripts
(rnai_supp_data_analysis.zip) and the haplotype calls for each
population (allhaps.200 kb.txt.gz) are available at figshare (data
uploaded to figshare: https://doi.org/10.25386/genetics.16368381).
The haplotype calls allow the mapping results to be reproduced
and the approach explored without the computation effort or ex-
pertise associated with aligning raw reads to the genome, calling
SNPs, and calling haplotypes.
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