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Incorporating temporal distribution of population-
level viral load enables real-time estimation of
COVID-19 transmission
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Many locations around the world have used real-time estimates of the time-varying effective

reproductive number (Rt) of COVID-19 to provide evidence of transmission intensity to

inform control strategies. Estimates of Rt are typically based on statistical models applied to

case counts and typically suffer lags of more than a week because of the latent period and

reporting delays. Noting that viral loads tend to decline over time since illness onset, analysis

of the distribution of viral loads among confirmed cases can provide insights into epidemic

trajectory. Here, we analyzed viral load data on confirmed cases during two local epidemics in

Hong Kong, identifying a strong correlation between temporal changes in the distribution of

viral loads (measured by RT-qPCR cycle threshold values) and estimates of Rt based on case

counts. We demonstrate that cycle threshold values could be used to improve real-time Rt

estimation, enabling more timely tracking of epidemic dynamics.
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Monitoring the transmission of an emerging infectious
disease in a timely manner is crucial to evaluate the
effectiveness of public health and social measures and

to inform better control policies. During the coronavirus diseases
2019 (COVID-19) pandemic, real-time assessment of transmis-
sion has generally been achieved through monitoring the time-
varying effective reproductive number, Rt . A number of statistical
approaches have been developed to allow estimation of Rt from
time series of daily case counts either recorded by date of illness
onset or by date of laboratory confirmation, or from time series of
observed deaths1,2. Though efforts have been made to reduce the
impact of lag in Rt estimates3,4, the majority of these approaches
tend only to be able to estimate Rt with a lag of one week or more,
because COVID-19 transmission can occur prior to illness onset5,
because of delays between individuals being infected and poly-
merase chain reaction (PCR) detectable and/or showing symp-
toms (which are typically around 3–5 days for COVID-19)6, and
because of delays between illness onset and diagnosis. In Hong
Kong, we estimated Rt with a 7-day lag by accounting for pre-
symptomatic transmission and reporting delays7,8.

An individual infected by SARS-CoV-2 will typically experi-
ence viral load peaking around illness onset and monotonically
decreasing during the following two weeks9. While viral loads can
vary across individuals, with some shedding more than
others10,11, the mean distribution of viral loads from a group of
patients measured around the time of illness onset will tend to
have higher values than that of viral loads from a group of
patients measured at a later time after infection12. Collectively,
higher population-level viral loads would correlate with more
infected persons being earlier in the course of infection and vice
versa13. Viral loads can be proxied by cycle threshold (Ct) values
in the real-time quantitative reverse-transcription polymerase
chain reaction (RT-qPCR) assay, with lower Ct values indicative
of higher viral loads.

A recent study showed that the distribution of viral loads
among confirmed cases can provide inferences on transmission
dynamics within populations, where population-level Ct values
skewing towards lower values indicate more individuals have
been recently infected, corresponding to an increasing rate of
epidemic growth in the community, especially where single strain
dominates13. The method was demonstrated in a modeling study
using cross-sectional samples in a small-scale outbreak in
Boston13 while the correlation was also observed over an epi-
demic wave elsewhere14. Here, we incorporated Ct values from
COVID-19 cases in Hong Kong, a location with intense surveil-
lance and case-finding efforts, to demonstrate that including data
on population viral load distributions from symptom-based sur-
veillance could support real-time tracking of transmission.

Results
In Hong Kong, COVID-19 cases are detected through clinical
diagnosis for individuals with acute respiratory symptoms and
public health surveillance for the community with a priority to
people with pre-defined high exposure risks15 (see Methods).
Close contacts of confirmed cases are traced and placed into
quarantine outside the home, and repeatedly tested. All
laboratory-confirmed COVID-19 cases, including asymptomatic
cases, are isolated within the hospital and receive multiple RT-
qPCR tests during their stay. After excluding imported cases, we
analyzed the first available record of Ct value (derived from RT-
qPCR tests targeting E gene16) for each confirmed case and
characterized the daily distribution of Ct values (measured by
mean and skewness) that were sorted by sampling days. We
included two consecutive epidemics in July–August 2020 (i.e., the
third wave) and November 2020 through March 2021 (i.e., the

fourth wave), which were dominated by local transmissions
instead of imported cases8,17.

A total of 8646 local COVID-19 cases were detected during
periods studied, among which 77% (n ¼ 6700) were sympto-
matic. Cases who were asymptomatic at the time of testing were
more likely to be epidemiologically linked with other known cases
compared to symptomatic cases (81% vs. 61%, chi-squared test
P<0:001), suggesting they were more likely to be detected from
contact tracing or from compulsory testing for populations with
predefined high risks of exposures (see Methods) and could be
detected earlier than symptomatic cases. Ct values were available
for 96% (n ¼ 8268) of local cases and included in further ana-
lyses. All included cases had not been vaccinated, as the local
COVID-19 vaccination program began in late February 2021
towards the end of the period studied. Variants of concerns
(VoCs) were not reported among local cases during the study
period, while two separate wild-type lineages dominated the two
studied waves18.

We first examined the correlation between the distribution of
daily Ct values and the local transmission dynamics8 (measured
by the incidence-based Rt ; see Methods). The temporal Ct dis-
tribution tracked very closely the incidence-based Rt over the two
epidemic waves (Fig. 1; Supplementary Fig. 1a). Higher values of
incidence-based Rt were found when the average Ct values
decreased (Spearman’s correlation coefficient, ρ ¼ �0:79,
P<0:001 for the third wave and ρ ¼ �0:52, P<0:001 for the
fourth wave) and when the Ct skewed towards lower values (i.e.,
greater values of skewness estimates; ρ ¼ 0:80, P<0:001 for the
third wave and ρ ¼ 0:27, P<0:001 for the fourth wave) (Fig. 1;
Supplementary Table 1).

To confirm that the changes in the observed daily Ct dis-
tribution were mostly driven by the epidemic dynamics despite
individual variations in viral shedding, we extrapolated the Ct
value back to illness onset for symptomatic cases using the fitted
association that Ct values increase 1.057 (95% confidence interval
(CI): 1.050–1.063) per day after illness onset (Supplementary
Fig. 2; see Methods). We found that distributions of Ct values at
onset were less variable than those at sampling during the studied
period (coefficient of variation for skewness: 0.37 vs. 0.80)
(Supplementary Figs. 3 and 4), suggesting a relatively stable
peaking level of viral loads across individuals over the course of
the epidemic.

To use Ct values for real-time assessing COVID-19 transmis-
sion in the community, we fitted a log-linear regression to daily
incidence-based Rt on daily mean and skewness of Ct values at
sampling during the third wave (i.e., training period; see Meth-
ods). We found that the distribution of Ct values explained 72%
of the observed variations in incidence-based Rt during the
training period (Supplementary Table 2). We then applied the
trained model to the daily Ct distributions in the fourth wave (i.e.,
testing period) to estimate Rt in real time (i.e., Ct-based Rt). We
found that the Ct-based method provided accurate real-time
estimations of Rt during the 7-day lagged window suffered by the
conventional incidence-based Rt estimation method (Fig. 2a). We
found high correlations between Ct- and incidence-based Rt for
both training (Spearman’s correlation coefficient, ρ ¼ 0:81,
P<0:001) and testing periods (ρ ¼ 0:48, P<0:001) (Fig. 2b–d). We
conducted sensitivity analyses to account for the potential impact
of age on Ct distributions (Supplementary Fig. 5) and for changes
in proportions of symptomatic cases (Supplementary Fig. 6) and
the resulting Ct-based Rt , and found that the high correlation
between Ct- and incidence-based Rt remained.

We performed a further validation of our results by training
the model using data from November to December 2020 (i.e.,
early stage of the fourth wave) and predicting the later stage of the
fourth wave and the third wave, and found the high accuracy of
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predictions still held (Supplementary Fig. 7). We also performed a
10-fold cross-validation, in which we randomly assigned data
between 6 July 2020 to 31 March 2021 into 10 validation sets. We
found that on average 81% (ranging from 75% to 85%) of the Ct-
and incidence-based Rt estimates were directionally consistent
across validation sets. These results suggested that relationships
between Ct distributions and Rt estimates were not affected by
temporal autocorrelation of incidence-based Rt . In addition, we
found that our model predictions were insensitive to the selection
of the training period as long as the training period had sufficient
samples (e.g., >30 samples per day as suggested in Supplementary
Table 4) and could reflect changes in both epidemic growth and
population Ct distributions. Such training period often covered
the transition point when Rt shift around 1 and would span an
epidemic peak in places with clear waves (Supplementary Fig. 8).
Longer training periods did not necessarily lead to better per-
formance, possibly due to the variability in the longer tail with
low numbers of samples (Supplementary Figs. 1 and 8).

We used synthetic data to examine the potential impact of case
detection on our methods. We simulated two consecutive epi-
demic waves (Supplementary Fig. 9a) using a compartment
transmission model and investigated various case detection sce-
narios (Supplementary Fig. 9b). We also simulated individual
viral load trajectories, incubation periods and sample-since-onset
intervals to determine Ct values at sampling for detected symp-
tomatic cases in the simulations (see Methods). We found that
Ct-based Rt can recover the simulation truth when there is lim-
ited and changing case detection (Supplementary Fig. 10).

Specifically, Ct-based Rt is correlated with the simulation truth
under scenarios with varying case detection (i.e., scenario 3;
Spearman ρ= 0.77, 95% CI: 0.73–0.81) and with certain degree of
under detection (i.e., scenario 4; Spearman ρ= 0.65, 95% CI:
0.53–0.75) (Supplementary Fig. 10c, d; Supplementary Table 7).

Discussion
In this study, we applied a simplified Ct-based method to provide
precise estimates of daily Rt and demonstrated that such a
method could be used for real-time Rt estimation. Con-
ventionally, the main challenge in estimating Rt in real-time was
largely caused by the delays between an individual being infected
and being PCR detectable or illness onset6,19. Linking the
incidence-based Rt and the population-level Ct distribution
among samples collected on a given day was able to mitigate the
right-censoring issue (i.e., missing cases that were infected but
not-yet-observed due to the latent period6) encountered by
incidence-based methods for assessing transmission1,6. Although
studies3,4 demonstrated nowcasting and projection of incidence-
based Rt during the right-censoring time window, these estimates
were indicative values rather than genuine estimates informed
with real-time empirical data.

The few studies that have used population viral loads to infer
COVID-19 epidemics only provided probability distributions of
the estimated position of a community within an epidemic
curve13,20, while our study provides precise longitudinal Rt esti-
mates using a method that required less complicated computation
efforts, which further demonstrates the potential to improve
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Fig. 1 Correlations between temporal distribution of Ct values and transmission dynamics of COVID-19 in Hong Kong. a Local COVID-19 cases and the
estimated incidence-based Rt. Gray bars indicate the number of laboratory-confirmed local cases by date of reporting. Black lines and shaded areas indicate
the mean and 95% credible intervals (CrIs) for incidence-based Rt . b Ct distributions smoothed from a generalized additive model (GAM). Dark gray bars
indicate the number of sample collections. Orange lines and shaded areas indicate the daily average and 95% confidence intervals (CIs) of Ct values that
were estimated from a GAM (Eq. (2)) over the study period in Hong Kong. c Daily skewness of Ct values over the study period. Blue dots represent the
mean of daily Ct skewness and vertical lines represent 95% CIs of daily Ct skewness that were calculated from 500 bootstraps. d, e Correlations between
the daily incidence-based Rt and the daily mean Ct (d) or skewness (e). Boxes represent the interquartile range (IQR; defined as differences between 25th
and 75th percentiles, same for Fig. 2) and median of the incidence-based Rt, lower whiskers represent the minimum and upper whiskers represent either
the maximum or the largest values that are within the distance of 1.5 times the IQR of all incidence-based Rt under various Ct distribution intervals, dots
represent values beyond the lower and upper whiskers (n ¼ 59 and 146 daily Ct mean for wave 3 and 4 in panel (d), and n ¼ 57 and 138 daily Ct skewness
for wave 3 and 4 in panel (e), respectively).
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real-time situational awareness using the Ct-based methods. In
addition, we showed that the daily Ct distribution could be
applied for tracking epidemics under a symptom and contact-
tracing based setting, such as Hong Kong, providing empirical
data to support the hypotheses generated from previous Ct-based
studies13. Temporal changes in population Ct distribution over an
epidemic largely reflect changes in infection-to-sampling delays
that is determined by delays of infection-to-onset (i.e., incuba-
tion) and onset-to-testing (i.e., testing delay). We showed that the
onset-to-testing did not provide additional information to the
population Ct distribution (Supplementary Table 5), suggesting
the observed changes in Ct distribution was largely driven by
collective changes in the exposure time. In particular we
demonstrated that epidemic progress might better explain tem-
poral changes in population Ct distribution than changes in
testing delays due to varied detection patterns in our case.

Our simplified Ct-based method also provides an approach for
real-time estimation of Rt without requiring intensive surveillance
of COVID-19 (i.e., accurate daily case counts by onset or diag-
nosis), which is of great significance especially for areas and time
periods with limited and/or changing surveillance capacity. As the
main prerequisite of the model was the distribution of Ct values
among confirmed cases, our findings were less sensitive to
changes in case reporting (e.g., due to definition changes and/or
testing capacity constraints), which, by contrast, could affect
conventional incidence-based Rt estimation if not accounted
for21,22. For example, our results showed that population-level Ct
distributions remained informative in tracking epidemic changes
over time regardless of changes in surveillance in Hong Kong,

especially by expanding the testing capacity and therefore
detecting more cases at earlier disease stage (i.e., asymptomatic
cases; Supplementary Fig. 6) during the fourth wave in our case15.
This was further supported by the high accuracy of Ct-based Rt
under various settings of case detection in our simulations. Of
note, Rt estimated with very few Ct samples (e.g., less than 30;
Supplementary Table 4) collected on a given day can lead to
larger uncertainty, though we believe this may not be an issue for
most areas with prevalent local COVID-19 transmissions, even if
testing capacity is limited.

Our work is not the first attempt to improve real-time tracking
COVID-19 transmission. Another study23 demonstrated that
using sewage surveillance could shorten the prediction delays to
two days ahead of test positives, which, however, did not fully
overcome the delays between being infected and being PCR
detectable6. In addition, the possibilities of locating sewage
samples containing viral RNA could be low, especially when
transmission in the community was low. Under such a situation,
our method, which leverages existing information from con-
firmed cases, maybe less resource-consuming and faster to
implement, as long as the reporting delay could be shortened.

Future applications of our method may need adaptation to
different populations, especially among those with which viral
load trajectories differ. In particular, populations with higher
SARS-CoV-2 vaccination rates may expect increased average Ct
values when Rt is greater than 1, as lower viral loads were found
in cases who had received COVID-19 vaccinations24. Similarly,
increased Ct values when Rt is greater than 1 may also be found
in populations younger than Hong Kong’s population, due to the
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generally lower viral loads observed among young people9. As
such, while we believe the intrinsic relationship between popu-
lation viral loads and Rt estimates will remain valid (as long as the
time relation between infection and viral shedding still holds),
recalibrations of the model may be needed when applying our
model to different populations.

By the time this study was performed, there were limited VoCs
circulating in Hong Kong18, therefore we were not able to validate
the generalizability of our model under outbreaks dominated by
VoCs. A modeling study suggested that differences in population-
level Ct values of samples from symptom-based surveillance were
more likely to reflect changes in viral load trajectories instead of
differences in transmission rates across strains13,25. As such, if
increased viral loads (i.e., lower Ct values) occur with variant
infections26, this may lead to decreased average Ct values when Rt
is greater than 1. Therefore, monitoring the model performance
and leveraging information on factors affecting viral load levels
(e.g., genomic surveillance) are needed. For instance, unfavorable
model performance (e.g., lower consistency between incidence-
based and Ct-based estimates for more than a week) could
indicate changes in correlations between population Ct distribu-
tion and epidemic progress. Under such cases, investigations
about the driving factors of the divergence (e.g., changes in cir-
culation strains or age-structure of the infected population) are
needed to recalibrate the model.

To summarize, in this analysis we applied a simplified method
to incorporate the population-level viral loads into the real-time
estimation of transmission rates for COVID-19 under symptom-
based surveillance. We demonstrated that the Ct-based method
could provide accurate nowcasting of Rt potentially allowing
capacity-constrained regions to track local outbreaks quantita-
tively in a timely manner. Our method may need adaptions to
different populations and the evolving strains, mainly to recali-
brate the absolute extent to which the population viral loads
correlate with COVID-19 transmission.

Methods
Study settings. Hong Kong was among the first places to identify COVID-19 cases
globally, with its first COVID-19 case detected in late January 20208,27. Cases were
classified as “imported cases”, “local cases epidemiologically linked with imported
cases”, “unlinked local cases”, and “local cases epidemiologically linked with local
cases” according to their epidemiological characteristics and location of infection.
All suspected COVID-19 cases were confirmed by RT-qPCR in a local centralized
public health laboratory. A laboratory-confirmed COVID-19 case was defined as a
local case if the case did not visit places outside of Hong Kong in the 14 days before
symptom onset (for symptomatic cases) or confirmation (for asymptomatic cases);
otherwise defined as imported cases.

By the time of analysis, four different waves of transmissions have occurred in
Hong Kong. In this study, we restricted our analyses to the third (July 2020 to
August 2020) and fourth (November 2020 to March 2021) waves which were
dominated by local transmission, where 89% were local cases. Since we were
interested in the local transmission of COVID-19, we only included local cases
(unlinked local cases and local cases epidemiologically linked with local cases) in
our analyses. Given the stringent border controls since July 202028 and the
extremely small number of local cases linked with imported cases in Hong Kong
(<0.1%), we assumed that all unlinked local cases were infected from other local
cases. We did not include the first two waves (i.e., January to May 2020) as they
were predominately imported cases and smaller clusters linked to those imported
cases8,17.

In Hong Kong, local COVID-19 cases were generally detected from clinical
diagnoses that targeted people with acute respiratory symptoms and from public
health surveillance that targeted populations with predefined high risks of
exposures (e.g., staff working at healthcare centers; residents living in
neighborhoods with any lab-confirmed cases) by health authorities15. Upon case
confirmation, contact tracing was carried out based on epidemiological
information, with details described elsewhere29. Among 8646 local COVID-19
cases confirmed during our studied periods, 77% (6700 out of 8646) were detected
symptomatic and 65% (5651 out of 8646) were found with epidemiological links
with other known cases; across 23% (1946 out of 8646) of cases who were detected
as asymptomatic, 81% (1584 out of 1946) of them were linked to other local cases.
As such, the surveillance of COVID-19 in Hong Kong is largely symptom and
contact-tracing-based.

Data sources
Data on viral load of COVID-19 cases. In Hong Kong, all confirmed COVID-19
cases (including asymptomatic cases) were admitted to hospitals for isolation and
standardized management, with their hospitalization records stored in the data
system managed by Hospital Authority (HA). Results for SARS-CoV-2 RT-qPCR
tests (LightMix® Modular SARS-CoV-2 (COVID-19) E-gene, TIB Molbiol/Roche,
Berlin, Germany)16 were recorded as Ct values in the system. The Ct value is the
number of cycles needed to amplify the viral RNA in a specimen where the
reported fluorescent signal reaches a pre-defined level in RT-qPCR assays.
Therefore, the Ct value is inversely associated with viral load and could be used as a
semi-quantitative measurement for viral load. In our main analysis, we used Ct
values to measure viral load and analyzed the first recorded Ct value for each local
case (which was usually sampled on or one day before admission) during the study
period. Population viral load distributions were assessed by the date when samples
were collected.

Demographic and epidemiological information of confirmed COVID-19 cases. We
obtained demographic and epidemiological information from the Department of
Health of the Government of Hong Kong, including age, date of symptom onset,
and case classification (i.e., local, imported, and contacts of local or imported
cases).

Ethical approval for this study was obtained from the Institutional Review
Board of the University of Hong Kong (IRB No. UW 20-341).

Statistical methods
Estimating incidence-based Rt . We estimated the incidence-based Rt for local cases
using an extension of Cori et al.3,7,30. Briefly, local COVID-19 cases confirmed on
each day t, Q1 tð Þ was used for deconvolution to estimate the number of infections
on each day t, Y1 tð Þ31. We assumed an average 5.2 days (SD 3.9) for the incubation
period19 and an average 4.7 days (SD 3.2 days, unpublished data) delay between
illness onset to reporting empirically observed in Hong Kong, which were used for
deconvolution. In this framework, the daily local Rt (i.e., the incidence-based Rt in
our analysis) was the ratio between the number of new local cases at time t, Y1 tð Þ,
and the total infectiousness of cases at time t, given by ∑

t�1

k¼1
Y1 kð ÞwLðt � kÞ, where

wLðt � kÞ denote the probability of being infectious t � k days after infections. The
transmission was modeled by a Poisson process, and therefore, we have

Y1 tð Þ � Poisson Rt ∑
t�1

k¼1
Y1 kð ÞwLðt � kÞ

� �
ð1Þ

wLðt � kÞ was estimated using the convolution of the incubation period (mean
5.2 days, SD 3.9)19 and the infectiousness relative to onset5 (details described
elsewhere7). To fully utilize available case count information and to provide more
timely Rt estimates under the incidence-based method, we used the smoothing
method described in Cori et al.30 and calculated Rt estimates over a time window of
size τ ¼ 14 ending at time t, assuming that the transmission rates was constant
over the time period t � τ þ 1; t½ �. We used a Markov chain Monte Carlo algo-
rithm to estimate the incidence-based Rt , and we assumed the prior for Rt is
Gamma (1,5) with mean and SD equal to 532. To account for the uncertainty of
other parameter such as the incubation period, we used an bootstrap approach in
Salje et al33 to reconstruct 200 epidemic curves and perform estimation. After that
we presented the mean, 2.5% and 97.5% quantiles for those 200 Rt estimates for
each day t. More details about incidence-based Rt estimation was described
elsewhere7.

Temporal distribution of population-level Ct values. We analyzed the first available
Ct value record for each local COVID-19 case (i.e., yj;t , t is the calendar date when
the first sample was collected for individual j). To characterize the temporal dis-
tribution of population-level Ct values over the study period, we fitted a generalized
additive model (GAM) to the above-mentioned data over calendar time:

yj;t ¼ α0 þ s tð Þ ð2Þ

where sðtÞ was the smooth function for date t over the study period. 95% con-
fidence intervals (CIs) of the smoothed average daily Ct were derived from 500
bootstraps (Fig. 1b; Supplementary Fig. 1a). In each bootstrap, we resampled from
the data on cases’ first available Ct values and refitted the GAM. We also illustrated
temporal changes in delays between illness onset to sampling and found a con-
sistent pattern between the temporal trend of Ct distributions and that of delays
(Supplementary Fig. 1). We did not include samples collected between 1 September
2020 to 31 October 2020 due to the small number of samples that were collected on
each day.

To validate that the observed temporal variations in population-level Ct
distribution was not driven by variations in individual viral load trajectories, we
estimated the Ct value on the date of illness onset based on the observed pattern of
Ct values against time-since-onset (Supplementary Fig. 2). We fitted a log-linear
regression of the first available Ct value for individual j (yj) on the time interval
between the individual’s illness onset and first sample collection (δj) and age group

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28812-9 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1155 | https://doi.org/10.1038/s41467-022-28812-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(aj , modeled as categorical, i.e., 0–18, 19–64, and ≥ 65 years old)

ln yj

� �
¼ βj þ β1δj þ β2aj þ β3δjaj ð3Þ

where β1, β2, and β3 are the estimated coefficients for the time interval between the
illness onset and first sample collection, age group, and their interaction,
respectively. We then calculated the back-projected Ct value at illness onset by
setting δj ¼ 0. We chose the log-linear model as the Akaike information criterion
(AIC) indicated it outperformed the linear model in terms of model fit (−9177 and
38,279 for the log-linear and linear models, respectively).

To compare differences in the temporal trend of Ct values at sampling and at
onset, we fitted GAM of Ct values at sampling (Eq. (2)) (or at onset as in Eq. (4))
against the smoothed calendar time over the third wave when sample sizes were
over 30 per day

ŷj;t ¼ â0 þ s tð Þ ð4Þ
where ŷj;t is the extrapolated Ct value at illness onset for individual j who had
illness onset on the calendar date t. We calculated the mean and skewness of the Ct
values at sampling or at onset over each bi-weekly window throughout the study
period. Both results showed that Ct values at sampling were more variable than Ct
values extrapolated at illness onset (Supplementary Figs. 3 and 4), suggesting
variations in individual viral load trajectories may not be the major driver of the
observed temporal variation in population-level Ct distribution over our study
period during which only the wild-type SARS-CoV-2 strains have been circulating
locally.

Incorporating Ct distributions into Rt estimation (Ct-based Rt). We used the mean
(�xt) and skewness (bt)

34 to measure the distribution of Ct values that were sampled
on date t :

�xt ¼
1
nt

∑
nt

i¼1
yt;i ð5Þ

bt ¼
1
nt
∑nt

i¼1ðyt;i � �xtÞ3

1
nt�1∑

nt
i¼1ðyt;i � �xtÞ2

h i3
2

ð6Þ

where yt;i represented the ith (i ¼ 1; 2; ¼ ; nt) of the total nt Ct values that were
sampled on day t. 95% CIs of the daily skewness bt were calculated from 500
bootstraps (Fig. 1c), with data on cases’ first available Ct values resampled in each
bootstrap to re-calculate the daily skewness.

We first calculated the Spearman’s rank correlation coefficient (ρ) between daily
Ct distribution (i.e., daily mean and skewness) and the natural log-transformed
incidence-based Rt (Supplementary Table 1). To determine the best fit model that
characterized the association between daily Ct distribution and the incidence-
based Rt, we compared AIC of a series of regression models over the training
period (i.e., 6 July 2020 to 31 August 2020), which used different formats of
dependent variable and measurements for predictive variables (Supplementary
Table 3). We compared models that were fitted to linear scale and natural log-
transformed incidence-based Rt . We also assessed models that included different
combinations of measurements for daily Ct distributions, including mean, median,
and skewness. We imputed the daily Ct distributions using the average of that
within the preceding 7 days when no samples were collected on that day. The
model fitted to natural log-transformed incidence-based Rt (ln Rt

� �
) on the daily

mean ( �xt) and skewness (bt) of Ct values was found with the lowest AIC and was
used in our main analyses (Supplementary Table 3)

ln Rt

� � ¼ γ0 þ γ�x �xt þ γbbt ð7Þ
where γ�x and γbwere coefficients for daily mean and skewness of Ct values from the
regression model and were reported in Supplementary Table 2 after exponential
transformation.

We explored the impact of the training period and sample sizes for our
estimation. We trained our model over different training periods with various
starting dates (either between 4 and 23 July 2020 or between 10 and 29 November
2020) and we set lengths of these alternative training periods like 30, 40, 50, and
60 days respectively, after which we compared their adjusted R square and
demonstrated the time period covered by the best-fit model over training periods of
the same length (Supplementary Fig. 8). For sample sizes, we calculated the
Spearman correlation coefficients between incidence-based and Ct-based estimates
under different sample size intervals and found that Ct-based Rt tended to be more
accurate with over 30 records per day (Supplementary Table 4).

To assess whether our results would be affected by the age distribution of cases
who were sampled on each day, we performed a sensitivity analysis by including
the mean age ( �at) of cases whose first sample were collected on day t into the
above-mentioned main model (Eq. (7))

ln Rt

� � ¼ γ0 þ γ�x �xt þ γbbt þ γ�a �at ð8Þ
Results suggested similar predictions from models with and without considering

cases’ age distribution (Supplementary Fig. 5).

To assess whether our results would be affected by changes in sampling
strategies in Hong Kong, we first looked at temporal changes in the proportion of
symptomatic cases among all confirmed local cases (Supplementary Fig. 6a). We
performed a sensitivity analysis by fitting the main model (Eq. (7)) using only
records from symptomatic cases and found no significant difference from our main
results (Supplementary Fig. 6). We also adjusted for delays from illness onset to
sampling in our main model (Eq. (7)) and found that changes in sample collections
(coefficient β= 0.93, 95% CI: 0.87–1.01) did not alter the association between
population Ct distribution and incidence-based Rt (Supplementary Table 5).

Cross-validations of the model. To validate the generalizability of this Ct-based
method, we fitted the main model (Eq. (7)) using data from an alternative training
period, i.e., from 20 November 2020 to 19 December 2020 (the initial stage of the
fourth wave) (Supplementary Fig. 7, Supplementary Table 2).

We further performed tenfold cross-validation by randomly splitting the data
between 6 July 2020 and 31 March 2021 into ten validation sets, after excluding
days when less than five available Ct samples were collected. For each validation,
we held one set as a testing set and trained the remaining nine sets using the main
model (Eq. (7)). We compared the consistency between the Ct- and incidence-
based Rt for the testing set by calculating the proportion of days when the two
estimates were simultaneously below or above 1 (i.e., in the same direction) over
the total duration of each validation set. We also assessed the prediction
performance using the mean absolute error (MAE) for the Ct- (EðRtÞ) and
incidence-based Rt for each validation set

MAE ¼ ∑d2D ln E Rd

� �� �� ln Rd

� ��� ��
ND

ð9Þ

where d is a given date in the validation set D and ND is the number of days
included in each validation set. We found an average of 0.28 (ranging from 0.25 to
0.34) of the MAE across ten validation sets, suggesting a good performance of our
model predictions.

Simulations
Transmission model. We used a susceptible-exposed-infectious-recovered (SEIR)
model to simulate two consecutive epidemic waves assuming a closed population
(n = 7.5 million, approximately the same size to the population in Hong Kong) and
initial infections of 0.001%. Briefly, we simulated infections with a stochastic SEIR
model, with compartments for susceptible (S), exposed-but-not-yet-infectious (E),
infectious (I), and recovered (R). The compartmental transition equations are listed
below:

dS
dt

¼ �βtS tð ÞI tð Þ
N

dE
dt

¼ βtS tð ÞI tð Þ
N

� σE tð Þ
dI
dt

¼ σE tð Þ � γI tð Þ
dR
dt

¼ γIðtÞ

ð10Þ

where βt ¼ R0
γ for t ≥ t0. 1=σ (σ ¼ 5days19) indicated the average time for indivi-

duals to transit from E to I, while 1=γ (γ ¼ 4days13) referred to the observed mean
infectious period. Detailed descriptions of parameters were listed in Supplementary
Table 6.

We used synthetic β (which determines the underlying transmission rate) that
changes over time t to synthesize the process of two consecutive epidemic waves

βt ¼

R0γ t < 60

R2
0γ 60≤ t < 110

R3
0γ 110≤ t < 150

R4
0γ t ≥ 150

8>>><
>>>:

9>>>=
>>>;

ð11Þ

where R0 ¼ 2.2, R3
0 ¼ 1.9 and R2

0 ¼ R4
0 ¼ 0:3. Epidemic switch points were set at

day 60 and 110 and R0 changes between switch points were fitted via a cubic
smoothing spline and interpolated into smooth transitions. Rt calculated under this
SEIR model (denoted as the simulation truth) would then be

Rt ¼
SðtÞ
N

βtγ ð12Þ
Symptom-based case detections. In symptom-based surveillance, we assumed that
only individuals who developed symptoms after infections (which follow a bino-
mial distribution with pSymjInf ¼ 0:635,36) would be detected after illness onset. We
assumed the incubation period followed log-normal distribution (mean = 5.2, SD
= 3.9)19, while we estimated the delays between onset to detection with a gamma
distribution (shape= 1.83 and rate= 0.43) using observations from Hong Kong.

We simulated four different scenarios to represent various intensities of case
detection (Supplementary Fig. 9):

1. Scenario 1: a fixed detection probability of 25%. We used this scenario to
represent the practice of stable detection, as the case in Hong Kong15.
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2. Scenario 2: a fixed detection probability of 10%. We used this scenario to
represent the situation of stable but limited detection capacity.

3. Scenario 3: the probability of detection increased from 15% to 60% over the
second simulated wave. We used this scenario to represent the situation of
expansion in case definition, as in the initial stage of the outbreak in
mainland China22.

4. Scenario 4: a fixed detection probability of 25% except for the under-
detection (lowest at 5%) during the initial stage of the second
simulated wave.

Individual viral load trajectory. We simulated the viral load trajectories over the
infection course for each detected symptomatic case using the previously published
method37. We assumed a unimodal trend of Ct value changes that will reach the
lowest on the date of illness onset (and therefore had the same distribution of
incubation periods19), with the lowest Ct value (i.e., peak viral load) following a
normal distribution with a mean of 22.3 and SD of 4.211. The duration of viral
shedding since onset was parameterized as normally distributed with mean and SD
of 17 and 0.94 days38. Each infected individual, if detected, would then have their
corresponding sampled Ct values as the Ct value falling on day k post infection
based on their own Ct trajectories, with k being the time interval between their
dates of infection and detection.

Daily Rt and population-level Ct from simulations. Incidence-based Rt from syn-
thetic case count data was estimated using the R package EpiNow23 that has
accounted for delays and other sources of uncertainty in a more sophisticated way.
The incubation period and reporting delay that were used for deconvolution were
assumed to follow the delay distributions that were simulated from symptom-based
surveillance. The mean and variance of the generation interval under the SEIR

model were specified as Tc ¼ 1=σ þ 1=γ and Var ¼ 2ðTc
2 Þ

2
respectively, with σ and

γ being the average time for individuals to transit from E to I and from I to loss of
infectiousness respectively (see Supplementary Table 6). More details were pro-
vided in https://github.com/epiforecasts/EpiNow2.

The daily distribution of population Ct from the simulations was estimated by
mean and skewness, as in Eqs. (5) and (6). The regression model (Eq. (7)) used to
generate Ct-based Rt under each scenario was selected by comparing the adjusted R
square of models fitted over different training periods during the first simulated
wave (Supplementary Fig. 10), after which we applied the model to estimate the Ct-
based Rt for days following the training period (denoted as the testing period).
Spearman correlation coefficients ρ between Ct-based Rt and the simulation truth
were calculated to evaluate the accuracy of our estimates.

To investigate the uncertainty in sampling Ct values and therefore the accuracy
of Ct-based Rt estimates, we repeated each scenario 100 times and calculated the
Spearman correlation coefficient between estimated Ct-based Rt and the simulation
truth for each simulation. We calculated the mean, 2.5 and 97.5% quantiles of the
correlation coefficient across 100 simulations for each scenario (Supplementary
Table 7).

All statistical analyses were conducted in R version 4.1.2 (R Development Core
Team, 2021).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All demographic and epidemiological information of confirmed COVID-19 cases is freely
available from the Centre for Health Protection website (https://www.coronavirus.gov.hk/
eng/index.html). Daily aggregate data (including case counts, incidence-based Rt and Ct
distributions), and simulation data generated in this study have been deposited in the
GitHub repository.

Code availability
All codes for analyses are available at the GitHub repository.
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