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Liver Disease Pathophysiology

Liver disease is one of the leading causes of mortality in the
United Kingdom, with cirrhosis becoming one of the top
three causes of premature death in people aged 30 to
60 years.1 Damage to the liver may originate from viral,
metabolic, autoimmune, or toxin-induced pathways and
etiologies differ depending on the site of injury. For example,
nonalcoholic fatty liver disease (NAFLD)/nonalcoholic stea-
tohepatitis (NASH) is initiated by lipotoxic damage to hep-

atocytes,2 whereas primary sclerosing cholangitis arises
from damage to cholangiocytes and leads to stricturing of
bile ducts.3Nevertheless, regardless of etiology,most chronic
adult liver diseases follow a common progressive pathophys-
iology in which persistent inflammation of the liver leads to
the activation of hepatic stellate cells (HSCs), which in turn
results in excessive production of extracellular matrix (ECM)
proteins, leading to fibrosis, impaired liver function, and
eventually cirrhosis.4

Due to its increasing prevalence, chronic liver disease is
fast becoming a serious global health burden.5,6 In addition,
chronic inflammatory disease significantly increases the risk
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Abstract The scavenger receptor superfamily represents a highly diverse collection of evolu-
tionarily-conserved receptors which are known to play key roles in host homeostasis,
the most prominent of which is the clearance of unwanted endogenous macro-
molecules, such as oxidized low-density lipoproteins, from the systemic circulation.
Members of this family have also been well characterized in their binding and
internalization of a vast range of exogenous antigens and, consequently, are generally
considered to be pattern recognition receptors, thus contributing to innate immunity.
Several studies have implicated scavenger receptors in the pathophysiology of several
inflammatory diseases, such as Alzheimer’s and atherosclerosis. Hepatic resident
cellular populations express a diverse complement of scavenger receptors in keeping
with the liver’s homeostatic functions, but there is gathering interest in the contribu-
tion of these receptors to hepatic inflammation and its complications. Here, we review
the expression of scavenger receptors in the liver, their functionality in liver homeo-
stasis, and their role in inflammatory liver disease and cancer.
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of liver failure or hepatocellular carcinoma (HCC), with up to
90% of HCC cases arising on a background of cirrhosis.7

Consequently, liver cancer is the seventh most common
cancer worldwide and the fourth most common cause of
cancer-related mortality.8 Approximately three-quarters of
all chronic liver diseases are diagnosed at a late stage when
lifestyle interventions would be insufficient and there is also
a distinct lack of effective treatments currently available for
HCC; therefore, in both instances, transplantation is the only
curative therapy. However, transplantation is clearly a major
intervention with strict criteria and therefore is only consid-
ered a viable option in aminority of HCC patients. Thosewith
advanced HCC have no curative options and despite the
advent of immunotherapy, the majority of patients do not
respond to current treatment. Consequently, there is an
urgent need to better understand the inflammatory path-
ways and processes that contribute to liver disease progres-
sion so that novel targets may be identified and utilized.

Owing to its anatomical positioning in close association
with the gastrointestinal tract, and frequently exposed to the
vast milieu of gut-derived antigenic materials, the liver and
its resident cell types express a wide array of scavenger
receptors which are known to play key roles in homeostasis.
In addition, there is now increasing evidence that scavenger
receptors also play a diverse range of roles in inflammatory
diseases of the liver and significantly contribute to their
pathophysiology. In this review, we discuss the expression of
scavenger receptors by various hepatic cells types, and their
contribution to maintaining homeostasis and driving the
pathogenesis of inflammatory liver disease and cancer.

Scavenger Receptors

Scavenger receptors are a diverse superfamily of evolutionari-
ly-conserved receptors that play an important role in homeo-
static processes, including nutrient exchange and waste
clearance, and in immunity, such as inflammation regulation,
leukocyte adhesion, and antigenpresentation.9 First identified
by their ability to bindmodified lipoproteins, such as oxidized
low-density lipoproteins (oxLDLs),10 scavenger receptors have
now been shown to bind and/or internalize a diverse range of
endogenous and exogenous ligands.11 As such, scavenger
receptors are now considered to be a subcategory of pattern
recognition receptors (PRRs).12 Scavenger receptors are cate-
gorized intoclassesA–J (►Fig. 1) dependingon their structural
and functional properties; however, there is little/no sequence
homology between classes.9

Although scavenger receptors are defined as cell-surface
receptors, theymay also be found intracellularly or as soluble
forms in the circulation.9 They can bind to a variety of
unwanted self and non-self ligands and promote their re-
moval from the systemic circulation via endocytosis, phago-
cytosis, or macropinocytosis.9,11 Such ligands include
damage-associated molecular patterns such as apoptotic
cells, damaged proteins, cell debris, and heat shock proteins,
and pathogen-associated molecular patterns, such as lip-
opolysaccharides (LPSs) and lipoteichoic acid.13 Thus, their
role in maintaining homeostasis spans beyond the scaveng-

ing of waste products, but rather, encompasses their ability
to preserve appropriate levels of endogenous molecules
while also recognizing foreign or damaging antigens and
eliciting appropriate cellular immune responses.

The importance of scavenger receptors in homeostasis is
highlighted by the complications that arise in their absence;
for example, loss of functional SCARF1, SR-AI, or MARCO in
transgenic mice leads to the development of systemic lupus
erythematosus.14,15 In addition, several scavenger receptors
have been shown to play a key regulatory role in disease
pathology, limiting the extent of injury in murine models of
inflammatory disease. For instance, genetic deletion of
SCARB1 was shown to increase disease severity in a murine
model of Alzheimer’s16 and stabilin-1-deficientmice present
with significantly more severe fibrosis in chronic liver injury
models.17 Conversely, some scavenger receptors have also
been shown to drive the pathogenesis of multiple inflamma-
tory diseases, such as atherosclerosis.18,19

Scavenger Receptors in Liver Homeostasis

Scavenging of Endogenous and Exogenous
Macromolecules
Scavenger receptors play a key role in maintaining homeo-
stasis, particularly within the liver, which lies at the interface
between the portal and systemic circulation.20 Due to its
anatomical positioning, the liver is constantly exposed to a
myriad of gut-derived nutrients and microbial antigens and,
as a result, it functions as the body’s primary metabolic and
detoxification system. As such, the liver-resident cells and
their vast array of endocytic receptors, such as scavenger
receptors, are integral for the removal of both endogenous
and exogenousmacromolecules andwastematerial from the
circulation. The majority of this function is undertaken by
liver sinusoidal endothelial cells (LSECs).21

LSECs are highly specialized cells that line the liver sinus-
oids and represent the primary barrier between the blood-
stream and underlying parenchymal tissues. Consequently,
LSECs are adept scavengers, owing to their fenestrated
morphology, lack of basement membrane, and superior
endocytic capacity, and are involved in nutrient exchange,
waste clearance, immune cell recruitment, and metabo-
lism.22 The primary scavenger receptors of LSEC are consid-
ered to be stabilin-1 and stabilin-2, which principally target
oxLDLs for degradation,23 amongst other macromolecules.
Stabilin receptors (also known as FEEL/CLEVER/HARE) be-
long to the class H family of scavenger receptors, comprising
a large extracellular N-terminus of 20 (stabilin-2) or 21
(stabilin-1) epidermal growth factor (EGF)/EGF-like
domains, seven fasciclin-1 domains, and an X-linked domain,
and a short intracellular C-terminal domain, linked by a
transmembrane region24 (►Fig. 1). Despite sharing 55%
homology in their extracellular domains, these two receptors
are distinguished by their highly diverse intracellular
domains.25 Although structurally distinct, both stabilin
receptors mediate the specific hepatic uptake and clearance
of oxLDLs by LSEC, an important mechanism for the preven-
tion of atherogenesis.26 Studies using fluorescent or
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radiolabeled oxLDLs demonstrated a predominant role for
LSEC stabilin-1 in the uptake of circulating mildly oxidized
LDLs, while stabilin-2 was suggested to recognize heavily
oxidized LDLs, which are often found within atherosclerotic
lesions.23 Furthermore, mice deficient in stabilin-1 and
stabilin-2 have a reduced lifespan and develop glomerular
and hepatic fibrosis.27 These studies highlight the homeo-
static role for stabilin receptors, not just within the liver
microenvironment, but at the systemic level.

LSECs have also been identified as the primary mecha-
nism by which ECM components, such as collagen, are
cleared from the circulation. Although both stabilin-1 and
stabilin-2 have been implicated in the removal of profibro-
genic circulating factors by LSEC,27 the main receptor re-
sponsible for collagen clearance is thought to be mannose
receptor (MR).28,29 MR (also known as macrophage MR
[MMR] and CD206) is a C-type lectin encoded by the MRC1
gene. Structurally, MR is composed of several domains
within its large extracellular region, facilitating the binding

of multiple ligands including lysosomal enzymes,30 tissue
plasminogen activator,31 and mannose and N-acetylglucos-
amine residues commonly found on the surface of patho-
gens.32 In mice, MR was shown to play a nonredundant role
in the endocytosis of denatured collagen that occurred in a
calcium-independent manner, which is consistent with a
binding site distinct from that of mannose or mannan.28

Furthermore, MR is important for maintenance of glycopro-
tein homeostasis, including clearance of advanced glycation
end products.33 This is exemplified in MR knockout mice
which have impaired clearance and elevated circulating
levels of mannosylated glycoproteins.34

Innate Immunity
In addition to the homeostatic clearance of unwanted endog-
enous ligands, scavenger receptors are alsowell characterized
in their binding and internalization of a highly diverse range of
exogenous antigens expressed by numerous bacteria, viruses,
and fungi.35 However, in spite of the extensive studies of the

Fig. 1 Scavenger receptors implicated in liver homeostasis and pathogenesis, including receptor class, shared structural domains, liver cell
expression, and functional role within the liver. Functions shown in green are considered protective and those shown in red are considered
detrimental. Context-dependent functions are indicated in black. Figure created using biorender.com. ALF, acute liver failure; DC, dendritic cells;
EC, endothelial cell; EGF, epidermal growth factor; HCC hepatocellular carcinoma; HCV, hepatitis C virus; HDL, high-density lipoprotein; HSC,
hepatic stellate cell; LAMP, lysosome-associated membrane glycoprotein; LSEC, liver sinusoidal endothelial cell; Mf, macrophage; MØ,
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gut–liver axis as a key component of liver disease pathophysi-
ology,36 the role of scavenger receptors in the innate immunity
of the liver remains largely unexplored.

Scavenger receptors on Kupffer cells have been implicated
in the “fast clearance” of bacteria from the circulation37;
however, the specific scavenger receptor(s) involved remained
undetermined by this study. Nevertheless, SR-AI in Kupffer
cells has been shown to play a key role in the clearance of
infection by the Gram-positive bacterium Listeria monocyto-
genes with SR-AI�/� mice exhibiting impaired uptake and
killing of L. monocytogenes and larger, more frequent hepatic
granulomas, compared with wild-type (WT) control mice.38

CD36 in hepaticmacrophages has been shown to play a role in
the immune surveillance of nonbacterial pathogens, such as
the fungal pathogen Cryptococcus neoformans. Significantly
higher colony-forming units and significantly lower gene
expression of inflammatory cytokines and chemokines
were observed in livers of CD36�/� mice compared with
WT mice in a murine model of C. neoformans infection.39

While several Kupffer cell-expressed scavenger receptors
have been implicated in pattern recognition of several
pathogens, they are not sufficient for effective systemic
pathogen clearance, and so perhaps cannot be considered
as phagocytic receptors per se. In contrast, complement
receptor of the immunoglobulin family (CRIg), which is also
highly expressed on Kupffer cells, is indispensable for the
binding and clearance of complement component 3 (C3)-
opsonized particles40,41 and Gram-positive bacteria.42 Fur-
thermore, whereas some C-type lectins such as dectin-1 act
as PRRs and endow the ability for phagocytosis, others,
including MR, are not sufficient on their own to instill
phagocytic capacity.43 Moreover, despite many scavenger
receptors possessing short intracellular domains that often
lack a signaling motif, several act as components of signal-
osomes in complex with toll-like receptors (TLRs), integrins,
and/or tetraspanins, including CD9 and CD81.44,45 Indeed,
scavenger receptors are known to form heterodimers with
TLRs44,46,47 and effectively boost the immune response to
microbial antigens, compared with TLRs alone.48–52 Thus,
the role of scavenger receptors in innate immunity must be
considered in the wider context of other innate immune
and phagocytic receptors.

In contrast, some intracellular pathogens are able to hijack
hepatic macrophage-expressed scavenger receptors to aid in
their infection of the host. CD36 appears to play an active role
in the pathogenesis ofMycobacteriumbovis Bacillus Calmette-
Guérin infection, with CD36�/� mice exhibiting decreased
mycobacterial burden and lower numbers of hepatic granulo-
mas, and CD36�/� macrophages restricting mycobacterial
growth in vitro.53 In addition, CD68 on Kupffer cells acts as a
putative receptor for Plasmodium berghei sporozoites,54 play-
ing a significant role in the hepatic invasion stage of the
malaria-causing parasite’s lifecycle.

Hepaticmacrophages have long been considered themajor
player in the hepatic innate immunity,55 as they are largely
responsible for the capture and clearance of pathogens from
the bloodstream.37,42However, LSECs are known to play a key
role in the clearance of bacterial LPS,56 viruses,57 and viral

particles58 from thebloodstream invivo andhave been shown
to interactwith severalmicrobial antigens invitro.59–61 In fact,
a recent study has implicated LSEC-expressed stabilin-1 and
stabilin-2 in thesystemic clearanceof LPS62; therefore, the role
of LSEC-expressed scavenger receptors in hepatic innate im-
munity warrants future investigation.

Immune Tolerance
LSECs are known to be highly efficient antigen presenting
cells,63,64 but rather than leading toT cell activation, they are
skewed toward tolerance.65 MR is a key player in promoting
immune tolerance within the murine liver. Immune toler-
ance is critically important in maintaining hepatic homeo-
stasis, due to the sustained exposure to low-level
inflammatory agents from the gastrointestinal tract. For
instance, uptake of oral antigens by MR has been shown to
elicit tolerogenic responses following cross-presentation to
CD8þ T cells.63,66 Furthermore, antigen presentation by LSEC
is known to induce CD8þ T cell tolerance via upregulation of
co-inhibitory molecule programmed cell death ligand-1.67

Notably, this has also been shown for tumor antigens, which
led to tumor-specific CD8þ T cell tolerance.68,69 This suggests
that under physiological conditions, LSEC antigen presenta-
tion is important formaintaining liver tolerance, but that this
could prove detrimental in a neoplastic context.

Scavenger Receptors in Liver Disease
Pathology

Acute Injury
Acute liver failure (ALF) is the fulminant loss of liver function,
which arises due to severe hepatic insult, usually in the
absence of pre-existing liver disease. Often occurring due to
exposure to noxious stimuli (e.g. drugs, alcohol, or viruses),
ALF is characterized by jaundice, elevated circulating amino-
transferases, and in severe cases, coagulopathy and hepatic
encephalopathy. The most common cause of ALF is acet-
aminophen overdose which is thought to account for more
than 50% of cases and approximately 20% of liver transplant
cases.70,71 Innate immune cell populations are key drivers of
tissue damage in ALF,72 yet despite their expression in these
cell types and immunological functionalities being well
documented, few studies have considered scavenger recep-
tors in the context of ALF.

Some membranous scavenger receptors, such as CD163
and MR, are susceptible to proteolytic cleavage, leading to
generation of soluble receptor forms which can retain some
of their functional capacity. Often these are upregulated
during inflammation and several have been characterized
for their use as biomarkers of ALF. For instance, soluble
CD163 (sCD163) is elevated in the circulation of ALF patients
compared with healthy and cirrhotic patient controls, and is
thought to represent increased intrahepatic macrophage
activity.73–75 In addition, higher and prolonged levels of
sCD163 correlated with markers of hepatic dysfunction
(bilirubin, creatinine, aspartate transaminase, alanine ami-
notransferase) and incidence of patient fatality.74 Similarly,
soluble MR (sMR) is increased in severe acetaminophen-
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induced liver injury.75 A recent study has also reported
elevated sCD163 and sMR levels in patients with acute-on-
chronic liver failure, with both markers representing inde-
pendent predictors of short- and long-term mortality.76,77

To date, very few functional studies of the role of scavenger
receptors in acute liver injuryhavebeenundertaken.However,
studies of SR-AI showed its upregulation in myeloid cells in
both human acute hepatitis and murine models of acute liver
injury and subsequently demonstrated its protective role in
this context.78,79Loss of SR-AI in transgenicmicewasshownto
significantly exacerbate liver damage in acute viral and
hepatotoxin liver injury models, due to impairments in the
anti-inflammatory activity of alternatively activated (“M2”)
macrophages and myeloid-derived suppressor cells.78,79

Liver Inflammation
The extravasation of immune cells from the systemic circula-
tion to the liver occurs within the hepatic microvasculature,
known as the sinusoids, which are lined by highly specialized
LSECs. Immune cell recruitment to vascular endothelial cells
occurs via the leukocyte adhesion cascade, a complex and
sequential multistep process involving numerous adhesion
molecules and chemokines. However, in the low-shear flow
environment within the liver sinusoids, this process is some-
what distinct from that which occurs within more conven-
tional vasculature. In most other organs of the body, the
selectins, a small family of transmembrane Ca2þ-dependent
lectins, play a major role in the initial rolling and adhesion
steps of the leukocyte cascade. However, in the low-shearflow
environment of the liver, the initial selectin-mediated rolling
steps are not required and, consequently, their expression in
LSEC is minimal. This absence of selectins allows for a greater
contribution by more atypical adhesion molecules to the
recruitment of leukocytes to the liver. In addition, the latter
stages of the leukocyte adhesion cascade in which immune
cells cross the endothelial barrier, known as transendothelial
migration (TEM), differ considerably in the liver when com-
paredwithotherorgans. TEMisamultistep receptor-mediated
process which requires strict regulation by the endothelial
layer toprevent vascular leakage. TEMcanoccur via twohighly
distinct pathways: (1) the paracellular route in which leuko-
cytes transmigrate via the cellular junctions between adjacent
cells or (2) the transcellular route where leukocytes pass
through the body of endothelial cells. Our previous studies
with primary human LSEC have demonstrated that a signifi-
cant proportion of lymphocytes migrate via the transcellular
route, rather than the paracellular route as observed in more
conventional endothelia. Several groups have now demon-
strated that scavenger receptors can act as atypical adhesion
molecules. Others and we have shown that LSEC-expressed
atypical adhesionmolecules, which are key in the recruitment
of leukocytes to the liver in the diseased state, include certain
scavenger receptors.

LSEC-Expressed Scavenger Receptors and Leukocyte
Recruitment
In addition to their primary scavenging function, several endo-
thelial-expressed scavenger receptors have also been shown to

exhibit a secondary functionality in which they act as atypical
adhesion receptors in the leukocyte adhesion cascade.80 The
majority of these have been characterized in LSEC and implicat-
ed in the recruitment of leukocytes to the liver.80

Perhaps the most well-studied of this subgroup of scav-
enger receptors is stabilin-1.81 Stabilin-1 was first described
as an atypical adhesion receptor in the trafficking of leuko-
cytes across lymphatic vessels82,83 and the same group later
described its role in the TEM of lymphocytes through both
lymphatic and vascular endothelial cells.84,85 Our laboratory
has previously characterized the expression of stabilin-1 in
LSEC and explored its role in the TEM of lymphocytes to the
liver. In our in vitro studies, which aim to mimic the
physiological shear stress of the hepatic sinusoids,86 we
showed that stabilin-1 specifically mediated the TEM of
both regulatory T cells (Treg) and B cells through primary
human LSEC.87–89 Despite stabilin-1 being implicated in the
transmigration of specific immune cell subsets in a range of
contexts, the leukocyte-expressed ligand(s) remain elusive.

Like stabilin-1, stabilin-2 has also been shown to be
expressed in LSEC90–92 andmediates lymphocyte recruitment
toprimaryhumanLSEC invitro.91However, despitesignificant
sequence homologywith stabilin-1, which as discussed above
plays a role in the transmigration step of lymphocyte recruit-
ment to LSEC, it has been suggested that stabilin-2 acts in the
earlier stages of the leukocyte adhesion cascade,mediating the
firm adhesion of lymphocytes.91 In addition, and again in
contrast to stabilin-1, a lymphocyte-expressed ligand to sta-
bilin-2,αMβ2 integrin, has been identified.91 Surprisingly, only
one study to date has demonstrated the adhesive function of
stabilin-2 and, given that other immune cell subsets, such as
monocytes and neutrophils, also express αMβ2, future studies
could aim to elucidatewhether or not stabilin-2 alsomediates
the recruitment of myeloid cells to LSEC.

Scavenger receptor that binds phosphatidylserine and
oxidized lipids (SR-PSOX) is the membrane-bound form of
chemokine CXCL16 and, consequently, binds CXCR6þ leuko-
cytes in a highly specific manner.93–96 SR-PSOX is thought to
support leukocyte adhesion by triggering the conformational
activation of immune-cell-expressed β1 integrins and acts in
the “arrest” stage of the leukocyte adhesion cascade.97 In the
context of hepatic inflammation, SR-PSOXhas been shown to
interact with several proinflammatory intrahepatic immune
cell subsets, such as effector T cells,97,98 natural killer (NK)
cells99,100 and NK T cells,101 all of which express CXCR6. In
murine models of acute liver injury, pharmacological target-
ing of SR-PSOX with neutralizing antibodies and genetic
deletion have been shown to significantly attenuate the
intrahepatic inflammation and level of injury,102–104 thus
highlighting its therapeutic potential.105

Another endothelial-expressed scavenger receptor which
has previously been described in murine LSEC106 and, more
recently, in human LSEC60 is SCARF1. By utilizing physiolog-
ical flow-based adhesion assays with immobilized recombi-
nant SCARF1 and antibody-inhibited or siRNA-silenced
primary human LSEC, SCARF-1 was shown to mediate the
adhesion of CD4þ T cells to LSEC.60 In addition, the role of
SCARF1 was CD4þ subset-specific with preferential binding
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to proinflammatory “effector” CD4þ T cells, rather than their
regulatory CD4þCD25þ counterparts (Treg).107 These studies
ruled out the possibility of a homophilic interaction, as CD4þ

T cells did not express SCARF1, but the ligand is yet to be
identified.

The role of scavenger receptors as atypical adhesion mol-
ecules is interesting to consider in the context of recruitment
via conventional adhesion molecules such as intercellular
adhesion molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 (VCAM-1). Conventional adhesion molecules
have a significant role to play in regulating the immune
microenvironment in liver diseases.108,109 Recent work has
confirmed this inmodels of fatty liver disease, where VCAM-1
and ICAM-1 expressed on LSEC have been implicated in
regulating proinflammatory monocyte recruitment.110 It is
therefore possible that scavenger receptors may amplify or
modify the roles of conventional adhesion molecules. For
example, in human in vitro models, Treg TEM was inhibited
by 50% by ICAM-1 blockade but with the combination of
stabilin-1 blockade this was increased to 80% inhibition.87

Viral Hepatitis
Viral hepatitis is a global health problem, accounting for over
a million deaths worldwide each year,111 with a large pro-
portion of those deaths attributed to hepatitis C virus
(HCV).112 Hepatic inflammation resulting from HCV can
manifest from acute or chronic infection and is amajor cause
of liver cirrhosis andHCC.113HCV is a hepatotropic RNAvirus
and direct infection of hepatocytes is largely responsible for
the resultant inflammatory disease.114–116 While patients
with HCV can now undergo highly effective therapy to
eradicate the virus in symptomatic disease, there is still no
preventative vaccine available and often infection leads to
asymptomatic liver disease that can present at advanced
stages with cirrhosis and HCC.

In normal physiology, scavenger receptor class B member
1 (SCARB1) on hepatocytes acts as receptor for high-density
lipoproteins and plays a key role in cholesterol homeosta-
sis.117 However, in the context of viral hepatitis, SCARB1 is
one of four receptors known to act as a HCV entry factor in
human hepatocytes118–121 and binds to HCV via its envelope
glycoprotein E2.122 Consequently, SCARB1 is strongly impli-
cated in the pathogenesis of viral hepatitis and this is
emphasized by the fact that patients with genetic variants
of SCARB1 exhibit altered viral load123 and virological
responses.124,125 Nevertheless, therapeutic targeting of
SCARB1 with an antagonist in early-phase clinical trials
demonstrated relatively low efficacy in HCV patients, sug-
gesting a certain level of redundancy in its role.126,127 In
addition, and consistent with scavenger receptors being
considered PRRs, one study has implicated both SR-AI and
SCARF1 in the uptake and cross-presentation of HCV non-
structural (NS)3 protein by human myeloid cells (dendritic
cells [DCs] and monocytes).49

Fibrosis
Hepatic fibrosis is the process in which the excessive accu-
mulation of ECM proteins, such as collagens, fibronectin, and

elastin, effectively replaces the parenchymal tissues of the
liver, thus significantly distorting its histology and vastly
reducing its functionality.128 The major source of these ECM
proteins is the HSC, a liver-resident pericyte which, when
chronically activated by paracrine inflammatory signals
from the diseased liver microenvironment, transdifferenti-
ates toward a profibrogenic myofibroblast phenotype.129 It
has previously been suggested that direct HSC uptake of
oxLDLs via CD36 and LOX-1 contributes to their activation
and production of ECMproteins.130,131 In addition, one study
has suggested that Class A scavenger receptors may play a
role inHSC activation in response to apoptotic bodies derived
from HCV-infected hepatocytes.132

Stabilin-1 expression is absent from HSCs; however, its
presence/absence on other hepatic cell types is still able to
indirectly influence HSC activation and hepatic fibrosis in
vivo. Stabilin-1-deficient mice are phenotypically normal
and exhibit a comparable lifespan to WT littermates27;
however, histological analyses of their livers demonstrated
the presence of amild, peri-sinusoidal deposition of collagen
fibers.17,27 This was indicative of a role for stabilin-1 in
hepatic fibrogenesis and subsequent studies in the context
of chronic liver injury further highlighted this. Utilizing a
chronic carbon tetrachloride (CCl4)model of bridging hepatic
fibrosis with a resolution phase, these studies demonstrated
that a lack of stabilin-1 exacerbated the level of fibrosis and
delayed its resolution.17 In uninjured liver tissues, stabilin-1
expression is limited to endothelial cells87; however, in the
context of inflammatory disease, a sub-population of stabi-
lin-1þ macrophages was also evident.17 Cell-specific knock-
out mice (ENDO stab-1�/� and MACRO stab-1�/�) were used
to confirm that stabilin-1 in macrophages was the key
contributor to the limitation of fibrosis in chronic injury.
Additionally, adoptive transfer of stabilin-1-expressing my-
eloid cells, derived from bone marrow of WT mice, into
MACRO stab-1�/� mice was able to rescue the phenotype.
Mechanistically, the scavenging of oxLDLs, and more specifi-
cally malondialdehyde (MDA)-LDLs, by macrophage-
expressed stabilin-1 resulted in the suppression of CCL3
production. CCL3 is a proinflammatory and profibrotic che-
mokine known to influence fibroblast phenotype and its
increased expression frommacrophages in the livers of stab-
1�/� andMACRO stab-1�/�mice led to increased fibrosis and
delayed resolution.17

Steatosis and NASH
NAFLD is characterized by the chronic and excessive accu-
mulation of lipids within the liver and is the precursor to a
progressive and inflammatory form of the disease, NASH.133

Given the global obesity crisis, NASH is increasing in
prevalence and causes an incredible disease burden and
economic impact worldwide.133 NASH is classically charac-
terized by steatosis, inflammation, and fibrosis, and a recent
study has implicated SR-AI in the progression of NAFLD to
NASH.134 Govaere et al showed that SR-AI expression
strongly correlated with the degree of steatosis and inflam-
mation in a large cohort of NAFLD patients and, by utilizing
a combination of murine models, novel ex vivo human liver
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tissue models, and in vitro experiments, they demonstrated
a direct role for hepatic macrophage-expressed SR-AI in the
uptake of free fatty acids, subsequently driving them toward
a proinflammatory phenotype.134 SCARB1 has also been
demonstrated to be significantly upregulated in both mu-
rine and human NAFLD135 and mice deficient in SCARB1
were recently shown to have significantly reduced levels of
hepatic triglycerides in comparison to WT mice in a murine
model of NAFLD.136

However, the best studied scavenger receptor in context
of lipid metabolism, steatosis, and NAFLD/NASH is CD36.137

CD36 is widely expressed in the liver and has been studied in
a range of hepatic cell types, including hepatocytes,138,139

HSC,130 LSEC,140 Kupffer cells,141,142 and even intrahepatic
lymphocytes.143 CD36 has consistently been shown to be
significantly upregulated in NAFLD and NASH liver tissues in
comparison to normal liver control tissues144–146; however,
the full significance of its role in NAFLD/NASH pathogenesis
is still to be realized.137 Nevertheless, overexpression of
CD36 in murine livers significantly increased accumulation
of hepatic triglycerides and cholesteryl esters in a model of
diet-induced obesity147 and hepatocyte-specific deletion of
CD36 protected mice from steatosis and improved insulin
sensitivity in a high-fat diet liver injurymodel.148 In addition,
the soluble form of CD36 may present as a biomarker for
steatosis in NAFLD.149,150

Scavenger Receptors in HCC

Tumor Endothelial Cell Expression of Scavenger
Receptors
Several scavenger receptors have previously been implicated
in the pathogenesis of a range of cancers13 and HCC is no
exception to this. In general, scavenger receptors are consid-
ered to be largely anti-inflammatory and, therefore, poten-
tially pro-tumorigenic in nature; however, a seminal study
demonstrated a key role for SR-PSOX/CXCL16 in LSEC-medi-
ated recruitment of antitumoral NKT cells.151 The results of
this study showed that disruption of the commensal gut
microbiota and accumulation of primary bile acids in the
liver upregulated the expression of SR-PSOX/CXCL16 on
LSEC, mediating the recruitment of CXCR6þ NKT cells which
in turn effectively limited tumor formation andmetastasis in
mice.151 More recently, studies on the expression of SCARF1
in tumor endothelial cells in humanHCC tissues demonstrat-
ed a correlation with lower tumor aggressiveness, better
survival, and increased inflammation.107 From a functional
perspective, the data suggested that SCARF1 potentially
plays a role in the selective recruitment of proinflammatory
“effector” CD4þ T cells which could initiate an antitumoral
immune response.107

Stabilin-1, which has been shown to recruit Treg, is also
expressed in tumor endothelial cells in humanHCC tissues.87

This suggests that the presence of stabilin-1 in HCC could be
immunosuppressive and protumorigenic, a hypothesis
which is supported by murine tumor models. In these
studies, the genetic and therapeutic targeting (via antibody
blockade) of stabilin-1 resulted in smaller primary and

metastatic tumors and diminished numbers of immunosup-
pressive leukocytes, such as Treg.152

Scavenger Receptors in TAMs
In addition to transformed cancer cells, the tumor microen-
vironment (TME) in HCC is composed of several other
stromal components, including immunosuppressive tu-
mor-associated macrophages (TAMs) which drive tumor
growth, survival, and metastasis.153,154 These TAMs are
highly plastic and thought to originate from circulating
monocytes, whose phenotype is shaped by the environmen-
tal cues found within the TME. The “M2” or “alternative
activation” state of TAMs is well documented, and has been
shown to promote an immunosuppressive phenotype, which
can facilitate tumor immune evasion in HCC.155,156

MR is considered a definitive marker of the “M2” TAM
population157 and has, unsurprisingly, been shown to be
expressed in TAMs within HCC tumor tissues, with their
presence being highly indicative of poor patient progno-
sis.158,159However, the direct contribution of MR to the TME
in the context of HCC remains unexplored to date. Neverthe-
less, MR is known to directly bind tumoral mucins and this is
speculated to drive immunosuppression by interleukin (IL)-
10-mediated Treg induction and downregulation of
IL-12.160,161 Furthermore, targeting of TAM-expressed MR
with a synthetic peptide analogue in murine xenograft
models resulted in M2 macrophage reprogramming to an
antitumor “M1” phenotype, as well as inducing apoptosis of
the M2 TAM population.162 These studies demonstrate the
potential for targeting TAM-expressed MR in the context of
HCC and future studies should explore this possibility.

Similar toMR, CD163 is also a marker of immunosuppres-
sive TAMs, which has been demonstrated in multiple can-
cers.163–166 CD163 is the prototypic member of the class I
family of scavenger receptors which bind and clear hemo-
globin–haptoglobin complexes.167–169 As such, this receptor
prevents hemoglobin-induced inflammation under physio-
logical conditions, but can also stimulate protumorigenicM2
polarization in a pathophysiological context. Specifically,
hemoglobin release into the circulation, arising from patho-
logical intravascular hemolysis within the tumor, can acti-
vate stress-responsive enzyme heme oxygenase 1.169 This
enzyme has been implicated in M2 polarization and IL-10
production.170,171 Moreover, CD163 is involved in the se-
questration and subsequent inactivation of proinflammatory
tumor necrosis factor-like weak inducer of apoptosis
(TWEAK), further contributing to the TAM immunosuppres-
sive phenotype.172 In support of this, enhanced peritumoral
CD163 has been shown to correlate with poor prognosis and
higher incidence of vascular invasion in HCC patients.154,173

Another scavenger receptor highly expressed in TAMs is
stabilin-1.174 TAM stabilin-1 has been shown to scavenge
antitumor factor, secreted protein, acidic and rich in cysteine
(SPARC), which promoted tumor progression in an in vivo
model of breast cancer.174 Studies in mice have highlighted
that genetic stabilin-1 deficiency leads to reduced intra-
tumoral “M2” macrophages and FoxP3þ Treg, demonstrating
a role for stabilin-1 in shaping the immunosuppressive

Seminars in Liver Disease Vol. 42 No. 1/2022 © 2021. The Author(s).

Scavenger Receptors: Novel Roles in Liver Inflammation and Cancer Pathogenesis Patten et al. 67



TME.152 Importantly, macrophage-specific deletion of the
stabilin-1 gene reduces tumor growth andmetastatic spread,
and anti-stabilin-1 antibody treatment of WT mice inhibits
tumor progression.152 Furthermore, stabilin-1 levels posi-
tively correlate with resistance to immune checkpoint ther-
apies and T cell dysfunction in numerous cancer types.175

Recently, a phase I/II first-in-man clinical trial in advanced
solid tumor cancer patients including HCC demonstrated
that the targeting of stabilin-1 with a function blocking
antibody led to a significant phenotype switch in circulating
monocytes. Interestingly, early results in patients where
biopsies were undertaken did show a reduction of anti-
inflammatory intratumoral stabilin-1þ macrophages and
an increase in proinflammatory/adaptive immune cell sub-
sets in selected patients.176 This trial is ongoing and overall
therapeutic efficacy is awaited, yet the data are consistent
with the detrimental effects of TAM scavenger receptors and
their role in driving an immunosuppressive TME, and also
highlight therapeutic potential for their targeting within the
context of HCC.

Conversely, scavenger receptors found on TAMs can also
drive protective antitumor responses. For instance, dectin-1,
a C-type lectin belonging to the class E family of scavenger
receptors, can stimulate both innate and adaptive arms of the
immune system to enhance immune-mediated tumor cell
killing. Dectin-1 is the primary β-glucan receptor onmyeloid
DCs,macrophages, monocytes, and B cells and is upregulated
in both DCs and TAMs within murine HCC tumors, when
compared with normal liver tissues.177 In addition, treat-
ment of TAMswith β-glucan has been shown to convert “M2”
polarized macrophages into an “M1-like” phenotype in a
dectin-1-dependent manner.178 Moreover, oral β-glucan
treatment enhanced effector T cell activation and delayed
tumor growth inmice.178 Furthermore, recognition of tumor
cells by DC- andmacrophage-derived dectin-1 drives tumor-
icidal activity of NK cells and induces inflammatory cytokine
production.179,180 Consistent with this, dectin-1-deficient
mice display exacerbated tumor growth in amurinemodel of
HCC.177 Thus, TAM scavenger receptors have a pleiotropic
role in mediating the TME.

Scavenger Receptors in Metastasis of HCC
The majority of scavenger receptors within the context of
HCC are expressed in tumor-associated stromal and immune
cell populations, such as tumor endothelia and TAMs; how-
ever, one scavenger receptor known to be expressed directly
by tumor cells in HCC is asialoglycoprotein receptor 1
(ASGR1).181,182 ASGR1 is a hepatic C-type lectin receptor
which is constitutively expressed in hepatocytes and its
primary function is to mediate the endocytosis of serum
glycoproteins, particularly those containing galactose or
N-acetylgalactosamine moieties.183,184 ASGR1 expression
was found to be downregulated in HCC tumors when com-
pared with matched nontumorous tissues; however, higher
intratumoral expression of ASGR1 in HCC was shown to be
associated with better patient survival.185 The same study
also demonstrated that ASGR1 works in conjunction with
longevity assurance homolog 2 of yeast LAG1 (LASS2) to

inhibit vacuolar Hþ-ATPase (V-ATPase) activity in HCC tumor
cells, effectively suppressing cell migration and invasion (i.e.,
metastasis).

Similarly, the intratumoral expression of another scaven-
ger receptor, MARCO, has been shown to be associated with
better patient prognosis186 and its overexpression in hepa-
toma cell lines appeared to inhibit their migration and
invasive properties, inducing apoptosis both in vitro and in
vivo.186 However, unlike ASGR1, which seems to be exclu-
sively expressed on hepatocytes and HCC tumor cells, the
expression of MARCO is also well known to be largely
expressed by hepatic macrophages187,188; therefore, more
in-depth studies are required.

Clinical Translation and Future Perspectives
Over the last few years, scavenger receptors have increasing-
ly been considered viable clinical targets80,189–191; however,
their full translational potential is yet to be realized as
clinical trials have been limited in this field. In ►Fig. 2, we
summarize the translational progress in the study of scav-
enger receptors in liver disease,with two early-phase clinical
trials active/completed to date. The first of these targeted
scavenger receptor SCARB-1 in HCV cell entry in the context
of liver transplantation127 and the second is an early-phase
clinical trial currently underway, targeting the scavenger
receptor stabilin-1 on TAMs in solid tumors, including
HCC.176 In addition, scavenger receptors have also been
explored as biomarkers of disease states, and here we
highlight their potential as biomarkers in different etiologies
of liver disease (►Fig. 2).

Nevertheless, there are still several questions that need to
be explored before we can fully understand the contribution
of scavenger receptors to liver disease and neoplasia, their
therapeutic potential, and their practicality as disease bio-
markers.While scavenger receptors share overlapping ligand
recognition, the cellular responses can be divergent.9 Better
understanding is therefore needed of the cell signaling that
takes place when specific scavenger receptors bind to their
ligands to design therapies/small-molecule inhibitors that
can take advantage of scavenger receptor biology. Detailed
understanding is also needed of receptor dynamics, shed-
ding, and recycling in homeostasis and how thismay differ in
disease settings, which will provide crucial information for
pharmacokinetics and pharmacodynamics of drug design.
With regard to liver disease, targeting of the complex tissue
microenvironment remains a challenge in the setting of
chronic hepatitis and neoplasia. Further studies are required
to understand the contributions of scavenger receptors to
persistent inflammation which drives liver fibrosis, and in
contrast, the suppression of hepatic immune responses that
permit the growth of tumors in the case of HCC and chol-
angiocarcinoma. One emerging technology which could aid
in this process is single-cell RNA-sequencing (scRNA-seq).
Recent scRNA-seq studies have highlighted tissue-resident
and infiltrating immune cell populations, as well as inflam-
mation- and cancer-associated hepatic cell subsets in human
and mouse liver tissues.192–194 Data generated from this
technology could be utilized to examine the specific cell
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subtype expressers of scavenger receptors and better inform
us of their role within the liver and TMEs.

In addition to directly targeting scavenger receptors for
treatment of liver diseases, scavenger receptors may also be
useful in the delivery of emerging liver-specific and even cell-
specific therapeutics, such as nanoparticles, oligonucleoti-
des, and antibody–drug conjugates. Nanoparticles are small
(< 500 nm) quasi-spherical, hollow particles that can be
loaded with a range of existing pharmaceutical drugs and
utilized to circumvent problems such as solubility and
off-target toxicity.195 Due to the endocytic nature of liver-
resident cells, drug-laden nanoparticles passively accumu-
late within the liver,195,196 and are known to be internalized
by scavenger receptors.197 Recently, nanoparticle uptake
experiments in zebrafish (Danio rerio) have implicated sta-
bilin-1 and stabilin-2 as key receptors in their clearance by

liver endothelial cells and have been utilized to provide
proof-of-concept data in the design of targeted and cell-
specific drug delivery systems.198,199 Stabilin-1 and stabilin-
2 are also considered to be key molecules in the delivery of
oligonucleotide therapeutics.200 Oligonucleotide therapeu-
tics, such as antisense oligonucleotides, are increasingly
being recognized in translational science as an effective
therapeutic tool and a number of them have been approved
for use in the clinic to treat a range of diseases.201 Scavenger
receptors, such as stabilin-1, stabilin-2, and ASGR1, can be
specifically targeted by direct modifications to the oligonu-
cleotides themselves,200,202 and SR-AI and SCARF1 have been
utilized in the delivery of oligonucleotides via viral vec-
tors.106 Another promising emerging technology in which
scavenger receptors have been effectively exploited in pre-
clinical models is antibody–drug conjugation. Anti-CD163

Fig. 2 Scavenger receptors represent valid therapeutic targets and are often valuable for use as biomarkers of liver disease, either in their
soluble form in the serum or their cellular form within the tissues. This table summarizes the translational stage of each scavenger receptor,
including in vitro and in vivo preclinical models and ongoing or completed clinical trials. Figure created using biorender.com. ALF, acute liver
failure; ALI, acute liver injury; CEA, carcinoembryonic antigen; FA, fatty acid; Hb-Hp, hemoglobin–haptoglobin complex; HCC, hepatocellular
carcinoma; HCV, hepatitis C virus; hLSEC, human liver sinusoidal endothelial cells; hMDMs, human monocyte-derived macrophages; HSC,
hepatic stellate cells; mBMDMs, murine bone marrow-derived macrophages; mLSEC, murine liver sinusoidal endothelial cells; NAFLD,
nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NS3, nonstructural 3 protein; oxLDL, oxidized low-density lipoprotein; TAM,
tumor-associated macrophage; Treg, regulatory T cells; TWEAK, tumor necrosis factor-like weak inducer of apoptosis.
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antibody–drug conjugates allow highly efficient delivery of
drugs to CD163þ macrophages, for example, antibody-con-
jugated dexamethasone displays a high affinity for CD163
and showed a 50-fold more potent anti-inflammatory re-
sponse than nonconjugated dexamethasone in a rat model of
endotoxemia.203 Furthermore, CD163 antibody-conjugated
dexamethasone specifically targeted Kupffer cells and sig-
nificantly reduced steatohepatitis and fibrosis in a rat model
of NAFLD.204 In addition, this therapeutic strategy may also
be valuable in the context of HCC, since CD163 is highly
expressed by TAMs, which are indicative of poor patient
prognosis.154,173 Indeed, doxorubicin-containing anti-
CD163 liposomes have been shown to reduce tumor growth
and enhance monocyte and CD4þ/CD8þ T cell infiltration via
depletion of immunosuppressive TAMs.205

Future translationalworkwill hopefully take advantage of
the potential of scavenger receptors as biomarkers, to aid in
stratifying patients, and as direct therapeutic targets and/or
delivery molecules. This could facilitate the design of per-
sonalized therapies that target specific scavenger receptors
depending on disease stage or cancer risk.

Conclusions

PRRs play a crucial role in the initial response to foreign
pathogens and are a vital link between the innate and
adaptive immune response. The literature often highlights

the role of TLRs and the inflammasome, but gathering
evidence demonstrates that scavenger receptors are also
important players in this process. Like the TLR family and
inflammasome, they are highly evolutionarily-conserved
and recognize a wide array of ligands. The belief that they
demonstrate a high level of redundancy is also being brought
into question by the use of transgenic murine models,
especially in the context of tissue injury.

The liver has a critical role in maintaining homeostasis
from ametabolic and immune point of view. Its contribution
to tolerance is now well recognized and it can also be the
victim of a range of insults which if chronic can lead to a
maladaptive wound healing response. The increased expres-
sion of scavenger receptors within the hepatic microenvi-
ronment contributes to both the metabolic and immune
functions of the liver. As discussed, scavenger receptors are
a highly diverse superfamily of receptors and, as a result, it is
unsurprising that they havebeen found to playamultitude of
roles in the pathogenesis of acute liver injury, chronic liver
disease, and HCC (►Fig. 3). While these receptors can be
expressed on a range of cell types, they are highly expressed
on macrophages and endothelial cells. Studies in the context
of liver inflammation and fibrosis have demonstrated that
scavenger receptor function contributes to leukocyte subset
trafficking across endothelium60,87 and macrophage polari-
zation.17,79 Given the inflammatory cell infiltration that
characterizes all liver diseases and the well-recognized

Fig. 3 Scavenger receptors have widespread and pleiotropic roles in liver pathophysiology. Acute or chronic liver injury causes inflammation,
which if unresolved, can progress to fibrosis or acute liver failure, respectively. Inflammation is underpinned by leukocyte recruitment across the
sinusoidal endothelium, and several scavenger receptors have been implicated in adhesion or transmigration steps of the leukocyte adhesion
cascade. Although early fibrosis can regress, if noxious stimulus is not removed and liver injury persists, fibrosis will progress to cirrhosis and/or
hepatocellular carcinoma (HCC). Figure created using biorender.com.
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role of macrophages in regulating liver fibrosis,206 these
scavenger receptor properties should impact on the immune
and stromal microenvironment of human liver disease and
support their potential as therapeutic targets for fibrosis and
cancer within the liver.

In this review, we have covered some of the pathways
that are regulated by scavenger receptors in the tissue
microenvironment of chronic liver injury and carcinogene-
sis. The potential of scavenger receptors to positively influ-
ence the liver microenvironment in the disease setting and
their potential to act as therapeutic targets are only just
starting to be realized, with a small number of early-phase
clinical trials having been undertaken to date. However, we
predict that this unique family of receptors, which often
have a cell-specific expression, could be highly attractive in
regulating distinct inflammatory pathways and in targeting
specific sites of disease.

Main Concepts and Learning Points

• Inflammation is a key pathological component of acute
and chronic liver injuries, cirrhosis, and hepatocellular
carcinoma (HCC); however, the molecules and pathways
involved in hepatic inflammation are yet to be fully
elucidated.

• Scavenger receptors are a highly diverse superfamily of
receptors which play an important role in homeostasis,
but are also associated with the pathophysiology of
several inflammatory diseases.

• Scavenger receptors are highly expressed within the liver,
particularly in hepatic macrophages and liver sinusoidal
endothelial cells (LSECs), and regulate discrete immune
pathways in response to hepatic infection and sterile
injury.

• Despite sharing the recognition of several ligands, scav-
enger receptors have been shown to play nonredundant
roles in shaping the stromal response in preclinical mod-
els of liver injury.

• Developing agents that target scavenger receptors could
be a promising approach in treating fibrosis and carcino-
genesis within the hepatic microenvironment.
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