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Distinct metabolic profiles associated with autism spectrum
disorder versus cancer in individuals with germline PTEN
mutations
Lamis Yehia1,8, Ying Ni2,8, Tammy Sadler1, Thomas W. Frazier 1,3,4 and Charis Eng 1,5,6,7✉

PTEN hamartoma tumor syndrome (PHTS), caused by germline PTEN mutations, has been associated with organ-specific cancers
and autism spectrum disorder (ASD) and/or developmental delay (DD). Predicting precise clinical phenotypes in any one PHTS
individual remains impossible. We conducted an untargeted metabolomics study on an age- and sex-matched series of PHTS
individuals with ASD/DD, cancer, or both phenotypes. Using agnostic metabolomic-analyses from patient-derived lymphoblastoid
cells and their spent media, we found 52 differentially abundant individual metabolites, 69 cell/media metabolite ratios, and 327
pair-wise metabotype (shared metabolic phenotype) ratios clearly distinguishing PHTS individuals based on phenotype. Network
analysis based on significant metabolites pointed to hubs converging on PTEN-related insulin, MAPK, AMPK, and mTOR signaling
cascades. Internal cross-validation of significant metabolites showed optimal overall accuracy in distinguishing PHTS individuals
with ASD/DD versus those with cancer. Such metabolomic markers may enable more accurate risk predictions and prevention in
individual PHTS patients at highest risk.
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INTRODUCTION
Hereditary cancer predisposition syndromes and neurodevelop-
mental disorders account for a large subset of individuals in the
medical genetics clinic1–3. While advances in genomic medicine
have enabled the identification of the underlying etiologies for
many of these disorders, genotype–phenotype associations are
not absolute; it remains challenging to predict the natural history
of any one hereditary disorder at the individual patient level
versus the population/cohort level4. One well-studied model is
PTEN hamartoma tumor syndrome (PHTS, MIM 158350), a
spectrum of cancer- and neurodevelopmental disorders-related
phenotypes caused by germline mutations in the tumor
suppressor phosphatase and tensin homolog gene (PTEN, MIM
601728)5,6. While PTEN germline mutations were originally
identified in a relatively rare subset of disorders predisposing to
breast, thyroid, and other cancers7, subsequent studies have
shown that PTEN germline mutation is amongst the most
common causes of autism spectrum disorder (ASD)8,9. This PTEN-
related phenotypic dichotomy poses a challenge for more timely
and precise medical management of individuals with germline
PTEN mutations6,10. Deciphering this dichotomy may also have
value in identifying the etiology of a subset of ASD/DD.
The extensive phenotypic heterogeneity in PHTS supported the

hypothesis that genetic or genomic modifying factors exist. First,
earlier studies showed that germline variants in genes encoding
three of the four subunits of succinate dehydrogenase or
mitochondrial complex II (SDHB, SDHC, and SDHD, collectively
referred to as SDHx) modify breast cancer risk and thyroid cancer
histology in individuals with germline PTEN mutations11,12.
Second, copy number variations were found to be associated

with the ASD and/or developmental delay (DD) phenotype versus
cancer in patients with germline PTEN mutations13. These two
studies provided proof-of-principle that genomic modifiers may
play a role in modulating phenotypic outcomes in PHTS.
Metabolomics, the comprehensive study of small molecules,

known as metabolites, in biological systems, has emerged as a
promising analytical profiling method for biomarker discovery14.
Multiple studies have elucidated the association of multiple
metabolites and/or metabolic pathways in pathobiological pro-
cesses, including sporadic cancer and nonsyndromic neurodeve-
lopmental disorders15–22. However, the variability among
metabolites and metabolic pathways implicated in the same
phenotype only reflects the complexity and heterogeneity of such
disorders. Recently, metabotyping, a subtyping approach based
on shared metabolic phenotypes identified from a set of
metabolic biomarkers has shown promise in screening for autism
risk in children17,23.
Relevant to PHTS and the known role of mitochondrial

energetics in this syndrome, we had previously conducted a pilot
study using a targeted approach that focused on metabolites
within the tricarboxylic acid cycle16. This study provided proof-of-
principle regarding the role of metabolites as predictive markers
of phenotypic outcomes in PHTS. However, because these studies
have been limited to a small targeted set of metabolites, the
associations we identified thus far represent an incomplete
snapshot of metabolites that may influence ASD/DD and/or
cancer outcomes in individuals with PHTS.
Integrating metabolomic profiles on top of the genetic

predisposition for phenotype prediction is of great interest,
especially for inherited disorders like PHTS with seemingly
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disparate cancer and neurodevelopmental phenotypes. As such,
we sought to address the hypothesis that specific metabolites
and/or metabolic networks in patients carrying germline PTEN
mutations are associated with the development of specific clinical
phenotypes, here, cancer versus ASD/DD. Thus, we performed a
comprehensive untargeted metabolomics approach in a matched
series of PHTS individuals.

RESULTS
Research participants and study design
Six hundred and four individuals diagnosed with PHTS were
accrued based on genotypic and phenotypic characteristics and
under the approved research protocol 8458-PTEN at the Cleveland
Clinic. Of those, 248 (41%) had at least one cancer diagnosis. In
this study, we limited the cancer diagnosis to only that of the
thyroid since this cancer is the earliest onset cancer type in PHTS
affecting both males and females (youngest age at diagnosis
starting at 7 years)24,25, and importantly, to minimize variability in
a deliberately smaller sample size. The earlier age at onset for
differentiated thyroid cancer also enables appropriate matching of
samples with other young PHTS individuals who have ASD and/or
DD. The final matched series consisted of 30 eligible individuals
with PHTS (Fig. 1a and Supplementary Table 1). Both females
(70%) and males (30%) were represented, and the median age at
consent was 28 years (range 2–59). Research participants were
divided into three age- and sex-matched groups. The first group
consisted of 10 PHTS individuals diagnosed with ASD and/or DD
without cancer identified to date, with a median age at consent of
24 years (range 2–58). The second group consisted of 10 PHTS
individuals diagnosed with thyroid cancer (median age at consent
= 36 years; range= 19–59), with a median age at cancer diagnosis
of 25 years (range 17–41). The third group consisted of 10 PHTS
individuals (median age at consent= 28 years; range= 15–51)
who in addition to ASD/DD, had a cancer diagnosis, with a median
age at onset of 18 years (range 7–51). Of note, 7 of the 10 cancer
diagnoses consisted of thyroid cancer (Supplementary Table 1).

The three phenotype groups were matched with respect to
biological sex (P= 1, Fisher’s exact test) and ages at consent (P=
0.38, effect size=−0.002, Kruskal–Wallis rank sum test).
We generated immortalized lymphoblastoid cell lines (LBLs)

from each research participant following standard procedures and
then cultured them in vitro for metabolic profiling. Metabolite
sample measurements were obtained from LBLs, paired surround-
ing growth media for each sample, and blank growth media
serving as a baseline negative control. We performed analyses
examining individual metabolites in each matrix (cells and media),
ratio of metabolites shared between the two matrices, and
metabotyping analysis focusing on biologically-relevant metabo-
lites (Fig. 1b).

Identification of single differentially abundant metabolites
Quantified metabolites from LBLs and media consist of amino
acids, carbohydrates, cofactors and vitamins, those related to
energy metabolism, lipids, nucleotides, peptides, xenobiotics, and
partially characterized molecules. Collectively, we detected 645
metabolites from LBLs and 489 metabolites from their matched
spent media. As expected, the constitution of measured
metabolites differed between the two biological matrices, with
enrichment of lipids in the cell compartment compared to the
media (Supplementary Fig. 1).
We identified multiple differentially abundant metabolites

(adjusted P < 0.05) amongst samples derived from PHTS indivi-
duals with ASD/DD, cancer, and both phenotypes (Supplementary
Fig. 2). Using the cellular compartment, we detected multiple
differentially abundant metabolites amongst cells derived from
PHTS individuals belonging to the three phenotype groups (Fig.
2a and Supplementary Fig. 2). These metabolites generally belong
to lipid (89%) and amino acid (11%) classes of molecules
(Supplementary Data 1). Similarly, we detected multiple differen-
tially abundant metabolites in the surrounding media of cells
derived from PHTS individuals (Fig. 2b and Supplementary Fig. 2).
Here, metabolites predominantly belong to amino acids (54%)
followed by nucleotides (29%), carbohydrates (8%), cofactors and

Fig. 1 Characteristics of study participants and study design. a We selected a series of 30 sex- and age-matched PHTS individuals for
untargeted metabolomics measurements. b Metabolite sample measurements were obtained from lymphoblastoid cell lines (LBL), paired
surrounding growth media for each sample, and blank growth media serving as a baseline negative control. PHTS PTEN hamartoma tumor
syndrome, ASD autism spectrum disorder, DD developmental delay.
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vitamins (4%), and xenobiotics (4%) (Supplementary Data 1). The
principal component analysis (PCA) score plot of metabolic
profiles from the media compartment shows clear separation
from the blank growth media, serving as a negative control
(Supplementary Fig. 3).
Based on our observations interrogating each of the biological

matrices (cells and media) on its own (Supplementary Data 2), we
then evaluated the ratio of metabolites in cells over spent media,
since this method of analysis may uncover biologically-relevant
metabolomic alterations that otherwise would not be able to be
captured with single metabolite analyses23,26. This analysis only
applied to metabolites detected in both matrices (Fig. 1b), which
led to 386 shared metabolites. There are 69 metabolite cells/media
ratios that are significantly different between PHTS individuals
with ASD/DD and cancer phenotypes. This analysis revealed a
clear separation of PHTS individuals according to phenotype
group (Fig. 2c).

Pathway enrichment analysis
To elucidate the biological effects of the observed metabolomic
alterations as relevant to cancer and ASD/DD, we performed
pathway enrichment analysis. Using the cellular compartment, the
top five most enriched canonical pathways comparing ASD/DD
versus cancer included glutamine biosynthesis (P= 1.2 × 10−2),
and broadly implicated nucleotide metabolism (P ≤ 1.2 × 10−2)
(Fig. 3a). The top molecular network focusing on diseases and

functions implicated cellular compromise, lipid metabolism, and
small molecule biochemistry (P= 10−44). Using the surrounding
media, we identify a predominantly amino acid enriched canonical
pathway signature, with tRNA charging (P= 9.8 × 10−9) as the top
significant pathway (Fig. 3b). The top molecular network
implicated amino acid metabolism, molecular transport, and small
molecule biochemistry (P= 10−60). Finally, the cells/media ratios
analysis resulted in only three significantly enriched canonical
pathways, including tRNA charging (P= 4.3 × 10−8), glycine
betaine degradation (P= 3 × 10−3), and glycine biosynthesis
(P= 7.8 × 10−3) (Supplementary Data 3). Similar to the media
analysis, the top molecular network included amino acid
metabolism, molecular transport, and small molecule biochemistry
(P= 10−46). Intriguingly, the molecular networks from all three
analyses converged on the PTEN-relevant insulin signaling path-
way, as well as ERK1/2, AMPK, and mTOR signaling cascades (P ≤
10−44) (Fig. 3c).

Metabotype clusters can distinguish PHTS patients with
cancer versus those with autism
We also implemented a metabotyping approach, subtyping based
on shared metabolic phenotypes that has shown promise in risk
stratification, including for ASD17. Accordingly, guided by our pilot
studies and metabolic pathways known to be disrupted in ASD
generally16,17,27,28, we assessed 43 metabolites associated with
amino acid metabolism and mitochondrial energetics in PHTS

Fig. 2 Identification of differentially abundant individual metabolites. a Top six differentially abundant metabolites (adjusted P < 0.05)
amongst cells derived from PHTS individuals belonging to the three phenotype groups. b Top six differentially abundant metabolites
(adjusted P < 0.05) in the surrounding media of cells derived from PHTS individuals. For the violin plots, the center lines represent the median.
The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the
hinge to the largest value no further than 1.5 × inter-quartile range (IQR) from the hinge. The lower whisker extends from the hinge to
the smallest value at most 1.5 × IQR of the hinge. c There are 386 metabolites shared in both the cellular and media matrices. Comparisons of
the ratios of these metabolites resulted in 69 differentially abundant metabolite ratios (adjusted P < 0.05) that successfully separated PHTS
individuals according to phenotype group.
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individuals belonging to the three phenotype groups (Supple-
mentary Table 2). The pair-wise correlation analysis resulted in a
total of 703 ratio tests from 38 metabolites detected in the cellular
matrix, and 741 ratio tests from 39 metabolites detected in the
media matrix. Using the media matrix, we identified 175
differentially underexpressed and 152 overexpressed ratio tests
in PHTS individuals with ASD/DD relative to PHTS individuals with
cancer (Fig. 4a).
As the negative correlation represents the potential highest

pair-wise ratio signal, we observed the most prominent negative
correlation blocks for metabolites detected from the media
compartment, including lactate versus the amino acid group
(block 1) and between arginine, homocitrulline versus serotonin,
hydroxyglutarate, ornithine, taurine (block 2) (Fig. 4a). Differential
abundance analysis adjusted for age and sex did not identify any
significant differentially abundant metabotype clusters in the
cellular matrix. As expected, no clear negative correlation block
was observed from metabolites detected from cells (Supplemen-
tary Fig. 4).
Unsupervised hierarchical clustering shows that significant

differentially abundant metabotypes from media distinctly sepa-
rate PHTS individuals with cancer from those who have ASD/DD,

except for two patients (Fig. 4b). Of note, we applied correlation
distance measurement and complete clustering methods to
delineate group similarities among all individuals included in the
heatmap, rather than for classification purposes. The first patient,
CCF08221-01-002, is a 2-year-old female with macrocephaly, ASD,
global DD, and café-au-lait spots. CCF08207-01-001 is a 46-year-
old female with macrocephaly, DD, oral mucosa papilloma,
atypical ductal breast hyperplasia, breast fibrocystic disease,
intraductal papilloma of breast, noninfiltrating intraductal and
lobular carcinoma of the breast, goiter, skin tag, and ovarian cysts.

Performance of different metabolite predictors
To evaluate the predictive value of metabolite differences we
identified to discriminate among phenotypes, we performed
internal cross-validation of significant metabolites using the leave
one out cross-validation (LOOCV) approach on our relatively small-
sized but well-matched samples. This cross-validation indicated
optimal sensitivity, specificity, and overall accuracy in distinguish-
ing PHTS individuals with ASD/DD versus those who have cancer
using agnostic metabolomic measurements. We compared the
classification performance using significant differentially abundant
metabolites identified from LBL, media, LBL/media ratio, as well as

Fig. 3 Pathway enrichment analysis and convergence on PTEN-related networks. a Top ten most enriched canonical pathways associated
with differentially abundant metabolites detected from the cellular compartment. b Top ten most enriched canonical pathways associated
with differentially abundant metabolites detected from the media compartment. Dashed red lines in (a, b) indicate the threshold for a
significant corrected P value < 0.05. c Molecular networks integrating all differentially abundant metabolites converge on the PTEN-relevant
insulin signaling pathway, as well as ERK1/2, AMPK, and mTOR signaling cascades (P ≤ 10−44).
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metabotype ratio, with or without dimension reduction by PCA
analysis or removing linearly correlated metabolites. In general,
2-group (Cancer versus ASD) classification performed better than
3-group (Cancer, ASD, and CancerASD) (Supplementary Table 3).
In particular, 6 PCA components derived from LBL differentially
abundant metabolites showed the highest overall accuracy (0.95,
95% CI: 0.86–0.99, P= 3.1 × 10−14 compared to No Information
Rate [NIR]) distinguishing samples in the ASD/DD group from the
cancer group, with a sensitivity of 0.90 and specificity of 1.

Metabolite ratios between LBL/media show the second best
overall accuracy (0.93, 95% CI: 0.84–0.98, P= 4.5 × 10−13 com-
pared to NIR) after removing linear correlated ratios, with a
sensitivity of 1, and specificity of 0.87 (Table 1).
To identify group similarities in metabolomic profiles amongst

PHTS individuals with different phenotypes, unsupervised hier-
archical clustering of significantly abundant metabolites derived
from the LBL component showed that these metabolites distinctly
separate PHTS individuals with cancer, with the exception of two

Fig. 4 Metabotype clusters can distinguish individuals with cancer versus those with ASD/DD. a Differential abundance analysis adjusted
for age and sex identified differentially underexpressed and overexpressed metabolite ratio tests in media from samples of PHTS individuals
with ASD/DD relative to PHTS individuals with cancer. Correlation plot showing prominent negative correlation blocks (red rectangles). Circles
shown are for results significant at P < 0.05, with increasing diameter/color corresponding with increasing correlation (circles omitted
otherwise). b Using the media compartment, unsupervised hierarchical clustering shows that significant differentially abundant metabotypes
distinctly separate PHTS individuals with cancer from those who have ASD/DD, with the exception of two patients. ASD autism spectrum
disorder, DD developmental delay.

Table 1. Performance metrics.

Matrix ASD/DD vs. cancer (“positive” class: cancer) Overall accuracy Sensitivity Specificity

Media AllSigMetabolites (N= 23) 0.77 0.73 0.80

RemoveLinearCorrelated (N= 20) 0.77 0.73 0.80

PCA (N= 7) 0.67 0.60 0.73

Cell AllSigMetabolites (N= 8) 0.80 0.80 0.80

RemoveLinearCorrelateda (N= 8) 0.80 0.80 0.80

PCA (N= 6) 0.95 0.90 1.00

Individual metabolite ratio AllSigMetabolites (N= 69) 0.80 0.90 0.70

RemoveLinearCorrelated (N= 20) 0.93 1.00 0.87

PCA (N= 11) 0.87 0.90 0.83

Metabotype ratio AllSigMetabolites (N= 327) 0.62 0.63 0.60

RemoveLinearCorrelated (N= 20) 0.80 0.80 0.80

PCA (N= 9) 0.77 0.80 0.73

AllSigMetabolites all significantly abundant metabolites, PCA principal component analysis, ASD autism spectrum disorder, DD developmental delay.
aNo linear correlated component to be removed. Bolded numbers refer to the comparisons with the highest overall accuracy.
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patients, from those who have ASD/DD (Fig. 5a). The first patient,
CCF08221-01-002, is a 2-year-old female with macrocephaly, ASD,
global DD, and café-au-lait spots and was also identified as one of
the two misclassified samples in the metabotyping analysis (Fig.
4b). The second patient, CCF01848-01-001, is a 24-year-old female
with thyroid cancer, goiter, Hashimoto’s disease, and hemangio-
mas. PHTS individuals with both cancer and ASD/DD cluster
indiscriminately between the PHTS-Cancer and PHTS-ASD/DD
groups (Supplementary Fig. 5). The single metabolite ratio analysis
distinctly separated PHTS individuals with cancer, except for only
one patient, from those who have ASD/DD (Fig. 5b). CCF04753-01-
001 is a 42-year-old female with macrocephaly, global DD, goiter,
Hashimoto’s disease, breast fibrocystic disease, Lhermitte–Duclos
disease (benign hamartomatous overgrowth in the cerebellum),
acral keratoses, oral mucosa papillomas, and trichilemmomas.

DISCUSSION
PHTS represents an excellent model to study phenotypic
heterogeneity in the context of a high penetrance Mendelian
gene4,10. Two of the phenotypes with the most profound
consequences in PHTS are cancer and neurodevelopmental
disorders, such as ASD6. Our efforts have been guided by the
principle that identifying markers of specific phenotype risks will
enable more precise clinical management and the earliest possible
interventions at an individual level. Although it is well established
that germline PTEN mutations confer a significantly elevated risk
of multiple cancer types25, it remains unknown whether PHTS
children with ASD/DD have identical risks of cancer like PHTS
individuals without ASD/DD. This represents a key challenge that
would necessitate longitudinal follow-up of PHTS-ASD/DD chil-
dren into adulthood (the current focus of clinical trial
NCT02461446). In parallel, the minority of PHTS-ASD/DD indivi-
duals who have already developed cancer (usually in childhood,
adolescence, or early adulthood), represent a rare and invaluable
sample series to understand cancer etiology compared to
neurotypical PHTS individuals. In this study, utilizing a focused
series of PHTS individuals with cancer, ASD/DD, or both

phenotypes, we attempted to investigate whether an untargeted
metabolomics approach may uncover differences in metabolic
signatures and signaling networks based on the underlying
phenotypes.
We implemented three analytical approaches to show that a

subset of metabolites can generate profiles that are distinguish-
able between PHTS individuals with cancer versus those with ASD/
DD. Pathway enrichment and network analysis of significantly
abundant metabolites identified a highly interconnected network
of metabolites and signaling molecules. Notably, these networks
converge on PTEN and associated signaling pathways, including
PI3K/AKT, mTOR, insulin, and AMPK. Interestingly, a recent
investigation of the urinary proteome in idiopathic autistic and
non-autistic children found that differentially abundant proteins
converged on processes with known functions in autism,
including the PTEN signaling pathway29. Another set of metabo-
lites converges on mitochondrial dysfunction and oxidative stress,
pathways that have independently been linked to the pathobiol-
ogy of PHTS and Cowden syndrome associated cancer11,12, and to
sporadic forms of cancer and “idiopathic” ASD as well15,17–22,30,31.
Indeed, germline variants in SDHx genes encoding mitochondrial
complex II can act as genetic modifiers of breast cancer risk and
thyroid cancer histology in individuals with PHTS12. Ultimately,
since cancer and ASD have been thought to share similar
underlying molecular etiologies32,33, one testable hypothesis is
to leverage these differences to preemptively distinguish between
these two phenotypes in PHTS.
One of the challenges of studying PHTS is the rarity of the

disorder and consequent small sample sizes in many clinical
studies. This makes study design crucial. Although this study
included only 30 PHTS individuals, we deliberately selected this
focused series from >600 PHTS individuals. In addition to a
genotypically homogeneous patient sample, we minimize varia-
bility through uniform phenotype selection and matching the
three phenotype groups by sex and age at consent. Using this
strategy to achieve such a powerful experimental design,4 despite
a limited sample size, facilitated identification of large,

Fig. 5 Unsupervised hierarchical clustering can distinguish individuals with cancer versus ASD/DD. a Unsupervised hierarchical clustering
of differentially abundant metabolites from the cell (LBL) compartment. b Unsupervised hierarchical clustering of differentially abundant
metabolites resulting from comparisons of ratios of metabolites shared between the cellular and media matrices. ASD autism spectrum
disorder, DD developmental delay.
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biologically-relevant alterations with predictive value at the
individual level.
The Children’s Autism Metabolome Project (CAMP, clinical trial

NCT02548442) recently found and replicated plasma metabotypes
in a series of 499 children with idiopathic ASD and 209 typically
developing children17. Metabotyping is a subtyping approach
based on shared metabolic phenotypes identified from a set of
metabolic biomarkers17,23. CAMP prioritized 39 ASD-focused
metabolites associated with amino acid and energy metabolism
to identify 34 metabotypes that could detect >50% of autistic
participants, which may have clinical value. In this study, we
hypothesized that the established ASD metabotypes17,23 may
have a predictive value in distinguishing PHTS individuals with
ASD/DD versus those without ASD/DD, in the research setting.
While our data showed acceptable separation of PHTS individuals
by ASD/DD versus cancer phenotypes based on metabotype
clusters, the overall sensitivity, specificity, and accuracy were lower
than the power of individual metabolites from the cellular matrix
and the ratio analysis (Table 1). CAMP focused on children
18–48 months of age and quantified metabotypes from plasma17.
Because we utilized LBLs and their media for metabolite
measurements and included PHTS individuals regardless of age,
it is plausible that the latter may have metabotype differences
involving different metabolite classes than identified by CAMP.
Importantly, in our comparisons, all individuals harbored germline
PTEN mutations, which might obscure signals expected when
comparing these PHTS individuals to individuals who are PTEN
wildtype16. These speculations warrant further investigation with
more burgeoning data regarding the pathobiology of PTEN-
related ASD/DD. Importantly, external replication of our internal
cross-validation approach will be important for ensuring that small
variations in sampling are not significantly impacting model
performance in prospective cases.
One intriguing observation is the presence of “misclassified”

individuals upon unsupervised hierarchical mapping based on
significantly abundant metabolite clusters (Figs. 4b, 5). We
speculate that these PHTS-ASD/DD individuals clustered with the
PHTS-Cancer group may be at the highest risk of developing
cancer during their lifetimes, and longitudinal studies will help test
this long-term but important hypothesis. Amongst the three PHTS-
ASD/DD individuals clustered with the PHTS-Cancer group using
significant abundant metabolites from all analyses (cells, media,
and metabotypes), two had a family history of cancer, whereas
this information was unknown for the third. However, family
history of cancer cannot explain the distinct clustering relative to
the other PHTS-ASD/DD individuals forming a uniform cluster.
Indeed, of the remaining seven PHTS-ASD/DD individuals, 4 out of
5 with family history information had a positive family history of
cancer. Therefore, our findings support our previous observations
that family history of cancer alone is not predictive of personal
cancer history at the individual level5. The alternative, but not
mutually exclusive, explanation may be that these cluster
“misclassified” ASD/DD individuals are destined to develop
malignancies in adulthood. Indeed, one of these PHTS-ASD/DD
individuals (CCF08207-01-001) was found to have ductal and
lobular carcinoma in situ of the breast, a pre-invasive breast
cancer. Conversely, only one PHTS research participant with
cancer clustered with the ASD/DD group. This is a 24-year-old
female with thyroid cancer, goiter, Hashimoto’s disease, and
hemangiomas. To our knowledge, she has not had a formal
evaluation for ASD. Hence, we posit that such an approach can
help screen for individuals at the highest risk of either phenotype.
Unexpectedly, PHTS individuals with both cancer and ASD/DD
clustered indiscriminately between the PHTS-Cancer and PHTS-
ASD/DD groups. This suggests that this rare subset of PHTS
individuals may represent a unique biological subgroup, at least as
related to metabolomic profiles.

Overall, this study provides further robust evidence for the roles
of relevant metabolites in PHTS-ASD/DD versus PHTS-Cancer
etiologies, with the added advantage of having a more homo-
geneous (monogenic) and well-matched sample series through
our study design. Despite research showing the extensive overlap
in risk genes (one being PTEN) and biological pathways for ASD
and for cancer32,33, studying such homogeneous patient series will
help identify the intricate differences that define the dichotomous
phenotype context. The ability to utilize such metabolomic
markers will provide a clinical translational framework for
stratifying individual PHTS patients based on more accurate
ASD/DD versus cancer risk predictions, enabling precise risk
assessment and early intervention in those at the highest risk.

METHODS
Research participants and clinical data
A total of 604 individuals clinically diagnosed with PTEN hamartoma tumor
syndrome were prospectively accrued in accordance with research
protocol 8458-PTEN, approved by the Cleveland Clinic Institutional Review
Board. To address our research question, we prioritized an age- and sex-
matched series of 30 individuals with ASD and/or DD without a personal
history of invasive cancer(s) (excluding Stage 0 noninfiltrating intraductal
and/or lobular carcinoma of the breast), differentiated thyroid cancer, and
those with ASD/DD in addition to a cancer diagnosis (majority having
thyroid cancer). For each consented research participant, we reviewed
medical records, including clinical genetic testing reports, pedigrees,
clinical notes associated with cancer genetics and/or genetic-counseling
visits, and ASD Diagnostic and Statistical Manual of Mental Disorders (DSM-
IV) criteria, where applicable. Written informed consents were obtained
from all research participants.

PTEN mutation and deletion analysis
Germline genomic DNA samples from peripheral blood leukocytes were
extracted by the Genomic Medicine Biorepository (GMB) of the Cleveland
Clinic Genomic Medicine Institute (Cleveland, OH, USA) using standard
methods (https://www.lerner.ccf.org/gmi/gmb/). PTEN mutation and dele-
tion analysis were performed as previously reported34. Mutation analysis
was performed with a combination of denaturing gradient gel electro-
phoresis (DGGE), high-resolution melting curve analysis, and direct Sanger
sequencing (ABI 3730xl; Applied Biosystems, Life Technologies) (Supple-
mentary Table 4). Deletion analysis was performed using the multiplex
ligation-dependent probe amplification kit (P158; MRC-Holland) according
to manufacturer protocol. All patients underwent polymerase chain
reaction-based Sanger sequencing of the PTEN promoter region. For PTEN
germline variant positive individuals, pathogenicity predictions are
reported according to orthogonal testing in a CLIA-certified facility, ClinVar
database classifications, and/or the ClinGen gene-specific criteria for PTEN
variant curation35. Carriers of PTEN promoter variants were considered as
mutation positive only if the underlying variants have been associated with
PHTS or known to affect PTEN function25,36–38.

Cell lines and culture conditions
Immortalized LBLs from peripheral blood samples of individuals with PHTS
were generated by the GMB (Cleveland, OH, USA) following standard
procedures (https://www.lerner.ccf.org/gmi/gmb/). Cells were subse-
quently grown in RPMI-1640 supplemented with 20% fetal bovine serum
and 1% penicillin/streptomycin and maintained at 37 °C and 5% CO2

culture conditions. All cell lines remained anonymized and devoid of any
identifiers (only number coded) during the duration of the experiments.

Sample processing and metabolite measurement template
preparation
We seeded the non-adherent LBLs at a density of 10 million cells per T75
flask. At the time of seeding, we transferred 1.5 ml of growth media into
three independent aliquots (500 μl each). These media aliquots represent
the ‘blank’ metabolite measurements to account for compounds already
present in the cell culture media. Cells were allowed to grow overnight and
subsequently collected into 50ml conical tubes. We spun down the cell
suspension at 1000 RPM for 5min in a cooled centrifuge (4 °C). We
transferred 1ml of supernatant from each cell line and saved in fresh and
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cooled 1.5 ml tubes. These supernatants represent the “secretome” portion
of our untargeted metabolomics analysis. We added 1ml of ice-cold PBS to
wash the cell pellet. The cell suspension was then transferred to 1.5 ml
tubes, spun down at 1000 RPM for 5min at 4 °C to remove the PBS wash
supernatant. This resulted in ~100 μl of packed cell pellet per sample. All
samples (media and cell pellets) were flash frozen using liquid nitrogen
and stored at −80 °C.

Measurement of global untargeted metabolites
Untargeted metabolomics measurements were conducted at Metabolon
(Morrisville, NC, USA) using ultrahigh performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS)39. Following receipt by the
GMB, samples were inventoried and immediately stored at −80 °C.
Following standard procedures to recover metabolites, the resulting
extract from each sample was divided into five fractions: two for analysis
by two separate reverse phase (RP)/UPLC-MS/MS methods with positive
ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS
with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with
negative ion mode ESI, and one sample was reserved for backup. This
strategy ensured maximal recovery and coverage of metabolites. All
methods utilized a Waters ACQUITY ultra-performance liquid chromato-
graphy (UPLC) and a Thermo Scientific Q-Exactive high-resolution/accurate
mass spectrometer interfaced with a heated electrospray ionization (HESI-
II) source and Orbitrap mass analyzer operated at 35,000 mass resolution.
Sample extracts were dried, then reconstituted in solvents compatible to
each of the four methods. Each reconstitution solvent contained standards
at fixed concentrations to ensure injection and chromatographic
consistency. Compounds were identified by comparison to library entries
of purified standards or recurrent unknown entities. Metabolon’s library is
based on authenticated standards that contains the retention time/index
(RI), mass to charge ratio (m/z), and chromatographic data (including MS/
MS spectral data) on all molecules present in the library. Additional mass
spectral entries have been created for structurally unnamed biochemicals,
identified by their recurrent nature (both chromatographic and mass
spectral). These compounds have the potential to be identified by future
acquisition of a matching purified standard or by classical structural
analysis. For the purposes of this study, unknown compounds were
excluded from all downstream analyses.

Data normalization and statistical analyses
For each metabolite, the raw values in the experimental samples are
divided by the median of those samples in each instrument batch, giving
each batch and thus the metabolite a median of one. The minimum value
across all batches in the median scaled data is imputed for the missing
values. Metabolites measured from cell pellets are first batch normalized
and then divided by the protein concentration, before re-scaling to have
median = 1 (divide the new values by the overall median for each
metabolite). Afterward, imputation is performed. The batch normalized
and imputed data were transformed using the natural log. Final log-
transformed and center-scaled metabolite values have a mean of 0 and a
standard deviation of 1.
Statistical analyses were conducted with RStudio version 1.4.1717

(https://www.rstudio.com). The linear model was applied to assess
differential metabolite expression in the context of a multifactor designed
experiment with Limma R package version 3.48.040,41, using age at consent
and biological sex as covariates. Furthermore, statistically significant
metabolic features were extracted using the criteria of multiple testing
corrected p value <0.05 and visualized using volcano plots and heatmaps.
For pair-wise comparisons, we used two-sided Student’s t tests and/or
Wilcoxon’s rank sum tests, as indicated. Statistically significant metabolites
were then used for networking analysis and pathway enrichment analysis
to better understand their biological significance using QIAGEN Ingenuity
Pathway Analysis (IPA, QIAGEN, Redwood City, CA).
Internal cross-validation of significant metabolites was performed using

LOOCV approach, in which each observation is considered as the
validation set and the rest (N− 1) observations are considered as the
training set. The model was built on all the data points (metabolite
measurements) except one. The left-out data point was then tested with
the LogitBoost method using the model built earlier and the test error
associated with the prediction was recorded. The process was repeated for
all data points and overall prediction error was computed by taking the
average of all these test error estimates recorded for each iteration. This
cross-validation was conducted using R package Caret (short for

Classification And REgression Training, version 6.0.88)42, and the perfor-
mance was evaluated using confusionMatrix function to calculate
prediction metrics including sensitivity, specificity, and overall accuracy.
Multiple methods were applied to extract the optimal predictors as model
input to compare validation performance: (1) all significantly abundant
metabolites; (2) significantly abundant metabolites with linear dependen-
cies removed; (3) significantly abundant metabolites transformed using
PCA to a smaller sub-space where the new PCA variables are uncorrelated
with one another.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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