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Abstract

Natural selection on beneficial or deleterious alleles results in an increase or decrease, respectively, of their frequency within the popula-
tion. Due to chromosomal linkage, the dynamics of the selected site affect the genetic variation at nearby neutral loci in a process com-
monly referred to as genetic hitchhiking. Changes in population size, however, can yield patterns in genomic data that mimic the effects of
selection. Accurately modeling these dynamics is thus crucial to understanding how selection and past population size changes impact ob-
served patterns of genetic variation. Here, we model the evolution of haplotype frequencies with the Wright–Fisher diffusion to study the
impact of selection on linked neutral variation. Explicit solutions are not known for the dynamics of this diffusion when selection and recom-
bination act simultaneously. Thus, we present a method for numerically evaluating the Wright–Fisher diffusion dynamics of 2 linked loci
separated by a certain recombination distance when selection is acting. We can account for arbitrary population size histories explicitly us-
ing this approach. A key step in the method is to express the moments of the associated transition density, or sampling probabilities, as sol-
utions to ordinary differential equations. Numerically solving these differential equations relies on a novel accurate and numerically efficient
technique to estimate higher order moments from lower order moments. We demonstrate how this numerical framework can be used to
quantify the reduction and recovery of genetic diversity around a selected locus over time and elucidate distortions in the site-frequency-
spectra of neutral variation linked to loci under selection in various demographic settings. The method can be readily extended to
more general modes of selection and applied in likelihood frameworks to detect loci under selection and infer the strength of the selective
pressure.
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Introduction
Natural selection acting on an allele alters its frequency in a pop-

ulation over time. Beneficial alleles tend to increase in frequency,

whereas deleterious alleles tend to decrease in frequency. More

general forms of diploid selection like dominance, recessive, het-

erozygote advantage, or underdominance yield more intricate be-

havior. Due to chromosomal linkage, the dynamics of the allele

under selection impact the allele frequency trajectories at nearby

neutral loci, thus each selection regime results in a characteristic

pattern of observed genetic variation. For example, in the case of

strong positive selection, the beneficial allele can quickly sweep

to fixation. This will cause closely linked neutral sites to increase

in frequency as well, despite the alleles being neutral, in a pro-

cesses referred to as genetic hitchhiking (Maynard Smith and

Haigh 1974; Kaplan et al. 1989). Typically, hitchhiking results in a

decrease in genetic diversity around the selected locus. This can

be quantified, for example, by examining the heterozygosity

around a selected locus, or inspecting the local site-frequency-

spectrum (SFS), see for example Kim and Stephan (2002, Fig. 2) or

Fay and Wu (2000, Fig. 1). Numerous successful tools that detect

genetic variation under selection in genome-wide sequence data
have been implemented to scan for these characteristic patterns,
see for example Pavlidis and Alachiotis (2017) or Hejase et al.
(2020) for a review.

While selective sweeps leave very distinct patterns, different
scenarios of selection may lead to more subtle signals. For exam-
ple, balancing selection tends to maintain the selected allele at
intermediate frequencies over long evolutionary times
(Charlesworth 2006), whereas selection on polygenic traits is
thought to act through concerted small adjustments of frequen-
cies at many loci that affect a trait (Pritchard et al. 2010). In addi-
tion to the mode of selection, the demographic history of the
population also impacts patterns of genetic diversity and in some
cases leads to changes in allele frequencies that mimic the im-
pact of selection (Williamson et al. 2005). Thus, developing meth-
ods capable of capturing the dynamics of the interplay of
selection, variable population size, and chromosomal linkage is
vital to interpreting observed genetic variation and elucidating
the underlying population genetic and evolutionary processes.

To this end, we present a numerical method for studying the
dynamics of haplotype frequencies at 2 linked loci in a
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population of changing size. The loci are separated by a given re-
combination distance and subject to selective pressure. Our ap-
proach can be used to accurately and efficiently compute
quantities of interest, including expected allele or haplotype fre-
quency trajectories, and expected heterozygosity. Moreover, it
can be used to study statistics of linkage disequilibrium (LD), fun-
damental to many population genetic tools, for example, to char-
acterize linkage blocks in human genetic data (Berisa and Pickrell
2016), infer recombination rates (McVean et al. 2002; Spence and

Song 2019), infer complex demographic histories (Ragsdale and
Gutenkunst 2017; Ragsdale and Gravel 2019), or investigate the
polygenic and pleiotropic architecture of complex traits (Bulik-
Sullivan et al. 2015; Zabad et al. 2021). Furthermore, our method
enables exploring the effects of linked and background selection
on the SFS, another statistic central to many population genetic
analyses aimed at either inferring population genetic parameters
from neutral site frequency spectra (Gutenkunst et al. 2009;
Kamm et al. 2020) or characterizing selection directly (Boyko et al.
2008; �Zivkovi�c and Stephan 2011). Many of these and other LD- or
SFS-based tools operate under the assumptions of neutrality, and
thus it is vital for the correct interpretation of the results to un-
derstand how direct and linked selection affects these statistics,
while correctly accounting for underlying complex demographic
histories. In addition, our methodology provides a tractable way
of calibrating existing methods for detecting selection, for exam-
ple, by determining the size of the genomic footprint for different
modes of selection under a given demographic history.

Our method is based on the 2-locus Wright–Fisher model, and
its diffusion approximation, which has found widespread appli-
cation in population genetics (see e.g. Durrett 2008; Ewens 2010).
The Wright–Fisher diffusion is a stochastic process that describes
the random dynamics of allele or haplotype frequencies in a pop-
ulation under genetic drift, and can explicitly account for selec-
tion, recombination, mutation, and arbitrary population size
histories. The dynamics of the Wright–Fisher diffusion can be de-
scribed by a partial differential operator, or infinitesimal genera-
tor. The generator defines a pair of associated partial differential

(a) (b)

(d)(c)

Fig. 1 Graphical representation of the linear-logit approximation scheme in the single-locus case. Properly rescaled moments of a certain order can be
used to approximate moments of higher order. a) Moments of the Beta distribution with a ¼ b ¼ 0.1 for order n ¼ 30, 31, and 32. The x-axis shows
respective frequency of A alleles in the sample represented by the respective moment. b) Same moments as panel (a), but only frequencies between 0.2
and 0.8 are shown to highlight the differences and the decreasing trend. c) The moments for order n ¼ 30 and n ¼ 31 are rescaled by 31

33 and 32
33,

respectively and approximate the moments for n ¼ 32 well. d) Performing approximations in the logit-space increases the resolution near zero.

Fig. 2 Stylized Out-of-Africa demographic model. The ancestral
population size is 10,000, which is reduced to 2,000 during a bottleneck
4,000 generations ago. Exponential growth until the present starts 1,000
generations ago.
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equations (PDEs) known as the Kolmogorov forward and back-
ward equations. The solutions to these equations yield the transi-
tion density of the Wright–Fisher diffusion, which in turn gives
the likelihoods of allele frequency changes over time. However,
no analytic solutions are known to these equations, even in the
single-locus case. Instead, numerical approaches have been ap-
plied to compute this transition density (Kimura 1955a, 1955b;
Song and Steinrücken 2012; Zhao et al. 2013; Bergman et al. 2018;
He et al. 2020a) or to compute likelihoods of observed genetic data
(Jenkins and Song 2012; Steinrücken et al. 2014; Schraiber et al.
2016; He et al. 2020b). Approaches based on the Wright–Fisher dif-
fusion to study 2-locus models when selection is acting have
been applied before, for example by Barton and Etheridge (2004)
or Stephan et al. (1999), but not in scenarios with variable popula-
tion size.

To motivate our approach, we note in particular the frame-
work used by Williamson et al. (2005) and Gutenkunst et al. (2009),
who, in the single locus case, first solved the PDE using a finite
difference scheme to obtain the transition density of the Wright–
Fisher diffusion. The authors then integrated the resulting solu-
tion numerically to obtain the expected SFS, which in turn was
used for likelihood-based inference of demographic parameters
and selection coefficients. This approach was later extended by
Ragsdale and Gutenkunst (2017) to the 2-locus case under neu-
trality. The primary challenge with this approach, however, is
that it can become prohibitively computationally expensive and
inaccurate, especially in the 2-locus case, due to the high dimen-
sionality required for the solution scheme and accumulation of
errors in the subsequent numerical integration. Evans et al. (2007)
introduced a moment-based approach that circumvents this 2-
step procedure. The authors derived a system of ordinary differ-
ential equations (ODEs) that can be solved more efficiently to di-
rectly compute the moments of the diffusion, which can be used
to obtain the expected SFS or the probabilities of obtaining given
sample configurations. Jouganous et al. (2017) extended this ap-
proach to compute the joint SFS for multiple populations. While
their approach can in principle include the action of selection,
they focus on the inference of complex demographic histories.
One hurdle that arises with the inclusion of selection is that the
system of ODEs does not “close.” That is, the dynamics of the
moments of a certain order n depends on moments of order nþ 1.
The authors address this issue through a Jackknife approxima-
tion in which the higher-order moments are approximated from
those of lower order.

A straightforward extension of this technique to the 2-locus
case also results in equations that do not close, due to recombi-
nation and selection. However, one can consider alternative rep-
resentations of the moments which close under recombination
but not selection. To this end, Ragsdale and Gravel (2019) use an
extension of the moments presented by Hill and Robertson (1968)
to derive a framework for the estimation of complex demo-
graphic histories using multi-population 2-locus summary statis-
tics. Kamm et al. (2016) use a related set of moments, derived in a
coalescent framework, to perform fine-scale recombination rate
estimation. Although these alternative moments do close the
system of ODEs under recombination, they also increase its di-
mension. Since these alternative moments do not close under se-
lection, one would still need to rely on a Jackknife technique to
approximate higher order moments to capture the selection dy-
namics. For the approximation to be accurate, moments of suffi-
ciently high order have to be considered. However, due to the
high dimensionality, increasing the order of these alternative

moments can become prohibitive, making it computationally ex-

pensive to accurately include selection in this approach.
In this study, we introduce a numerical framework to com-

pute the trajectories of the 2-locus moments of the haplotype fre-

quencies, or haplotype sampling probabilities, under the Wright–

Fisher diffusion subject to genetic drift, mutation, recombination,

and selection. This method can simultaneously capture the im-

pact of selection, recombination, and changing population size

on higher order moments, or sampling probabilities, making it a

valuable tool for studying patterns of genetic variation arising in

populations under selection. To circumvent the high dimension-

ality required for alternative moment representations, we instead

use the regular moments (defined below) in our implementation,

combined with a novel efficient approximation of higher order

moments to “close” the dynamics for recombination and selec-

tion. A similar approach, including selection, is outlined in

Section S1.3 of the Appendix in Ragsdale and Gravel (2019). Here,

we give an alternative derivation which relies on Dynkin’s for-

mula. Moreover, Ragsdale and Gravel (2019) focus on the neutral

case in their study, but the approach has recently been used by

Ragsdale (2021) to explore how epistasis and dominance shape

expected patterns of signed LD in protein-coding variants. In this

study, however, we explore the dynamics of 1 selected locus and

its effect on linked neutral variation in populations with complex

demographic histories. Specifically, we investigate a scenario

with a population bottleneck followed by exponential population

growth, relevant to the Out-of-Africa bottleneck and subsequent

population expansion in human evolution. By comparing to sim-

ulations, we show that our method can accurately and efficiently

compute expected allele and haplotype frequency trajectories,

heterozygosity, LD, and the local SFS in a window around a se-

lected locus. Thus, the outlined method provides the means to

further our understanding of patterns observed in genomic data

from populations subject to selective pressure, in which the his-

tory of changing population sizes may obscure or confound the

signal of selection.
This study is organized as follows. In Methods, we derive the

system of ODEs for the moments of the 2-locus diffusion by ap-

plying Dynkin’s formula to the infinitesimal generator of the

Wright–Fisher diffusion. We present our novel moment closure

technique, and demonstrate its accuracy by comparing with sev-

eral alternative approaches. In Results, we show that our method

accurately computes the expected trajectories of allele frequen-

cies, haplotype frequencies, heterozygosity, and LD across a

broad range of parameters by comparing it to simulated trajecto-

ries. In addition, we show that the method accurately captures

the impact of selection at a given locus on the local SFS in a win-

dow around the selected site. Finally, in Discussion, we discuss

possible applications of our method in composite likelihood

frameworks to detect and infer the strength of selection, as well

as other strategies for how our method can improve existing in-

ference techniques.

Methods
In this section, we first give a description of the Wright–Fisher dif-

fusion, which is the mathematical framework we use to develop

our method. This is followed by a derivation of the system of

ODEs for the moment dynamics, as well as a description of the

moment-closure technique essential to the method.
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Wright–Fisher diffusion
We first introduce the 2-locus Wright–Fisher diffusion. Consider

a panmictic, diploid population of size Nt (2Nt gametes), at time

t � 0, where time is measured in 2N0 generations, where N0 is the

size of the reference population. We model the dynamics of 2

linked loci, locus A and locus B. Let EA ¼ f1; . . . ;KAg and EB ¼
f1; . . . ;KBg represent the set of alleles at locus A and locus B, re-

spectively. It follows that the set of possible 2-locus haplotypes is

given by E ¼ EA � EB, with K ¼ jEj. Any haplotype i 2 E can be rep-

resented by the 2-tuple (iA, iB), where iA and iB are the alleles at lo-

cus A and B, respectively. Let XðtÞ ¼ fXkðtÞgk2E be the vector of

frequencies of the haplotypes in the population at time t, where

XðtÞ takes values in the ðK� 1Þ-dimensional simplex,

DK ¼ x 2 RKj0 � xi � 1 8 i 2 E;
X
i2E

xi ¼ 1
� �

:

For moderate to large population sizes, the dynamics of XðtÞ
can be modeled using the Wright–Fisher diffusion, see for exam-

ple Durrett (2008, Ch. 7) or Ewens (2010, Ch. 4). Let Lt be the infin-

itesimal generator of the Wright–Fisher diffusion, which we

define in more detail below. In general, this generator depends on

the time t, allowing us to model changing population sizes. We

refer the reader to Karlin and Taylor (1981, Ch. 15.2) or Ethier and

Kurtz (2009, Ch. 10) for a more detailed introduction on the con-

cept of infinitesimal generators for diffusions. The transition

density of the Wright–Fisher diffusion, ptðx; yÞdy :¼ PfXðtÞ 2
dyjXð0Þ ¼ xg for x; y 2 DK, can be obtained as the solution to the

corresponding backward equation,

@

@t
ptðx; yÞ ¼ Lt ptð�; yÞ

� �
ðxÞ; (1)

for y fixed and Lt acting on ptðx; yÞ as a function of x.

Alternatively, the density can be characterized through the corre-

sponding forward equation where x is fixed and the adjoint of Lt

is applied to ptðx; yÞ as a function of y.
In this study, we model the dynamics in a population sub-

ject to genetic drift, mutation, natural selection, and recombi-

nation. The Wright–Fisher diffusion has the property that the

infinitesimal-generator is linear in these population genetic

processes. Namely, the generator can be decomposed as fol-

lows,

Lt ¼ Ldrift
t þ Lmut þ Lsel þ Lrec

where Ldrift
t ; Lmut; Lsel, and Lrec represent the contribution to

the generator from genetic drift, mutation, selection, and re-

combination, respectively. These 4 operators are given as fol-

lows:

Genetic drift operator
Setting kt :¼ N0

Nt
, the operator representing genetic drift is

Ldrift
t f ðxÞ
� �

:¼ 1
2

X
i;j2E

ktxiðdi;j � xjÞ
@2

@xi@xj
f ðxÞ; (2)

where di;j is the Kronecker delta, see for example Durrett (2008,

Ch. 8.1). Here the dependence of kt on time t allows the model to

capture changing population size by varying the strength of ge-

netic drift.

Mutation operator
For a model of recurrent mutation, let mi;j for i; j 2 E be the per
generation probability that a gamete carrying haplotype i muta-
tes to haplotype j. Let hi;j ¼

: 4N0mi;j be the population scaled
mutation rate from haplotype i to j and let hi;i ¼ �

P
j 2 E
j 6¼ i

hi;j. The

operator corresponding to mutation can then be written as,

Lmut f ðxÞ
� �

:¼ 1
2

X
i2E

X
j 2 E
j 6¼ i

fxjhj;i � xihi;jg
@

@xi
f ðxÞ

¼ 1
2

X
i2E

X
j2E

xjhj;i
@

@xi
f ðxÞ;

(3)

see for example, Durrett (2008, Ch. 8.1). This formulation allows a
very general mutation model, where in principle, the alleles at
both loci could mutate at the same time. If mutation rates are
low, and only 1 locus mutates at a time, we could use the special
case hi;j ¼ hiA ;jA , if iB ¼ jB and hi;j ¼ hiB ;jB , if iA ¼ jA.

Unfortunately, the generator for models with nonrecurrent
mutation in the limit of an infinite population size is often not
well-defined in the literature, but see Evans et al. (2007). This is
especially true when considering the variation at a particular pair
of loci as we do here. We nonetheless introduce the correct im-
plementation of a nonrecurrent mutation model at 2 linked loci
in our numerical framework in Appendix A: Derivation of
Moments—Nonrecurrent Mutation using arguments related to
the diffusion, but slightly different from the other cases consid-
ered here. Note that this implementation of the nonrecurrent
mutation model results in a nonlinear ODE. However, for conve-
nience, we will use the notation of a linear ODE in the remainder.

Selection operator
We assume a model of general diploid selection. To this end, let
si;j for i; j 2 E be the fitness advantage of a diploid individual carry-
ing the haplotypes i and j, that is, the probability that this individ-
ual is the parent of an offspring individual in the next generation
is proportional to 1þ si;j. Furthermore, let ri;j ¼ 4N0si;j be the
population-scaled relative fitness of an individual with haplo-
types (i, j). Without loss of generality, we can set sK;K ¼ 0 ¼ rK;K.
Define the marginal fitness of haplotype i 2 E in a population
with haplotype frequencies x as,

riðxÞ :¼
X
j2E

ri;jxj

and the mean fitness of the population r as,

rðxÞ :¼
X
i;j2E

ri;jxixj ¼
X
i2E

xiriðxÞ:

Using this notation, the selection operator can be expressed
as,

Lsel f ðxÞ
� �

:¼
X
i2E

xi½riðxÞ � rðxÞ� @
@xi

f ðxÞ; (4)

see for example, Steinrücken et al. (2013).

Recombination operator
Let r be the per generation probability of recombination between
locus A and B. For allele iA 2 EA at locus A and allele iB 2 EB at lo-
cus B, we define the marginal allele frequencies as,
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xðiA ;�Þ :¼
XKB

‘¼1

xðiA ;‘Þ and xð�;iBÞ :¼
XKA

‘¼1

xð‘;iBÞ:

The recombination operator is then given by,

Lrec f ðxÞ
� �

:¼ 1
2

X
i¼ðiA ;iBÞ2E

qðxðiA ;�Þxð�;iBÞ � xiÞ
@

@xi
f ðxÞ (5)

‘where q ¼: 4Ntr is the population scaled recombination rate be-

tween A and B, see Jenkins and Song (2012).

Dynkin’s formula and moment dynamics
The transition density ptðx; yÞ of the Wright–Fisher diffusion

describes the dynamics of the haplotype frequencies at 2 linked

loci. Ideally, one would obtain ptð�; �Þ analytically by solving the

Kolmogorov forward or backward equations, however, no analyti-

cal solution is known for these PDEs in general. Numerically solv-

ing Equation (1), for example by using finite difference methods,

is computationally expensive and challenging in many high-

dimensional settings (Gutenkunst et al. 2009; Ragsdale and

Gutenkunst 2017). In order to circumvent solving the PDE of the

forward Equation (1), an alternative technique presented by

Evans et al. (2007) provides a less computationally intensive

method of directly computing the moments of the transition den-

sity. These moments also yield the probability of obtaining a

given sample of haplotypes from the population, and thus are

also referred to as sampling probabilities. Conveniently, in many

applications these moments are the desired quantities, and com-

puting the transition density is just an intermediate step to ob-

tain them (Williamson et al. 2005; Gutenkunst et al. 2009;

Ragsdale and Gutenkunst 2017). The moments can also be used

to compute the expected values of many statistics obtained from

population genetic data, or for likelihood-based inference of

parameters.
Suppose that at time t � 0 1 obtains a sample of haplotypes

n ¼ fnigi2E from the population, where ni denotes the number of

haplotypes of type i 2 E in the sample. Setting

n ¼ jnj¼:
P

i2E ni; yn¼:
Q

i2E yni
i , and denoting by y0 the haplotype

frequencies at time 0, the probability of obtaining such a sample

is given by,

MnðtÞ ¼ CðnÞ
ð

DK

ynptðy0; yÞ dy (6)

where CðnÞ ¼: n
n1; . . . ; nK

� �
is the corresponding multinomial co-

efficient. We will frequently refer to Mn as defined above as a

“moment of order n” and find it helpful to define the vector of all

moments of order n as follows. For each n 2 Zþ, define the set

Cn ¼ fg 2 ZK
þj
P

i2E gi ¼ ng, and define the vector Mn ¼ fMnðtÞgn2Cn

as the collection of all moments of order n. The evolution of MnðtÞ
is given as the solution to a system of ODEs derived from the

Wright–Fisher diffusion. In previous works, these ODEs have

been derived using integration-by-parts (Evans et al. 2007) or the

transition probabilities in a finite population (Jouganous et al.

2017; Ragsdale and Gravel 2019). We give an alternate, more con-

venient, derivation using Dynkin’s formula, see for example

Karlin and Taylor (1981, Ch. 15) or Øksendal (2003, Lemma 7.3.2).

Theorem 1 (Dynkin’s Formula). Let X be a diffusion with genera-

tor A and let f be a compactly-supported and twice differentiable

function with continuous second derivative. Then if Xð0Þ ¼ x,

E½f ðXðtÞÞ� ¼ f ðxÞ þ E

ðt

0
Atf ðXðsÞÞds

" #
:

To obtain the requisite system of ODEs describing the evolu-
tion of MnðtÞ, we apply Dynkin’s formula to functions f of the
form of the integrand in Equation (6):

f ðyÞ ¼ CðnÞyn:

This yields,

MnðtÞ ¼ Mnð0Þ þ CðnÞ
Ð
DK

Ð t
0 Lsfyng ds ptðx; yÞdy

¼ Mnð0Þ þ CðnÞ
Ð t
0

Ð
DK
Lsfyngpsðx; yÞ dy ds;

where the second equality follows from Fubini’s Theorem.
Taking the derivative with respect to time t on both sides then
gives,

_MnðtÞ ¼ CðnÞ
ð

DK

Lfyngptðx; yÞ dy:

The following theorem is the key representation used in our
numerical method.

Theorem 2. The derivative of the moment-vector of order n, _Mn, can
be written as a linear combination of moments of order n, nþ 1, and
nþ 2 in the form,

_MnðtÞ ¼ Qn
driftMn þQn

mutMn þQn
selMnþ2 þQn

recMnþ1 (7)

where _Mn is the vector of derivatives for each entry of Mn. Furthermore,
when only genic selection is considered Qn

selMnþ2 ¼ Qn
genicMnþ1 and the

order nþ 2 moments are no longer needed.
The proof of this theorem relies on carefully rearranging terms

for each individual moment _MnðtÞ and aggregating across
moments (see Appendix A: Derivation of Moments for details) to
show that,

_MnðtÞ ¼ qn
driftMn þ qn

mutMn þ qn
selMnþ2 þ qn

recMnþ1

where each qn is a row vector of appropriate dimension corre-
sponding to the 4 population genetic processes of interest in this
study. The row vectors qn are then aggregated into matrices Qn. A
detailed proof is provided in Appendix A: Derivation of Moments.
With this representation, we can obtain the moments of the tran-
sition density by solving this system of ODEs, which is numeri-
cally more tractable than solving the multidimensional PDE of
the Wright–Fisher diffusion. However, note that moments of or-
der higher than n appear on the right-hand side of Equation (7).
The system of ODEs does not “close” in that the derivative in t of
the moments of order n depends on moments of order higher
than n. The lack of closure is due to the action of selection and re-
combination. Therefore, in order to solve these ODEs, one would
need to know all moments of all orders. We detail a novel alter-
native solution to this problem in Moment Closure, inspired by
the approach of Ragsdale and Gravel (2019), in which higher order
moments are estimated from those of lower order. Using this ap-
proximation effectively “closes” the ODEs and thus makes it trac-
table to numerically solve the ODEs for a given order n.

Moment closure
In this section, we detail our novel approach to approximate
higher order moments and close the ODEs described in the
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previous section. As we will compare our moment-closure ap-
proach to others, it will be convenient to refer to this method as
logit-linear throughout the study. Our approach is motivated by
the fact that properly rescaled moments converge to the underly-
ing distribution. The following convergence lemma makes this
statement more precise in the 1-dimensional case:

Lemma 3. Let l be a probability measure on ½0; 1� that has a den-
sity f : ½0; 1� ! R�0. For the sequence of approximating measures,

ln :¼ f nðyÞdy

with density,

f nðyÞ :¼
Xn

i¼0

ð1

0
bn

i ðzÞf ðzÞdz

 !
ðnþ 1Þ1 i�0:5

n ;iþ0:5
n½ ÞðyÞ (8)

where,

bn
i ðzÞ ¼

n
i

� �
zið1� zÞn�i

are the Bernstein polynomials, we have that

ln ! l

converges weakly as n!1.
Here 1AðyÞ is the indicator function which is equal to 1 if y 2 A,

and equal to 0 if y 62 A. We provide a proof of this lemma in
Supplementary Material 1. Note that the factor nþ 1 in Equation
(8) compensates for the fact that the individual moments com-
puted by the integral converge to 0. This factor does not need to
be exactly nþ 1, every factor that grows at same rate as n would
lead to the same results. We choose nþ 1 for convenience.

To illustrate Lemma 3 in practice, consider a single locus with
2 alleles A and a. Suppose that the population frequency of the A
allele follows a Beta distribution with parameters a ¼ b ¼ 0:1. The
Beta distribution is the stationary distribution under the muta-
tion model considered here. Our aim is to approximate moments
of order nþm from those of order n. To illustrate this, we depict
in Fig. 1a the vectors of moments of order 30, 31, and 32. The x-
coordinate for the i-th moment of order n is i

n, and we interpolate
linearly between these values. Since the moments also represent
probabilities of obtaining a certain sample configuration, the
fraction i

n is also the frequency of the A allele in the sample. Note
that in Lemma 3, the density f n is defined as a piece-wise con-
stant function, whereas we use linear interpolation here.
However, the result from Lemma 3 would hold for any suitable
interpolation scheme, so we proceed with the linear interpolation
for illustration purposes.

We observe that the shapes of the curves for different n are
similar, and the values are reasonably close to each other.
However, as can be seen in Fig. 1b, when focusing on the values
for intermediate frequencies, the exact values indeed differ and
decrease as the order n increases. As Lemma 3 suggests, the dis-
crepancy between moments of different orders can be compen-
sated for by rescaling the moments appropriately. Indeed, Fig. 1c
shows the same curves, but the moments of order n¼ 30 and nþ
1 ¼ 31 are multiplied by nþ1

nþ3 and nþ2
nþ3, respectively. The resulting

curves align well. However, note that the moments are small,
and will further decrease with increasing n. Moreover, the
moments also represent probabilities and the values are in the
interval ½0; 1�. Thus, we can apply the logit transformation

logitðpÞ ¼ log
p

1� p

� �

to improve the resolution for small values and further improve

the fit. Figure 1d shows the resulting transformed values, and

suggests approximating higher order moments by interpolating

the logit-transformed rescaled values.
For the 2-locus case, we require a multidimensional version of

Lemma 3:
Conjecture 4. Let l be a probability measure on DK with density

f : DK ! R�0. Define the measures ln on DK with densities

f nðyÞ :¼
X
n2Cn

ð
DK

CðnÞznf ðzÞ dzÞðnþ 1ÞK�1
YK�1

j¼1

1 nj�0:5

n ;
njþ0:5

n

� 	ðyjÞ

0
@

1
A:

0
@

(9)

Then

ln ! l

converges weakly.
This conjecture extends the results of Lemma 3 to multiple

dimensions, but we do not provide an explicit proof for it here.
By substituting the transition density of the Wight-Fisher dif-

fusion ptðx; yÞ for the density f ðyÞ in Equation (9), we observe that

when the moments of the Wright–Fisher diffusion are properly

rescaled they approximate its transition density as the moment

order increases. Again, the factor ðnþ 1ÞK�1 reflects the fact that

individual moments converge to 0, since the total probability

mass is spread out over an increasing number of configurations

as n increases. The factor compensates for this effect.
We use Conjecture 4 to motivate our moment approximation

technique as follows. Convergence of the rescaled moments to

the transition density implies that the elements of the approxi-

mating sequence are increasingly close to the limit. The individ-

ual elements of this sequence of rescaled moments can be used

as approximations to each other. Thus, we can accurately ap-

proximate Mn0 ðtÞ for a given configuration n0 with jn0j ¼ nþ 1 by

interpolating the values MnðtÞ for certain configurations n with

jnj ¼ n “close” to n0. Here, we use linear interpolation of the logit

of the values of MnðtÞ. We now explicitly define our logit-linear ap-

proximation in the general case.

Logit-Linear Interpolation
To define our moment approximation scheme in the 2-locus

case, we restrict ourselves to the setting in which both loci are bi-

allelic for convenience, that is jEAj ¼ jEBj ¼ 2 and K ¼ 4. Then, the

moment vectors can be represented as 3-dimensional vectors in

the 3-simplex D4. As suggested by Conjecture 4 and outlined

in the single-locus example, we will (1) rescale the moments so

that the magnitude is comparable across orders, (2) apply the

logit transformation to the rescaled moments, (3) perform lin-

ear interpolation, and (4) invert the logit transformation to ob-

tain the approximate moments of higher order. For numerical

stability, we will also (5) rescale the approximate moments to

sum to 1.
Suppose we have moments of order n, call them Mn as above,

suppressing the dependence on time, and we wish to estimate

moments of order nþm, Mnþm. In the case of genic selection and

recombination (analyzed in Results) we will only need to increase

the moment order by 1, that is m¼ 1, while for general models of
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selection m¼ 2 is needed. In order to rescale Mn to a comparable
magnitude as Mnþm we will multiply Mn by,

jðn;mÞ ¼: ðnþ 1Þ3

ðnþmþ 1Þ3
:

Focusing on the details of the interpolation step, recall
that the moment vectors Mn and Mnþm are indexed by the
sets Cn and Cnþm, respectively. For any ~n 2N, define sets
~C~n¼

: fg 2 RK
þj~n � g 2 C~ng. Namely, these are the same as the sets

Cn and Cnþm with the elements rescaled so that they are elements
of D4, the 3-dimensional simplex. Whereas Cn is the set of all mo-
ment powers that add up to n, ~Cn represents the corresponding
configurations in the frequency space D4. For every n 2N let in :
~Cn 7!Cn map the elements in ~Cn to the corresponding configura-
tion in Cn. We call this the “sample frequency representation” of
a moment since it represents the frequency of each haplotype in
a sample of size n. Define the function fn;m : D4 7!R where for ev-
ery ~n 2 ~Cn,

fn;mð~nÞ¼
: logitðjðn;mÞMinð~nÞÞ:

Specifically fn;m maps the scaled indices ~Cn to their corre-
sponding elements of Mn, rescaled by jðn;mÞ and with the logit
transformation applied. Given l 2 Cnþm; Ml is estimated by first
computing the linear interpolation of fn;mð~n1Þ; . . . ; fn;mð~n4Þ, where
~n1; . . . ; ~n4 are the 4 elements of ~Cn closest to i�1

nþmðlÞ, and then ap-
plying the inverse of the logit transformation. We perform this
process to obtain each element of Mnþm. The final step is to re-
normalize the estimated moments Mnþm to sum to 1. We found
that this scheme increased accuracy and stability when numeri-
cally solving the moment ODEs. In Results, we will provide com-
parison to the following alternative estimation techniques.

Alternative techniques
In this section, we give a brief outline of other moment approxi-
mation techniques that we considered. While these methods all
provide viable means of estimating higher order moments, the
logit-linear method showed the best performance, as we will dem-
onstrate in Results.

Linear interpolation (no logit)
The first alternative considered, referred to as linear, is the same
as logit-linear without applying the logit transformation.
Specifically, the steps for linear are (1) rescale the moments of or-
der n, (2) perform linear interpolation on the rescaled moments,
(3) rescale the resulting approximate moments of order nþm to
sum to 1.

“Jackknife” approximation
This moment closure technique was first introduced for the
single-locus setting by Jouganous et al. (2017) following ideas pre-
sented by Gravel, National Heart, Lung, and Blood Institute
(NHLBI) GO Exome Sequencing Project (2014). The basic approach
is to approximate the distribution of the population allele fre-
quency underlying the moments using a quadratic function a0 þ
a1xþ a2x2 with coefficients a ¼ ½a0; a1; a2�, which results in expres-
sions for the moments of any order in terms of a. A given mo-
ment of order nþm, call it mi, can be approximated as follows:
Select the 3 moments of order n which are “closest” (in the sense
of their sample frequency representation), say mî�1;mî ;mîþ1.
Since these moments of order n are known quantities, 1 can de-
rive a system of equations and solve for the parameters a. In

turn, these parameters can then be used to compute mi. While as-
suming the distribution is quadratic may seem restrictive, note
that since the a’s are not fixed a priori and are recomputed for
each mi, this amounts to assuming the distribution is only locally
quadratic, a much milder assumption. For more information we
refer to reader to Jouganous et al. (2017).

In Appendix S1.3 of Ragsdale and Gravel (2019), the authors
present a 2-locus implementation of this scheme. Assuming bi-
allelic loci, the quadratic function for the population allele fre-
quency is then a 3-dimensional function on D4 and requires 10
coefficients. Thus, in order to estimate a moment of order nþm
[indexed by (i, j, k)], one must select the 10 closest moments of or-
der n [indexed by ð̂i; ĵ; k̂Þ]. The authors further specify a constraint
stating that 3 separate values for each coordinate (i.e. î; ĵ; k̂) must
be included in the set used to estimate the quadratic coefficients.
We will refer to this method as jackknife and refer the reader to
Ragsdale and Gravel (2019, Appendix S1.3.5) for a more detailed
explanation. In addition, we consider the estimator without the
added constraint that each coordinate takes 3 values which we
will call jackknife-unconstrained.

Least squares projection
Last, we also considered a method that we refer to as least-
squares. To this end, we say that Mnþm and Mn are “parsimonious”
if Mn is equal to the moments of order n computed from the
larger samples in Mnþm. Note that if we view the moments as
sampling probabilities then Mn can be computed by downsam-
pling from Mnþm. In this case the 2 vectors will satisfy a set of
identities relating them to one another, see Supplementary
Material 2.2 for a more detailed description. One can then define
a matrix Dnþm;n representing these relations such that
Dnþm;nMnþm ¼Mn holds if they are parsimonious. In the least-
squares estimator we select the vector of moments of order mþ n
which is parsimonious with the moments of order n and has the
smallest sum of squares. In particular we take the estimate of
Mmþn to be the solution to the following optimization problem:

minjjMnþmjj2 such that Dnþm;nMnþm ¼ Mn:

This is a common optimization problem for which closed form
solutions and efficient solvers exist. We refer the reader to Boyd
and Vandenberghe (2018, Ch. 16) for a detailed introduction.

Results
In this section, to verify the efficiency and accuracy of our novel
method, we compare moments obtained using our numerical sol-
utions of the ODEs with the same quantities obtained from simu-
lations conducted using SimuPOP (Peng and Kimmel 2005; Peng
and Amos 2008). Details on our numerical implementation of a
step-wise scheme to solve the ODEs can be found in
Supplementary Material 2.1. We note that in order to make the
simulations computationally feasible, we follow a standard ap-
proach to decrease the population size by a factor of 10 and
rescaled all other parameters accordingly. The section Fixed
Initial Frequencies is devoted to validating the model when the
genetic variation at the pair of loci separated by a given recombi-
nation distance is initialized with fixed haplotype frequencies.
We also demonstrate that our novel moment approximation
technique outperforms the other candidates outlined in Moment
Closure in the simulated scenarios. In Initializing at Stationarity,
we investigate scenarios where the genetic variation at the neu-
tral sites is initialized from the stationary distribution, and vary
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the recombination distance to exhibit linkage effects as they
change along the genome. In both sections, we consider the case
in which all loci are bi-allelic (i.e. 4 haplotypes at a pair of loci)
and only consider the case of genic selection. We consider a re-
current mutation model in which every allele mutates at rate m,
that is haplotypes which share the same allele at 1 locus but dif-
fer at the other mutate into each other at rate m. We expect simi-
lar accuracy if the mutation probabilities would be locus-specific.
The demographic model considered here is an idealized approxi-
mation of a European population in the Out-of-Africa model (e.g.
Gutenkunst et al. 2009; Jouganous et al. 2017). The ancestral popu-
lation size is 10,000, which is reduced to 2,000 during a bottleneck
that starts 4,000 generations before present. The population stays
at this reduced size, until 1,000 generations before present, when
it experiences exponential growth at rate 0.25% per generation
until the present, see Fig. 2 for a schematic.

By considering different initial times (labeled g1, g2, and g3) for
the introduction of the beneficial allele (10,000 generations before
present, at the beginning of the bottleneck, and at the beginning
of the growth phase, respectively), and exhibiting the moments
at several points in time afterwards, this model essentially allows
us to investigate the dynamics of relaxation to stationarity, dur-
ing the bottleneck only, or just exponential growth, in a single
model, thus covering a wide range of demographic scenarios, pro-
viding confidence that our method can accurately account for ar-
bitrary population size histories. In all cases we used moments of
order 31 for the numerical solutions. This choice resulted from
balancing a high moment order for the accuracy of the moment
approximation with computational limitations due to the dimen-
sion of the moment vector Mn increasing cubically with the mo-
ment order.

Fixed initial frequencies
In this section, we consider the setting of 2 loci separated by a re-
combination distance q ¼ 4N0r. We consider a scenario with 2
alleles (A and a) at the first locus and 2 (B and b) at the second lo-
cus. At each locus, we use the recurrent mutation model, where
an allele mutates into the other with rate h ¼ 4N0m and we con-
sider genic selection on allele A with population scaled selection
coefficient r ¼ 4N0s, where s ranges from 0 to 0.005. In order to
validate our results we compare moments obtained from the nu-
merical solution of the ODEs to moments obtained from simula-
tions using SimuPOP (Peng and Kimmel 2005; Peng and Amos
2008). We consider a variety of different parameter values for the
initial haplotype frequencies, selection coefficient, and recombi-
nation rate. For the initial haplotype frequencies we vary the ini-
tial frequency xA of the selected allele A and initialize the
population such that frequencies of haplotypes AB, Ab, aB, and ab
are xA, 0, 0:5� xA, and 0.5, respectively. The different parameter
values used are provided in Table 1 and all combinations of
parameters values were tested. We chose these to roughly mirror
human genetic parameters, with a per generation per locus mu-
tation probability of m ¼ 1:25 � 10�8, and a per generation recom-
bination probability of r ¼ 10�8 between 2 neighboring nucleotide
sites. The recombination probability of r ¼ 10�2 thus roughly cor-
responds to a physical distance of 1,000,000 bp. In addition,
throughout this study all population scaled parameters (i.e.
q; r; l) are given with respect to a reference population size of
N0 ¼ 10; 000, regardless of the details of the demographic model.

Comparison of moment approximation methodology
We now compare the moments obtained from numerically solv-
ing the ODEs when utilizing different moment approximation

techniques to the same moments obtained from the simulations
described above. As discussed in Moment Closure, the moment
approximation techniques we consider are logit-linear, linear, jack-
knife, jackknife-unconstrained, and least-squares. In addition to these
methods we test 2 additional modifications to each, which can be
employed in the numerical solution of the ODEs. The first is
whether or not to re-normalize the vector of moments after each
step of the ODE solver. Specifically, after the solver takes a step
the error incurred from the moment approximation may cause
the moment vector not to sum to 1, however, we can re-
normalize the state vector to sum to 1. The second option is to
force the approximated higher-order moment to be
“parsimonious” with the lower-order moment. We will defer a de-
tailed description of this modification to Supplementary Material
2.2, but it amounts to projecting the original estimate of Mnþ1ðtÞ
onto the space of order nþ 1 moments which reduce to the origi-
nal MnðtÞ when the order n moments are computed. Note that by
definition the least-squares approximation technique already sat-
isfies this requirement so the parsimonious projection does not
modify this approximation.

The solutions of the ODEs and simulations were compared as
follows. For each combination of parameters in Table 1, we per-
formed 1,000 repetitions using SimuPOP. At the end of each repe-
tition, the expression under the integral in Equation (6) were
computed based on the haplotype frequencies in each replicate.
These were then averaged over the 1,000 repetitions to get esti-
mates for all moments of order 31. Furthermore, the respective
moments were also computed using the numerical approach to
solve the ODE with different moment approximation schemes. In
order to evaluate the accuracy of the different approximation
schemes, we computed (1) the total absolute error and (2) the
mean-squared error (MSE) between the simulated moments and
those obtained from numerically solving the respective ODEs. In
Tables 2 and 3, for logit-linear, linear, jackknife, jackknife-uncon-
strained, and least-squares, we present the combination of renorm-
alization and parsimonious projection which leads to the best
results. In all cases, except for linear, the combination of options
with the lowest absolute error and lowest MSE were the same.
For the case of linear, including the parsimonious projection with-
out renomalizing resulted in the best absolute error while exclud-
ing parsimonious projection and renormalizing resulted in the
best MSE. In Table 2, we report the results where we average the
errors across all parameter configurations. We note that logit-lin-
ear outperforms the other methods on both Absolute Error and
MSE, by several orders of magnitude in some cases. Similarly, in
Table 3 we report the results of the worst performance across all
parameter configurations. Specifically, for each combination of
approximation type, renormalization, and parsimonious projec-
tion we compute the highest Absolute Error and MSE between the
different parameter configurations. We then select the approxi-
mation type with the minimum (i.e. the mini-max) of these quan-
tities across renormalization, and parsimonious projection. For
this metric, the combination of options with the lowest absolute
error and lowest MSE were the same with the exception of

Table 1. Parameters values that are used to compare the
numerical method against simulations.

Initial frequency of beneficial allele
(xA)

0:01; 0:03; 0:05; 0:1

Selection coefficient (r) 0; 0:01; 0:1; 1; 10; 100
Recombination rate (q) 0:0004 ðr ¼ 10�8Þ; 400 ðr ¼ 10�2Þ
Mutation rate (h) 0:0005 ðm ¼ 1:25 � 10�8Þ
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Jackknife-Unconstrained. Again, the scheme logit-linear with renorm-
alization outperforms all other approximation techniques, in
some cases by several orders of magnitude. Based on these simu-
lations we chose logit-linear as the moment approximation
method used in the remainder of this manuscript.

Accuracy and efficiency with varying moment order
To better understand how the choice of the moment order affects
accuracy and efficiency of our method, we performed the follow-
ing analysis. We computed the numerical solutions for different
moment orders using our method for all parameter combinations
from Table 1. For each moment order, we then down-sampled
the vector of moments to a vector of order 10, and computed the
error between this vector and the same vector obtained from
1,000 replicated simulations using SimuPOP. This analysis corre-
sponds to a situation, where a user would ultimately only be in-
terested in moments of order 10, but the actual order used in the
numerical solution is increased to capture the dynamics for re-
combination and selection more accurately. In Fig. 3a, we depict
the error of the moments obtained from the numerical solution
for different orders. As expected, the accuracy of the numerical
solution of the ODE increases with increasing order, but for larger
orders, the gain diminishes. In Fig. 3b, we show the corresponding
runtimes, obtained on a 2.0 GHz Intel Haswell computing core.
The runtimes increase with increasing moment order. This is
expected, as the size of the moment vector increases exponen-
tially with moment order, although the runtimes appear to in-
crease sub-exponentially. Ultimately, the choice of order is a
balance between accuracy and efficiency. For the remainder of
the study, we chose n¼ 31 to have a high degree of accuracy,
while still computing the solutions in a reasonable amount of
time.

Comparing trajectories of moments
In this section, we will present comparisons of trajectories of the
moments between the simulations and the numerical solutions
of the ODEs. We begin by noting that moments of lower order can
be computed from moments of higher order, and can then subse-
quently be used to compute quantities of interest, for example
expected allele frequencies, expected haplotype frequencies,
expected heterozygosity or expected LD. Thus, we compute the

numerical solutions of order 31 first, to ensure sufficient accu-
racy of the moment approximation, and then compute the
moments of lower order that we investigate. In Figs 4–7, we com-
pare the dynamics of the solutions to the ODEs with simulations
starting the dynamics 10,000 generations before present (g1),
4,000 generations before present (beginning of the bottleneck, g2),
and 1,000 generations before present (beginning of the exponen-
tial growth, g3). We show the expected values computed from
the numerical solution of the ODEs and the mean over the
1,000 simulated replicates, also indicating the region of
61:96� standarderror, corresponding to a 95% confidence inter-
val. Figure 4 displays the expected trajectory of the selected allele
A computed using the numerical solutions of the ODEs and from
the average of the SimuPOP simulations. We show the trajectories
for xA ¼ 0:05 and the 3 largest selection coefficients r ¼ 1; 10, and
100. We can see that the solution to the ODEs accurately tracks
the values from the simulations, and thus captures the popula-
tion dynamics well. As expected, a larger selection coefficient
leads to a faster increase of the allele frequency toward fixation
at 1. The increase is slower during the bottleneck (red trajecto-
ries), since the efficacy of selection is reduced in the smaller pop-
ulation. In the single-locus case, we can also compute this
expected allele frequency more accurately using a different tech-
nique developed by Steinrücken et al. (2014). However, this tech-
nique can only be applied in the case of constant population size,
but we provide comparisons to the numerical solution of the ODE
and simulations in Supplementary Material 3.1.2.

Next, in Fig. 5, we show the trajectories of the expected fre-
quency of haplotype AB, which carries the beneficial allele A.
Here, we show the scenarios with a recombination rate of q ¼
400. This choice exhibits a broader spectrum of dynamics, since
in the case q ¼ 0:0004 linkage is very strong, and thus the dynam-
ics are similar to the single locus case in Fig. 4 (see
Supplementary Fig. 1). With q ¼ 400 however, due to the strong
recombination, we observe an initial decrease in the frequency of
the AB haplotype, since the A allele is only introduced on the B
background, and then quickly spreads to the b background as
well. Subsequently, the dynamics are then again dominated by
selection, and the haplotype AB increases, but only to a fre-
quency of 0.5, since the Ab haplotype will also rise to that fre-
quency in this scenario. Again, the increase is faster for stronger

Table 3 Mini-max absolute error and mean squared error comparing simulated moments of order 31 with numerical solutions using
different moment approximation schemes, among the parameters given in Table 1. Lowest errors inicated in bold.

Approximation method Renormalize Parsimonious Absolute error MSE

Logit-linear True False 0.000027 4:24 � 10�7

Linear True False 0.000122 8:88 � 10�6

Jackknife True True 0.000254 1:07 � 10�4

Jackknife-unconstrained True False 0.000334 2:92 � 10�5

Jackknife-unconstrained True True 0.000240 1:01 � 10�4

Least-squares True NA 0.000201 6:75 � 10�5

Table 2. Absolute error and mean squared error comparing simulated moments of order 31 with numerical solutions using different
moment approximation schemes, averaged over the parameters given in Table 1. Lowest errors indicated in bold.

Approximation method Renormalize Parsimonious Absolute error MSE

Logit-linear True False 0:000014 9:47 � 10�8

Linear True False 0.000046 1:18 � 10�6

Linear False True 0.000020 1:47 � 10�6

Jackknife True True 0.000048 1:04 � 10�5

Jackknife-unconstrained True False 0.000042 8:62 � 10�6

Least-squares True NA 0.000019 1:79 � 10�6

E. Friedlander and M. Steinrücken | 9

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac012#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac012#supplementary-data


selection. To complement these dynamics, in Fig. 6 we also depict
the trajectory of the expected LD between locus A and locus B:

DðtÞ :¼ E½XðA;BÞðtÞXða;bÞðtÞ � XðA;bÞðtÞXða;BÞðtÞ�

¼
MeðA;BÞþeða;bÞ ðtÞ

2
�

MeðA;bÞþeða;BÞ ðtÞ
2

;
(10)

where ei is the vector with 1 in component i, and 0 otherwise.
We observe that it rapidly decreases, coinciding with the

decrease of the expected frequency of the AB haplotype, but
once it reaches zero, the haplotype frequencies starts increas-
ing again.

Last, we also investigate the dynamics of the expected LD in
the scenario with the lower recombination rate q ¼ 0:0004, dis-
played in Fig. 7. This lower recombination rate leads to much
slower decay in LD, allowing us to exhibit the intricate interaction
between selection, recombination, and demography. In the case
of strong selection, we observe that LD can actually increase, the

(a) (b)

Fig. 3 Error and runtime of the numerical solution scheme. The accuracy increases with increasing order, but the runtime also increases. Thus, the
choice of the order depends on the user’s preferences regarding this balance. a) Error of moment vector from numerical solutions (down-sampled to
order 10) when compared to simulations. Mean MSE and absolute error is over all parameter combinations. Max is the maximum among them. b)
Runtime of the numerical procedure for different moment orders. Mean is taken over all parameter combinations. Max is the maximum among them.

(a) (b) (c)

Fig. 4 Expected trajectory of frequency of beneficial allele A. Blue, red, and green correspond to the dynamics starting 10,000 generations, 4,000
generations (beginning of the bottleneck), and 1,000 generations before present (beginning of exponential growth), respectively. The dotted and solid
lines correspond to the simulation average and ODE solution, respectively, with the shaded region indicating a 95% confidence interval. a) Selection
coefficient r ¼ 1. b) Selection coefficient r ¼ 10. c) Selection coefficient r ¼ 100.

(a) (b) (c)

Fig. 5 Expected frequency of the AB haplotype, carrying the beneficial allele. Again, blue, red, and green correspond to the dynamics starting 10,000
generations, 4,000 generations (beginning of the bottleneck), and 1,000 generations before present (beginning of exponential growth), respectively. The
dotted and solid lines correspond to the simulation average and ODE solution, respectively, with the shaded region indicating the 95% confidence
interval. a) Selection coefficient r ¼ 1. b) Selection coefficient r ¼ 10. c) Selection coefficient r ¼ 100.
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effect is however dependent on the population size. This behavior
has already been noted before, see for example Kim and Nielsen
(2004). As can be seen in Fig. 7a and b, the rate of decrease
changes substantially when the bottleneck at 4,000 generations
before present and the exponential growth 1,000 generations be-
fore present is encountered. In addition to exhibiting the complex
dynamics of the genetic variation in the population in these sce-
narios, the close match between the simulations and the numeri-
cal solutions demonstrates that our method accurately captures
this dynamics and correctly accounts for the variable population
size history.

In summary, we observe that our method captures the popu-
lation dynamics of the expected frequencies and LD well. Thus,
the results present in this section provide evidence that our
method efficiently and accurately computes the correct dynam-
ics of the genetic variation at 2-linked loci across a wide range of
parameter settings, including selection at 1 of the loci.

Initializing at stationarity
We are furthermore interested in applying our method to study
scenarios in which a novel beneficial allele arises in a population
at stationarity, that is, the linked neutral allele is in mutation-
drift equilibrium. Under the Wright–Fisher diffusion with recur-
rent mutation, this stationary distribution is given by a Beta(h; h)
distribution (cf. Durrett 2008, Sec. 7.5). In this case, the initial
haplotype frequencies are not fixed values, but random and fol-
low a certain distribution. Here, we initialize the ODEs with the
moments of this distribution. Characterizing these moments
requires additional assumptions about how the new mutation
arises in the population. In particular, say the new beneficial

allele arises at a low frequency xA. The new allele will fall either
on the B or the b background. The probability of obtaining a sam-
ple containing both haplotype AB and Ab under this distribution
is 0, and thus the only nonzero moments are those were either
nðA;BÞ ¼ 0 or nðA;bÞ ¼ 0. In addition, the probability of A arising on
the background B (or b) is proportional to the frequency of allele B
in the population. As a result, the focal allele A tends to arise
linked with the major allele more frequently than the minor al-
lele. We give a detailed derivation of the initial moments for this
scenario in Supplementary Material 2.4.2.

We chose the initial frequency for the beneficial allele as xA ¼
0:05 and initialize the ODEs using this distribution. This fre-
quency is chosen to be 0.05 because, when initialized with fewer
beneficial alleles, the selected allele is purged from the popula-
tion most of the time, leading to very little difference from the
neutral case for the expected quantities considered here.
Computing the solution for different recombination rates allows
us to explore how the impact of selection on linked neutral varia-
tion changes with increasing recombinational distance from the
focal site under selection. Again, in the remainder of this section
we compare the numerical solutions of the ODEs to the corre-
sponding quantities obtained from simulations using SimuPOP.
We assume the same demographic model as above and, assum-
ing that 2 adjacent base-pairs are separated by a recombination
distance of q ¼ 0:0004, explore a 100 kbp region around the focal
locus under selection. We consider 40 equally spaced neutral loci
on either side of the selected side, the first of which is assumed to
be perfectly linked (i.e. q¼ 0) with the selected locus and the out-
ermost is separated by a recombination distance of
q ¼ 50; 000� 0:0004 ¼ 20. In the SimuPOP simulations we

(a) (b) (c)

Fig. 6 Expected linkage Disequilibrium between locus A and B for q¼ 400. Blue, red, and green correspond to the dynamics starting 10,000 generations,
4,000 generations (beginning of the bottleneck), and 1,000 generations before present (beginning of exponential growth), respectively. The dotted and
solid lines correspond to the average of the simulations and ODE estimates, respectively, with the shaded region representing a 95% confidence interval.
a) Selection coefficient r ¼ 1. b) Selection coefficient r ¼ 10. c) Selection coefficient r ¼ 100.

(a) (b) (c)

Fig. 7 Linkage Disequilibrium between locus A and B for q ¼ 0:0004. Blue, red, and green correspond to the dynamics starting 10,000 generations, 4,000
generations (beginning of the bottleneck), and 1,000 generations before present (beginning of exponential growth), respectively. The dotted and solid
lines correspond to the average of the simulations and ODE estimates, respectively, with the shaded region representing a 95% confidence interval.
a) Selection coefficient r ¼ 1. b) Selection coefficient r ¼ 10. c) Selection coefficient r ¼ 100.
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simulate a population in which each individual has 41 loci, and
for the numerical method, we solve the ODEs for each neutral lo-
cus paired with the selected locus, thus we solve it 40 times with
different recombination rates. Note that we will mirror the plot in
all cases so that the selected locus is in the center and it captures
the dynamics of a 100 kbp region with a selected locus in the cen-
ter. Since each of the 40 loci effectively represents 1,250 nucleo-
tide sites, we also increase the population scaled mutation rate to
h ¼ 0:625 in order to achieve the appropriate levels of neutral
diversity. Finally, as in the previous section, we reduce the popu-
lation size in the simulations by a factor of 10 to allow for tracta-
ble simulations and scale the parameters accordingly.

In Fig. 8, we examine the expected heterozygosity at the neu-
tral loci for different selection coefficients, defined as

HðtÞ :¼ E½ðXða;BÞðtÞ þ XðA;BÞðtÞÞðXða;bÞðtÞ þ XðA;bÞðtÞÞ�

¼ 1
2

Meða;BÞþeða;bÞ ðtÞ þ
1
2

Meða;BÞþeðA;bÞ ðtÞ

þ 1
2

MeðA;BÞþeða;bÞ ðtÞ þ
1
2

MeðA;BÞþeðA;bÞ ðtÞ;

where A denotes the beneficial allele. The left-most column
shows the results when the beneficial allele is introduced 10,000
generations before present (g1), thus experiencing the full demog-
raphy, the middle column shows starting from just before the
bottleneck (4,000 generations before present, g2), and the last col-
umn shows the results when starting at the beginning of the ex-
ponential growth (1,000 generations before present, g3). Note that
in the examples where the beneficial is introduced at g1 and g2

the dynamics are initialized with the stationary distribution com-
puted based on the larger (pre-bottleneck) population size. For

the third column, in which the beneficial allele is introduced at g3

after 3,000 generations in a bottleneck, we use an approximation
detailed in Supplementary Material 2.4.4 to compute the
moments for the case when the beneficial allele is introduced
into a population with a nonstationary distribution. Along the
rows from top to bottom, the selection coefficients are r ¼ 1; 50,
and 100. Note that in all cases, at the time the beneficial allele is
introduced, the level of heterozygosity is the same across all neu-
tral loci. As expected, this background level is lower when the
beneficial allele is introduced after the bottleneck. Moreover,
over time, selection reduces the heterozygosity at the selected lo-
cus, and this effect is stronger for larger selection coefficients.
The neutral loci most closely linked to the selected locus also ex-
perience this reduction in heterozygosity, but the effect dimin-
ishes with increasing recombination distance, resulting in the
characteristic “V” shape indicating a loss of genetic diversity near
the selected locus, the hallmark signature of genetic hitchhiking.
At the same time, the overall level of heterozygosity also
decreases as the population enters the bottleneck. Moreover, in
the case of strong selection, once the beneficial allele has swept
to high frequency, the minimum of the “V” starts to increase
again, and the signature of the selective sweep starts to erode.
For completeness, we provide similar Figures for xA ¼ 0:03
(Supplementary Fig. 4) and xA ¼ 0:01 (Supplementary Fig. 5).

To complement these considerations on the dynamics of
expected heterozygosity at the neutral sites, we also investigated
a measure of LD in the same scenarios. Due to the stationarity as-
sumption at the neutral site, regular LD at the time when the
beneficial allele is introduced can be positive or negative with
equal probability, and thus the expected LD as given in Equation

Fig. 8 Expected heterozygosity across a 100 kbp region with different selection coefficients and times that the beneficial allele is introduced. The dotted
and solid lines represent the simulations and numerical results, respectively, with the shaded region indicating a 95% confidence interval.

12 | GENETICS, 2022, Vol. 220, No. 3

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac012#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac012#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac012#supplementary-data


(10) is 0 at all later times. For this reason, we consider the expec-
tation of LD squared, that is,

D2ðtÞ :¼ E½ðXðA;BÞðtÞXða;bÞðtÞ � XðA;bÞðtÞXða;BÞðtÞÞ2�;

which can be expressed in terms of the moments of order 4.
Figure 9 shows D2ðtÞ in the same scenarios and for the same
times as Fig. 8. Since in the initial distribution, the beneficial al-
lele arises on a given neutral background, that is, it is entirely
linked to 1 neutral allele, at the time of introduction, we see a cer-
tain level of D2. At the loci that are far away from the focal locus,
D2 goes to zero over time. However, closer to the selected locus,
the dynamics of the selected allele causes D2 to increase strongly.
For small selection coefficients, in contrast to little impact on the
expected heterozygosity, we see a strong impact on D2. This is
due to weak selection increasing the allele frequency continu-
ously over long time intervals, and thus constantly building up
LD. On the other hand, for strong selection, where the beneficial
allele sweeps to fixation quickly, we observe a quick build-up of
LD, but this signal also vanishes quickly once the beneficial allele
is close to fixation. This build-up and decay has been exhibited in
the literature before, for example by Zeng et al. (2021). For the
strongest selection coefficient, we do not observe this build-up,
since our resolution in time is likely not fine enough. For com-
pleteness, we provide similar Figures for xA ¼ 0:03
(Supplementary Fig. 6) and xA ¼ 0:01 (Supplementary Fig. 7) in
the Supplementary Material.

As Figs. 8 and 9 show, our method can be used to elucidate the
extent of reduction in heterozygosity or inflation of LD at certain
recombination distances from the focal locus, and thus ulti-
mately to characterize how wide the footprint of genetic

hitchhiking extends in a variety of scenarios. Moreover, we ob-
serve again that the numerical solutions fall within the confi-
dence bounds of the simulations, indicating that our numerical
method is highly accurate in capturing the dynamics. In addition,
the numerical solutions result in fairly smooth curves for the
expected quantities of interest, whereas the curves estimated
from the simulations exhibit a large degree of variability, which
could only be reduced by performing many additional simula-
tions, and would drastically increase computation time. In cases
with much lower mutation rates than considered in our compari-
sons we would need many replicates of the simulations to even
observe a single mutant at the neutral locus, resulting in even
more variable estimates of very small quantities. However, the
numerical solutions of the ODEs can readily incorporate the re-
spective dynamics and yield accurate results at all scales.

Impact of selection on local SFS
In this section, we use our method to investigate the impact of se-
lection at a focal locus on summary statistics of the neutral vari-
ation in a surrounding genomic window. Specifically, we will use
the numerical solutions of the ODEs to efficiently and accurately
compute the expectation of the SFS in this genomic window. We
will consider only the full demographic model g1, see Fig. 2, that
is, the beneficial allele is introduced 10,000 generations before
present. We use the nonrecurrent mutation model and set the
per locus mutation rate to h ¼ 0:0005 The recombination rate be-
tween adjacent sites is set to q ¼ 0:0004. In order to compute the
expected SFS for the whole window, we compute the 2-locus
moments using the ODEs over on a grid of 20 different recombi-
nation rates where the minimum is, q ¼ 0.0004, and the maxi-
mum is the maximum observed in the region of interest. As we

Fig. 9 Expected D2 across a 100 kbp region with different selection coefficients and times that the beneficial allele is introduced. The dotted and solid
lines represent the simulation and ODE results, respectively, with the shaded region representing a 95% confidence interval.
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will use window sizes 100, 500 kbp, and 1 Mbp, with the selected
locus in the center, the maximum q is thus 20; 100; and 200, re-
spectively, and the interior grid-points have logarithmic spacing.
For a locus separated from the selected locus by a given recombi-
nation distance q that is not on the grid, we compute its vector of
moments by interpolating between the moments computed on
the grid. From these 2-locus moments, which yield the 2 locus
sampling probabilities, we can compute an individual locus’ con-
tribution to the SFS by marginalizing over the selected locus
which yields the vector of single-locus moments (sampling prob-
abilities) at the neutral locus. Specifically, for a given sample size
n and number of minor derived alleles k, we compute the sum of
2-locus moments

Sn
kðtÞ :¼

X
i 2 E

iB ¼ k

MiðtÞ;

since b is the ancestral allele at the netrual site This yields the
contribution to the k-th entry of the expected SFS by a neutral lo-
cus separated from the focal selected locus by the given recombi-
nation distance. Summing these quantities over all loci across
the window of interest yields the full expected SFS.

We consider 3 different window sizes (100, 500 kbp, and 1
Mbp) in which the locus at the center is under genic selection
with 3 different population scaled selection coefficients (r ¼ 1; 50,
and 100), and compute both the expected SFS for a sample of size
31. Again, we note that the choice of this order strikes a balance
between accuracy of the moment approximation technique and
the size of the moment vector limiting computation. In principle,
one could compute the expected SFS for larger samples, by com-
puting the moments of a moderate order, and then using the sol-
utions to approximate the higher orders using the moment
approximation techniques outlined in Moment Closure. This
does, however, require modifying the approximation technique
at the boundaries, and this comes at a computational cost. We
explore a preliminary implementation in Supplementary
Material 4.

The initial frequency of the beneficial allele is xA ¼ 0:05 and in
each case and we use the nonrecurrent mutation model to initial-
ize the moments at the neutral loci, see Supplementary Material
2.4.3 for details. To validate the results we compare with simula-
tions using SLiM (Haller et al., 2019; Haller and Messer 2019),
where the population size is again scaled down by a factor of 10
for efficiency. Each replicate undergoes 10,000 generations of
burn-in so that the neutral loci are approximately at stationarity.
The beneficial mutation is then introduced on a single chromo-
some chosen at random which is then copied onto 5% of the pop-
ulation. This allows us to initialize SLiM with the specified initial
frequency for a beneficial allele linked to neutral background at
stationarity. The simulation then undergoes the complete demo-
graphic history outlined in Fig. 2, and we record the SFS at the in-
dicated times, which are then averaged to get the expected value.

Figure 10 shows the expected SFS for the different window
sizes and the different selection coefficients. At 10,000 genera-
tions before present, when the beneficial allele is introduced, the
SFS exhibits the characteristic neutral shape, with an abundance
of low frequency derived alleles and few high frequency derived
alleles. Once the beneficial allele is introduced and subject to se-
lection, we observe an increase in high frequency variants and a
reduction of variants at intermediate frequency for strong selec-
tion. This is the expected pattern under genetic hitchhiking: To
increase the frequencies at neutral loci linked to the beneficial

allele. From the start of the bottleneck to the end, we observe a
general reduction of genetic diversity, depleting alleles in all fre-
quency classes, but affecting low frequency alleles more strongly.
Once the exponential growth is encountered, we observe the
characteristic inflation of low frequency minor alleles. The
effects of selection are most pronounced for a small window size,
and barely noticeable for large windows. This is to be expected,
since the large windows contain a large number of neutral sites
sufficiently removed from the selected locus to not be affected by
the dynamics, and thus the neutral variation dominates the SFS.
However, note that the total amount of variation in the window
(see y-axis in the plots) is proportionately lower in the small win-
dows. Thus, the SFS in the small window is more noisy when
computed from real data, indicating that to characterize selec-
tion, one needs to strike a balance between large windows, with
more statistical power in estimating the SFS, but less impact of
selection, and small windows, where the impact of selection is
greater, but fewer data points. Last, while the dynamics of the
SFS in the given scenarios follows our expectation from popula-
tion genetic principles, the fact that they are exhibited by our nu-
merical solutions and match closely with the simulations shows
again that our novel method indeed captures the relevant popu-
lation genetic processes accurately. We also provide folded ver-
sions of these SFSs, computed using the recurrent mutation
model, in Supplementary Fig. 8.

Discussion
We have presented a framework for computing moments of the
transition density of the Wright–Fisher diffusion, or equivalently
sampling probabilities, at 2 loci separated by an arbitrary recom-
bination distance when selection is acting on the genetic varia-
tion. In addition, the framework accounts for arbitrary
population size histories. We have explored our implementation
of this framework in the case where genic selection is acting at
one of the loci and demonstrated that it accurately captures the
dynamics of relevant statistics under genetic hitchhiking in a de-
mographic model that includes both a bottleneck and exponen-
tial growth, by comparing it to simulations using SimuPOP and
SLiM. We believe this framework and our implementation ena-
bles progress in at least 2 directions.

On the one hand, it allows exploration of the impact of direct
or linked selection on frequently used statistics computed from
genomic data. As we have shown, the method can be used to
compute a variety of quantities of interest under a range of de-
mographic scenarios and varying strength of selection, more effi-
ciently than using simulations. These quantities include
expected allele or haplotype frequency trajectories, heterozygos-
ity, and LD. As patterns of LD are integral to a variety of existing
population genetic tools, the framework described here provides
a means of elucidating the impact of selection and demographic
history on LD to allow for a better understanding of the patterns
observed in genomic data. For example, in recent work by
Ragsdale (2021), this framework has been applied to explore the
impact of epistasis and dominance on shaping patters of signed
LD observed in genic regions. As demonstrated in Results, our
novel moment approximation technique is more accurate than
the Jackknife approach employed by Ragsdale (2021). Thus, using
this novel approximation technique in the analysis performed in
Ragsdale (2021) and similar analyses has the potential to increase
accuracy and substantiate the conclusions. In addition, the
method can be used to compute the expected local SFS which
allows for the exploration of linked and background selection on
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the SFS. Moreover, the outlined methodology provides a tractable
means of calibrating the parameters for existing population ge-
netics tools for detecting selection, for example, by elucidating

the size of the genomic footprint under a given mode of selection
and population size history.

On the other hand, our numerical framework is a key building
block for developing likelihood-based tools to estimate the loca-

tion, strength, and mode of selection from population genomic
data, while accounting for arbitrary demographic scenarios.
Including neutral variation around the selected locus into the
likelihood model, has increased power over single-locus methods

(Pavlidis and Alachiotis 2017; Hejase et al. 2020). A possible ap-
proach is to use the 2 locus sampling probabilities computed us-
ing our method in a composite likelihood framework similar to

the one introduced by McVean et al. (2002), that is, multiplying
the likelihoods for each locus in a window paired with the candi-
date selected locus. Such a framework would allow one to com-
pute maximum likelihood estimates of selection coefficients in

general models of selection, and apply likelihood-based tests to
determine significance.

We want to emphasize that the current implementation of
our numerical method, while having many similarities with the

method introduced by Ragsdale (2021), aims at a different area of
application. The implementation by Ragsdale (2021) is designed
to study aggregate patterns of 2-locus LD genome-wide or in spe-
cific classes of genomic variation. The method implements a 2-lo-

cus extension of the infinite sites model, and thus the entries of
the moment vector are the expected value of the number of times
a certain haplotype configuration is observed. Furthermore,
Ragsdale (2021) exclusively use the 2-locus stationary

distribution as initial condition. Our numerical framework pre-
sented here, on the other hand, aims at describing the probabili-
ties of observing a certain configurations in a sample of

haplotypes at 2 specific loci. It can thus also be used to describe
neutral genetic variation around a specific locus under selection
in a certain genomic window. To this end, we implemented the

recurrent mutation model, and a 2-locus version of a nonrecur-
rent mutation model. We also derived an initial condition where
a novel beneficial allele is linked to neutral background variation.
While both methods can, in principle, be modified to either of

these scenarios, the choice of a user as to which implementation
should be preferred is currently primarily based on the applica-
tion domain they are interested in.

Our framework and its implementation can be extended into

several useful directions. Here, we focused on describing how
neutral genetic variation in a genomic region is affected by a sin-
gle selective sweep. Another promising application of the frame-
work is to model background selection, where neutral variation is

effected by recurrent selective sweeps on deleterious variation
that arises in the genomic background. Such scenarios have been
studied in the literature, under constant population size
(Charlesworth et al. 1993 1995; Hudson and Kaplan 1995;

Nordborg et al. 1996; Nicolaisen and Desai 2013), varying popula-
tion size (Zeng 2013), and in subdivided populations (Zeng and
Corcoran 2015; Ewing and Jensen 2016). Our framework will be

useful to extend and complement these results.
Moreover, implementing functionality for general modes of

diploid selection requires no additional theoretical developments.
For example, models of balancing selection have received much
attention in the literature (e.g. Zeng 2013; Zhao and Charlesworth

Fig. 10 Local site-frequency-spectra for windows of size 100, 500 kbp, and 1 Mbp, for selection coefficients r¼ 1, 50, and 100. The demographic history is
given in Fig. 2 and the beneficial allele is introduced 10,000 generations before present (g1). Both axis are on a log-scale. Note that for the third columns
the y-axis limits have changed.
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2016; ). However, since general diploid selection requires increas-

ing the order of the approximated moments by 2, additional test-

ing needs to be performed in order to ensure its accuracy.

Nonetheless, we do expect our novel approximation scheme to

generalize well to this case. Moreover, we have presented our

framework in the setting of a single panmictic population, ac-

counting for arbitrary population size history. It is natural to con-

sider extending the framework to multiple populations with an

arbitrary demographic history. This would enable applying it in

situations were a beneficial alleles arises in only 1 population,

and contrasting the genetic variation between populations, to

study ancestral selection using the signatures from multiple ex-

tant population, or to study selection on introgressed genetic var-

iation. Extending the theoretical framework to multiple

populations is possible, since Ragsdale and Gravel (2019) do use

multi-population moments of lower order to estimate demo-

graphic parameters under neutrality. However, extensions of the

framework including selection present additional challenges for

the implementation. Obtaining an accurate approximation of the

dynamics under selection necessitates solving the ODEs for

moments of sufficient high order to ensure the accuracy of the

moment approximation when “closing” the ODEs. A straightfor-

ward extension would necessitate computing moments of high

order in all populations, and thus the dimensionality equals the

number of single population moments exponentiated by the

number of populations. Since this number quickly grows to be-

come infeasible, additional approximations will be required. A

potential approach could be to compute the single locus dynamic

for the selected allele first using higher order moments, and then

“attach” the dynamics of lower order moments for the linked

neutral loci in a second step. Other approaches could include re-

ducing the ODEs from a system that keeps track of all moments,

to a system where only bulk quantities, like sums of moments,

are considered. Ultimately, the framework and implementation

introduced in this paper present a promising foundation upon

which to build these applications and extensions.

Data availability
A python implementation of the numerical procedure as well as

scripts to create the figures in this manuscript can be found at

https://github.com/steinrue/two_locus_selection_moments.
Supplemental material is available at GENETICS online.

Acknowledgments
The authors thank Aaron Ragsdale, Simon Gravel, and the popu-

lation genetics community in Chicago for many inputs and help-

ful feedback on the methodology and manuscript. Moreover, they

thank 2 anonymous reviewers, whose comments and suggestions

have substantially enriched the manuscript.

Conflicts of interest
None declared.

Literature cited
Barton NH, Etheridge AM. The effect of selection on genealogies.

Genetics. 2004;166(2):1115–1131.

Bergman J, Schrempf D, Kosiol C, Vogl C. Inference in population ge-

netics using forward and backward, discrete and continuous

time processes. J Theor Biol. 2018;439:166–180.

Berisa T, Pickrell JK. Approximately independent linkage disequilib-

rium blocks in human populations. Bioinformatics. 2016;32(2):

283–285.

Boyd S, Vandenberghe L. Introduction to Applied Linear Algebra: vec-

tors, Matrices, and Least Squares. Cambridge, UK: Cambridge

University Press; 2018.

Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD,

Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR, et

al. Assessing the evolutionary impact of amino acid mutations in

the human genome. PLoS Genetics. 2008;4(5):e1000083.

Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Of The

Psychiatric Genomics Consortium SWG, Patterson N, Daly MJ,

Price AL, Neale BM; Schizophrenia Working Group of the

Psychiatric Genomics Consortium. LD score regression distin-

guishes confounding from polygenicity in genome-wide associa-

tion studies. Nat Genet. 2015;47(3):291–295.

Charlesworth B, Morgan MT, Charlesworth D. The effect of deleteri-

ous mutations on neutral molecular variation. Genetics. 1993;

134(4):1289–1303.

Charlesworth D, Charlesworth B, Morgan MT. The pattern of neutral

molecular variation under the background selection model.

Genetics. 1995;141(4):1619–1632.

Charlesworth D. Balancing selection and its effects on sequences in

nearby genome regions. PLoS Genet. 2006;2(4):e64.

Durrett R. Probability Models for DNA Sequence Evolution. New

York, NY: Springer; 2008.

Ethier SN, Kurtz TG. Markov Processes: Characterization and

Convergence. Hoboken, NJ: John Wiley & Sons; 2009.

Evans SN, Shvets Y, Slatkin M. Non-equilibrium theory of the allele

frequency spectrum. Theor Popul Biol. 2007;71(1):109–119.

Ewens WJ. Mathematical Population Genetics 1: Theoretical

Introduction (Interdisciplinary Applied Mathematics). New York,

NY: Springer; 2010.

Ewing GB, Jensen JD. The consequences of not accounting for back-

ground selection in demographic inference. Mol Ecol. 2016;25(1):

135–141.

Fay JC, Wu CI. Hitchhiking under positive Darwinian selection.

Genetics. 2000;155(3):1405–1413.

Gravel S, National Heart, Lung, and Blood Institute (NHLBI) GO

Exome Sequencing Project. Predicting discovery rates of genomic

features. Genetics. 2014;197(2):601–610.

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD.

Inferring the joint demographic history of multiple populations

from multidimensional SNP frequency data. PLoS Genet. 2009;

5(10):e1000695.

Haller BC, Galloway J, Kelleher J, Messer PW, Ralph PL. Tree-se-

quence recording in slim opens new horizons for forward-time

simulation of whole genomes. Mol Ecol Resour. 2019;19(2):

552–566.

Haller BC, Messer PW. Slim 3: forward genetic simulations beyond

the Wright–Fisher model. Mol Biol Evol. 2019;36(3):632–637.

He Z, Beaumont MA, Yu F. Numerical simulation of the two-locus

Wright–Fisher stochastic differential equation with application

to approximating transition probability densities. bioRxiv. 2020;

https://doi.org/10.1101/2020.07.21.213769.

He Z, Dai X, Beaumont M, Yu F. Detecting and quantifying natural

selection at two linked loci from time series data of allele fre-

quencies with forward-in-time simulations. Genetics. 2020;

216(2):521–541.

16 | GENETICS, 2022, Vol. 220, No. 3

https://github.com/steinrue/two_locus_selection_moments
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac012#supplementary-data
https://doi.org/10.1101/2020.07.21.213769


Hejase HA, Dukler N, Siepel A. From summary statistics to gene

trees: methods for inferring positive selection. Trends Genet.

2020;36(4):243–258.

Hill W, Robertson A. Linkage disequilibrium in finite populations.

Theor Appl Genet. 1968;38(6):226–231.

Hudson RR, Kaplan NL. Deleterious background selection with re-

combination. Genetics. 1995;141(4):1605–1617.

Jenkins PA, Song YS. Pad�e approximants and exact two-locus sam-

pling distributions. Ann Appl Prob. 2012;22(2):576–607.

Jouganous J, Long W, Ragsdale AP, Gravel S. Inferring the joint demo-

graphic history of multiple populations: beyond the diffusion ap-

proximation. Genetics. 2017;206(3):1549–1567.

Kamm J, Terhorst J, Durbin R, Song YS. Efficiently inferring the de-

mographic history of many populations with allele count data. J

Am Stat Assoc. 2020;115(531):1472–1487.

Kamm JA, Spence JP, Chan J, Song YS. Two-locus likelihoods under

variable population size and fine-scale recombination rate esti-

mation. Genetics. 2016;203(3):1381–1399.

Kaplan NL, Hudson RR, Langley CH. The “hitchhiking effect” revis-

ited. Genetics. 1989;123(4):887–899.

Karlin S, Taylor HE. A Second Course in Stochastic Processes.

Amsterdam: Elsevier; 1981.

Kim Y, Nielsen R. Linkage disequilibrium as a signature of selective

sweeps. Genetics. 2004;167(3):1513–1524.

Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking

along a recombining chromosome. Genetics. 2002;160(2):

765–777.

Kimura M. Stochastic processes and distribution of gene frequencies

under natural selection. Cold Spring Harb Symp Quant Biol.

1955a;20:33–53.

Kimura M. Solution of a process of random genetic drift with a con-

tinuous model. Proc Natl Acad Sci USA. 1955b;41(3):144–150.

Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable

gene. Genet Res. 1974;23(1):23–35.

McVean G, Awadalla P, Fearnhead P. A coalescent-based method for

detecting and estimating recombination from gene sequences.

Genetics. 2002;160(3):1231–1241.

Nicolaisen LE, Desai MM. Distortions in genealogies due to purify-

ing selection and recombination. Genetics. 2013;195(1):

221–230.

Nordborg M, Charlesworth B, Charlesworth D. The effect of recombi-

nation on background selection. Genet Res. 1996;67(2):159–174.

Øksendal B. Stochastic differential equations. New York, NY:

Springer; 2003; p. 65–84.

Pavlidis P, Alachiotis N. A survey of methods and tools to detect re-

cent and strong positive selection. J Biol Res (Thessalon). 2017;

24(1):7–17.

Peng B, Amos CI. Forward-time simulations of non-random mating

populations using simuPOP. Bioinformatics. 2008;24(11):

1408–1409.

Peng B, Kimmel M. simuPOP: a forward-time population genetics

simulation environment. Bioinformatics. 2005;21(18):3686–3687.

Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation:

hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol.

2010;20(4):R208–R215.

Ragsdale AP. Can we Distinguish Modes of Selective Interactions

Using Linkage Disequilibrium? bioRxiv. 2021. doi:

10.1101/2021.03.25.437004.

Ragsdale AP, Gravel S. Models of archaic admixture and recent his-

tory from two-locus statistics. PLoS Genet. 2019;15(6):e1008204.

Ragsdale AP, Gutenkunst RN. Inferring demographic history using

two-locus statistics. Genetics. 2017;206(2):1037–1048.

Schraiber JG, Evans SN, Slatkin M. Bayesian inference of natural se-

lection from allele frequency time series. Genetics. 2016;203(1):

493–511.

Song YS, Steinrücken M. A simple method for finding explicit ana-

lytic transition densities of diffusion processes with general dip-

loid selection. Genetics. 2012;190(3):1117–1129.

Spence JP, Song YS. Inference and analysis of population-specific

fine-scale recombination maps across 26 diverse human popula-

tions. Sci Adv. 2019;5(10):eaaw9206.

Steinrücken M, Bhaskar A, Song YS. A novel spectral method for in-

ferring general diploid selection from time series genetic data.

Ann Appl Stat. 2014;8(4):2203–2222.

Steinrücken M, Wang YXR, Song YS. An explicit transition density

expansion for a multi-allelic Wright–Fisher diffusion with gen-

eral diploid selection. Theor Popul Biol. 2013;83:1–14.

Stephan W, Charlesworth B, McVean G. The effect of background se-

lection at a single locus on weakly selected, partially linked var-

iants. Genet Res. 1999;73(2):133–146.

Williamson SH, Hernandez R, Fledel-Alon A, Zhu L, Nielsen R,

Bustamante CD. Simultaneous inference of selection and popula-

tion growth from patterns of variation in the human genome.

Proc Natl Acad Sci USA. 2005;102(22):7882–7887.

Zabad S, Ragsdale AP, Sun R, Li Y, Gravel S. Assumptions about

frequency-dependent architectures of complex traits bias meas-

ures of functional enrichment. Genet Epidemiol. 2021;45(6):

621–632.

Zeng K. A coalescent model of background selection with recombi-

nation, demography and variation in selection coefficients.

Heredity (Edinb). 2013;110(4):363–371.

Zeng K, Corcoran P. The effects of background and interference se-

lection on patterns of genetic variation in subdivided popula-

tions. Genetics. 2015;201(4):1539–1554.

Zeng K, Charlesworth B, Hobolth A. Studying models of balancing se-

lection using phase-type theory. Genetics. 2021;218(2):iyab055.

Zhao L, Charlesworth B. Resolving the conflict between associative

overdominance and background selection. Genetics. 2016;203(3):

1315–1334.

Zhao L, Yue X, Waxman D. Complete numerical solution of the diffu-

sion equation of random genetic drift. Genetics. 2013;194(4):

973–985.
�Zivkovi�c D, Stephan W. Analytical results on the neutral non-

equilibrium allele frequency spectrum based on diffusion theory.

Theor Popul Biol. 2011;79(4):184–191.

Communicating editor: N. Barton

E. Friedlander and M. Steinrücken | 17



Appendix A: Derivation of Moments

Drift
Recall the term of the generator corresponding to genetic drift,

Ldrift
t , defined in Equation (2). Then the contribution of genetic

drift to the time derivative of moment MnðtÞ is,

CðnÞ
ð

DK

Ldrift
t fyngptðx;yÞdy

¼ CðnÞ
2

ð
DK

X
i;j2E

ktyiðdi;j � yjÞ
@2

@yi@yj
fyngptðx; yÞdy

¼ CðnÞ
2

kt

ð
DK

X
i;j2E

yiðdi;j � yjÞniðnj � di;jÞyn�ei�ej ptðx; yÞdy

¼ CðnÞ
2

kt

ð
DK

X
i2E

ð1� yiÞniðni � 1Þyn�ei �
X
i 6¼ j
i;j2E

ninjy
n

2
4

3
5ptðx; yÞdy

¼ CðnÞ
2

kt

ð
DK

X
i 6¼ j
i;j2E

niðni � 1Þyn�eiþej ptðx; yÞdy� 1
2

kt

X
i 6¼ j
i;j2E

ninjMnðtÞ

¼ 1
2

kt

X
i 6¼ j
i;j2E

CðnÞniðni � 1Þ
Cðn� ei þ ejÞ

Mn�eiþej ðtÞ �
1
2

kt

X
i 6¼ j
i;j2E

ninjMnðtÞ

¼ 1
2

kt

X
i 6¼ j
i;j2E

ðni � 1Þðnj þ 1ÞMn�eiþej ðtÞ �
1
2

kt

X
i 6¼ j
i;j2E

ninjMnðtÞ;

where ei denotes a vector with all components 0, except the i-th

entry, which is equal to 1. It follows that we can define Qn
drift as

follows,

Qn
driftðn;n� ei þ ejÞ ¼

1
2

ktðni � 1Þðnj þ 1Þ for n 2 Cn and i; j 2 E

Qn
driftðn;nÞ ¼ 1

2
kt for n 2 Cn

with all other entries being zero.

Recurrent Mutation
Recall the term of the generator corresponding to mutation, Lmut,

defined in (3). Then the contribution of mutation to the time de-

rivative of moment MnðtÞ is,

CðnÞ
Ð
DK
Lmut yn

� �
ptðx; yÞ dy

¼ CðnÞ
Ð
DK

1
2

X
i2E

X
j2E

yjhj;i
@

@yi
yn� �

ptðx; yÞ dy

¼ CðnÞ
Ð
DK

1
2

X
i2E

X
j2E

hj;iniy
n�eiþej ptðx; yÞ dy

¼ 1
2

X
i2E

X
j2E

hj;i
niCðnÞ

Cðn� ei þ ejÞ
Mn�eiþej ðtÞ

¼ 1
2

X
i2E

X
j2E

hj;iðnj þ 1ÞMn�eiþej
ðtÞ

From this, we can define Qn
mut as follows,

Qn
mutðn;n� ei þ ejÞ ¼

1
2

hj;iðnj þ 1Þ for n 2 Cn and i; j 2 E

Qn
mutðn;nÞ ¼ 1

2
kt for n 2 Cn

with all other entries being zero.

Nonrecurrent mutation
To model nonrecurrent mutation, we closely follow the deriva-
tion of Ragsdale and Gravel (2019), specifically Equations (S19) to
(S24) in their supplement. For simplicity, we assume a 2-locus 2-
allele model where the first locus, with allele a and A, is under se-
lection and the second locus, with alleles b and B, is neutral. We
designate a and b as the ancestral alleles. We furthermore as-
sume that mutations only occur at the neutral locus at rate h

2.
Moreover, in a nonrecurrent mutation model, mutations can
only change the ancestral allele into the derived allele, and thus,
mutations only occur in haplotype configurations where all
alleles are ancestral, as shown, for example, by Evans et al. (2007),
Jouganous et al. (2017), or Ragsdale and Gravel (2019).

However, our implementation has a key difference: Ragsdale
and Gravel (2019) use an infinite sites model, where each entry
of the moment vector corresponds to an expected number of
pairs of sites with a given configuration. Consequently, they in-
ject mutations into configurations with 1 derived allele, and do
not explicitly keep track of all configurations with only ances-
tral alleles. Since we are considering moments that represent
sampling probabilities, they do have to sum to 1. If we inject
mass into configurations with 1 derived allele, then we have to
remove this mass from the configurations with all ancestral
alleles, which we explicitly track. We then follow Ragsdale and
Gravel (2019) and similar approaches using the infinite-sites
model (Evans et al. 2007; Jouganous et al. 2017), and inject mass
through purely inhomogeneous terms at a total rate of h

2 n at
the neutral locus. This total rate is then distributed proportion-
ally to the different configurations with 1 derived allele, similar
to Equations (S19) to (S24) in the supplement of Ragsdale and
Gravel (2019).

To specify the rates for the nonrecurrent mutation model, we
first compute the total probability mass of configurations with all
ancestral alleles at the neutral locus as

MbðtÞ :¼
Xn

nA¼0

Mðn�nAÞeða;bÞþnAeðA;bÞ ðtÞ;

and the relative mutation rate for each such configuration as

UnA ðtÞ :¼ n
h
2

Mðn�nAÞeða;bÞþnAeðA;bÞ ðtÞ
MbðtÞ

:

Then, the contribution of nonrecurrent mutation to the deriva-
tive of the moment vector with respect to t is

_Mðn�nAÞeða;bÞþnAeðA;bÞ ðtÞ ¼ �UnA ðtÞ;
_Mðn�nAÞeða;bÞþðnA�1ÞeðA;bÞþeðA;BÞ ðtÞ ¼

nA

n
UnA ðtÞ;

and

_Mðn�nA�1Þeða;bÞþnAeðA;bÞþeða;BÞ ðtÞ ¼
n� nA

n
UnA ðtÞ;

for nA 2 f0; . . . ; ng. We use this implementation to obtain the
results depicted in Fig. 10.

Selection
Recall the term of the generator corresponding to mutation, Lmut,
defined in (4). Then the contribution of natural selection to the
time derivative of moment MnðtÞ is,
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X
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Cðnþ ej þ ekÞ
rj;kMnþejþek ðtÞ

" #

¼
X
i2E

X
j2E

niðnj þ 1Þ
nþ 1

ri;jMnþej
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nðni þ 1þ di;jÞðnj þ 1Þ
ðnþ 2Þðnþ 1Þ ri;jMnþeiþej

ðtÞ
" #

:

(A.1)

It then follows that Qnþ1
sel is defined as follows,

Qnþ1
sel; inðn;nþ ejÞ ¼ n

nþ 1
ðnj þ 1ÞrjðyÞ for n 2 Cn and j 2 E

Qnþ2
sel; outðn;nþ ei þ ejÞ ¼ �

nðni þ 1þ di;jÞðnj þ 1Þ
ðnþ 2Þðnþ 1Þ ri;j for n 2 Cn and i; j 2 E

with all other entries being zero. Since moments of order nþ 1

can be computed from the moments of order nþ 2, Qnþ1
sel can be

re-written so that it maps moments of order nþ 2 to those of n.

Namely, denoting the new matrix as Qnþ2
sel , it can be expressed as

Qnþ2
sel ¼ Q

nþ1
sel; inDnþ2;nþ1 þQnþ2

sel; out, where D is the downsampling

matrix, see Supplementary Material 2.2 for more details.

Genic selection
Consider the case of genic selection at locus A. Namely, for all

i; j 2 E, define ri;j as,

ri;j ¼
ri1 þ rj1

2
:

From the fourth line of (A.1) we have,

CðnÞ
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Lselfyngptðx; yÞ dy
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X
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½
X
j2E
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X
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nirj;kynþejþek �ptðx; yÞ dy (A.2)

The first term on the RHS of the above equation can be written

as,
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P
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2
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X
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2
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" #
ptðx; yÞ dy

Then the second term on the RHS of (A.2) can be written as,
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Ð
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P
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P
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n
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X
j;k2E

nrj1 ynþej ptðx; yÞ dy

where the first equality follows from the definition of rj;k, the sec-
ond follows from the symmetry of j and k, and the third follows
from the fact that

P
i2E yei ¼ 1. Substituting this back into equa-

tion (A.2) yields,
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It then follows that Qnþ1
genic is defined as follows,

Qn
genic; inðn;nÞ ¼

X
i2E

ni
ri1

2
for n 2 Cn

Qnþ1
genic; outðn;nþ ejÞ ¼ �n

X
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nþ 1

rj1

2
for n 2 Cn and j 2 E

with all other entries being zero. As with the case of general se-
lection Qn

genic; in can be written as Qnþ1
genic; in and combined with

Qnþ1
genic; out to get Qnþ1

genic.

Recombination
Recall the term of the generator corresponding to recombination,
Lrec, defined in (5). Then the contribution of recombination to the
time derivative of moment MnðtÞ is,
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The quantity Qn
rec can then be defined as follows,

Qnþ1
rec; inðn;n� ei þ eðiA ;jÞ þ eðk;iBÞÞ ¼

1
2

q
niCðnÞ

Cðn� ei þ eðiA ;jÞ þ eðk;iBÞÞ
for n 2 Cn and i 2 E; kinEA; j 2 EB

Qnþ1
rec; outðn;nþ ejÞ ¼ � qn

2
for n 2 Cn

with all other entries being zero. As in the case of selection
Qn

rec; out can be written as Qnþ1
rec; out and combined with Qnþ1

rec; in to
get Qnþ1

rec .
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