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Abstract
Due to the complex nature of single-case experimental design data, numerous effect
measures are available to quantify and evaluate the effectiveness of an intervention. An
inappropriate choice of the effect measure can result in a misrepresentation of the
intervention effectiveness and this can have far-reaching implications for theory, practice,
and policymaking. As guidelines for reporting appropriate justification for selecting an effect
measure are missing, the first aim is to identify the relevant dimensions for effect measure
selection and justification prior to data gathering. The second aim is to use these dimensions
to construct a user-friendly flowchart or decision tree guiding applied researchers in this
process. The use of the flowchart is illustrated in the context of a preregistered protocol. This
is the first study that attempts to propose reporting guidelines to justify the effect measure
choice, before collecting the data, to avoid selective reporting of the largest quantifications of
an effect. A proper justification, less prone to confirmation bias, and transparent and explicit
reporting can enhance the credibility of the single-case design study findings.

Keywords single-case experimental design . statistical analysis . quantitativemethods .

reporting standards . scientific rigor

Introduction

Single-case experimental designs (SCEDs) offer the possibility to gather data repeat-
edly under different conditions, manipulated actively by the researchers (Horner et al.,
2005). The aim is to obtain evidence regarding the effectiveness of the intervention for
the single participant or the few participants studied. The usefulness of SCED studies
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for providing strong evidence is boosted by meeting the criteria of methodological rigor
(Ganz & Ayres, 2018), whereas drawing more general conclusions requires replicating
the results in several studies using the same intervention for the same problematic
aspect (Kennedy, 2005; What Works Clearinghouse, 2020).

In terms of how to analyze SCED data, visual analysis is commonly considered a
first step, especially for performing a formative analysis during data collection, whereas
quantitative techniques are useful for summative analysis after data collection (Ledford
et al., 2019). Regarding quantitative analysis, there is a lack of consensus about which
techniques are most appropriate (Busse et al., 2015; Smith, 2012). One option would be
to seek guidance from methodological quality scales, but they rarely include items
rating the quality of the quantitative data analysis technique. These scales do not go
beyond visual analysis, and for the assessment of social validity (Ganz & Ayres, 2018;
Lobo et al., 2017; Maggin et al., 2014; Wendt &Miller, 2012). One of the scales, called
“Risk of Bias in N-of-1 Trials” (Tate et al., 2015), however, puts the emphasis on the
justification provided for choosing one of the available quantifications, but there are no
(reporting) guidelines for appropriate justifications. A second option would be to
consult the recommendations made in textbooks dedicated to applied SCED research.
In texts explaining the use of SCED in different contexts, there have been different
approaches to dealing with the choice of a data analytical approach. On the one hand,
there have been recommendations to prioritize visual analysis over statistical or
quantitative analysis (Janosky et al., 2009; Kennedy, 2005; Riley-Tillman et al.,
2020). On the other hand, there have been reviews of multiple quantitative options
with an emphasis on the importance of their assumptions and the data features they
quantify (Moeyaert et al., 2018; Tate & Perdices, 2019). As intermediate options, there
has been an emphasis on "readily available" (p. 162) or "user-friendly" (p. 165)
techniques (Barker et al., 2011), or on descriptive statistics (Janosky et al., 2009).
Specific techniques such as nonoverlap indices and randomization tests have also been
recommended due to the lack of parametric assumptions and the ease of understanding
them and computing them with the available software tools (Morley, 2018). In
summary, detailed guidelines for selecting effect measures are missing from textbooks
presenting SCEDs to applied researchers from different fields (e.g., special education,
clinical psychology, sport psychology, neurorehabilitation, biomedicine). In this article
we will provide guidance on the basis of methodological and statistical texts.

A Note on Terminology

When referring to the analysis of SCED data beyond visual inspection, a potentially
more inclusive term could be “quantitative analysis techniques,” whereas a more
restrictive term would be “effect size measures.” For instance, a randomization tests,
which can be conceptualized as tools for statistical inference, would be a quantitative
analysis technique that can be applied to different descriptive effect size measures (e.g.,
a nonoverlap index or a mean difference; Heyvaert & Onghena, 2014b). As another
example of a “quantitative analysis techniques” that includes an “effect size measure,”
multilevel models can be mentioned. Multilevel models are modeling options that can
be implemented via different estimation procedures (e.g., restricted maximum
likelihood and Bayesian; Moeyaert et al., 2017) and can be used for estimating different
effect size measures (e.g., a mean difference or a difference in slope). When focusing
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on descriptive measures of effect, most can be understood as “effect size measures,” but
for nonoverlap indices it has been put into doubt whether they actually quantify the
magnitude of effect (Carter, 2013; Pustejovsky, 2018; Solomon et al., 2015; Wolery
et al., 2010). Thus, nonoverlap indices can be distinguished from “effect size measures”
(e.g., a raw or a standardized mean difference) in which not only the ordinal superiority
of conditions is quantified, but also the distance between conditions or the degree to
which the conditions are different (Natesan Batley et al., 2020). Thus, in this article we
use the term “effect measures” with which we aim to include both nonoverlap indices
and “effect size measures.” When necessary, we also refer to randomization tests (a
technique for design-based inference) and to HLMs making possible model-based
inference (Onghena, 2020) for descriptive effect measures or effect size measures.

Aim and Organization of the Text

Ambiguous or unreported choices in relation to selection of an effect measure and the
data analytical plan in general (including selective reporting, i.e., only reporting the
effect measures that are well-aligned with the researchers’ hypotheses) can be consid-
ered an example of questionable research practices that can lead to biased results
(Hantula, 2019). This is relevant because the choice of effect measures may affect
the conclusions regarding intervention effectiveness (Simmons et al., 2011). For
instance, Beckers et al. (2020) performed a review of SCED research in children with
cerebral palsy and reported that many studies conducted statistical analysis, but justi-
fication was missing. The complication resides in the fact that statistical analysis can
involve multiple approaches and different effect measures; therefore, justifying the use
of statistical analysis, in general, does not necessarily provide information about the
reason for selecting a specific effect measure. In addition, wrong interpretations of
estimated effects might be provided if researchers do not have a good conceptual
understanding of the effect measure to begin with.

Multiple dimensions can be considered and evaluated simultaneously, when
selecting an effect measure. An initial goal of this article is to identify these
dimensions, on the basis of SCED literature (i.e., recommendations from method-
ological and statistical articles and applied research articles). On the basis of these
dimensions and their facets, a second aim is to provide a user-friendly flowchart in
order to guide applied researchers providing an appropriate justification for their
effect measure selection. The explicit justification of the effect measure selected is
expected to improve reporting by enhancing the transparency of the decision
process.

It is necessary to highlight that we will only briefly mention, but not discuss in
detail, visual analysis (Lane & Gast, 2014; Ledford et al., 2019; Maggin et al., 2018) or
masked visual analysis (Byun et al., 2017; Ferron et al., 2017), which do not lead to a
quantification of the magnitude of the intervention effect. The aim is also not to present
in detail the benefits and pitfalls of different quantitative analysis techniques, as such
information is already available elsewhere (Busse et al., 2015; Chen et al., 2015; Gage
& Lewis, 2013; Lobo et al., 2017; Manolov &Moeyaert, 2017a, 2017b; Solomon et al.,
2015).

First, in the following sections, the importance for justifying a priori the selection of
a quantitative analysis technique in general (including an effect measure) is presented.
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Second, a brief overview of quantitative techniques is provided together with their
justified use (provided by the founders or developers of these techniques). Third, the
main dimensions for justifying the selection of an effect measure are discussed and
organized in a flowchart. SCED researchers are encouraged to use the flowchart in
future studies as a guidance to justify their choice prior to the start of data collection.
Finally, in order to illustrate how to use the flowchart as part of the a priori data analytic
plan, an empirical example is provided.

A Priori Aspects to Include in the Data Analytic Plan

Several decisions are required regarding data analysis before the data collection ends
(De Young & Bottera, 2018) or, even more appropriate, before data collection begins.
These decisions can be made explicit either as part of a preregistered protocol or as part
of the data analysis section of the article presenting the results of an empirical study. In
order to enhance transparency and avoid experimenter biases, researchers are highly
encouraged to make the data analytical plan publicly available to the broader research
community. This can be done through submitting the research protocol to a journal or
to the Open Science Framework (OSF; https://osf.io/). In that way the study protocol,
containing the data analytic plan, is registered prior to starting data collection (Hales
et al., 2019; Johnson & Cook, 2019). Preregistered protocols are a methodological
safeguard against confirmation bias relevant for science in general (Nuzzo, 2015). Such
protocols have been recently advocated for by study authors in the field of psychology
(e.g., Gonzales & Cunningham, 2015; Nosek et al., 2018), psychopathology (Krypotos
et al., 2019), and rehabilitation (Krasny-Pacini & Evans, 2018), as well as by journal
editors (Jonas & Cesario, 2016; Lindsay, 2015) and institutions (e.g., Institute of
Education Sciences, 2020). Preregistration has also been emphasized recently in the
SCED context (Johnson & Cook, 2019). To enhance this practice, tools have been
made freely available online (e.g., https://osf.io/zab38/, https://cos.io/prereg/).

In the context of N-of-1 trials (which could be understood as a specific kind of
SCED more common in medical research; Nikles & Mitchell, 2015; Tate & Perdices,
2019), it has been recommended that “all statistical methods planned—from visual
representation to meta-analysis—should be described in the protocol” (Porcino et al.,
2020, p. 10), including effect sizes, statistical significance, ways of performing sensi-
tivity analyses, and how heterogeneity between participants will be assessed. In the
SCED context, the importance of explicitly describing the expected data pattern and the
expected effect of the intervention has also been emphasized (Maggin et al., 2020).

In the SCED context, the variety of effect measures available, and the lack of
consensus regarding the optimal one (Busse et al., 2015), has led to the recommenda-
tion to report a variety of different effect measures (Vannest et al., 2018). This enables
assessing the consistency in findings related to intervention effectiveness. If the same
results are obtained regardless of the chosen effect measure, then researchers can be
more confident in making statements about intervention effectiveness (Lobo et al.,
2017). However, it may also lead to finding at least one effect measure providing
evidence in support of an effective intervention. As Kratochwill et al. (2018) state
“selective results may also appear in cases where multiple-outcome measures are
included in a single investigation” (p. 71). Thus, an unwanted side effect of the
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recommendation of applying several effect measures is that researchers might only
report the one that gives evidence in support of the intervention (i.e., selective
reporting; Vannest et al., 2018). An informed selection of an effect measure may
reduce the probability of reporting on such spurious findings. As Levin et al. (2017,
p. 29) state, “if the researcher does not specify a particular anticipated effect type on an
a priori basis (and, particularly, prior to examining the data), but rather conducts
multiple analyses on the same data with different effect-type specifications, then we
would again have ethical concerns and would question the validity of the researcher's
statistical conclusions.”

Overview of Single-Case Quantitative Analysis Techniques

In order to provide guidance on what to include as proper justification for selecting a
quantitative analysis technique, a good conceptual understanding of the different
alternatives is needed, together with a good understanding of their intended use as
stated by their founders. For that purpose, a document was created (see Appendix A,
available at https://osf.io/t96fc/) including quotes from the founders of effect measures
regarding their main features and uses.

Before presenting a brief review of effect measures, a remark is needed on
replication and randomization, which are two key features of SCEDs relevant
for their internal and external validity (Horner et al., 2005; Kratochwill &
Levin, 2010).

Replication

The basic effect (i.e., an A–B comparison between a baseline and an intervention
phase) is the building block for quantitative data analysis, but this basic effect needs to
be replicated in order to have greater confidence that the effect is due to the interven-
tion. Most effect measures (e.g., nonoverlap indices and log–response ratio) have been
initially proposed and discussed for the quantification of a basic effect, although others
(e.g., hierarchical linear models and design-comparable effect size) are especially
developed for combining effects. Thus, replication is not only a necessity for internal
and external validity, but it also informs the unit of analysis. For designs that entail a
replication within the participant (e.g., withdrawal/reversal designs, alternating treat-
ment designs [ATDs], and changing criterion designs [CCDs]), the unit of analysis is
the participant and we refer to as “within-case” effect measures. For designs that
include replication across participants (e.g., multiple-baseline designs), the unit of
analysis can be the participants and/or the study. For the latter case, the term “across-
case” effect measures.

Randomization and Randomization Tests

Randomization (i.e., random assignment of measurement times to conditions or random
choice of the moments of change in condition) is a design feature that makes it possible
to use randomization tests as an analytical option. Randomization tests do not require
parametric data assumptions and are applicable even when there are missing data (De
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et al., 2020). Randomization tests allow flexibility in defining the test statistic
(Heyvaert & Onghena, 2014b). Therefore, the decision to use a randomization test
does not determine the effect measure to be used, as a randomization test can be applied
to multiple data features such as level, trend, variability, overlap, and immediacy
(Tanious et al., 2019). In particular, when focusing on an overall difference in level,
a mean difference can be used as an effect size measure (e.g., Ferron & Ware, 1995). It
also possible to define the test statistic according to whether the change in level is
expected to be immediate, comparing the last three baseline phase measurements and
the first three intervention phase measurements (Michiels & Onghena, 2019), or
delayed, excluding the initial values of the intervention phase (Levin et al., 2017). As
an alternative focusing on trend, the difference between slopes can be used as an effect
size measure, whereas focusing on variability, the difference between conditions can be
quantified via a variance difference or a variance ratio (Levin et al., 2020). In terms of
overlap, the Nonoverlap of All Pairs (Parker & Vannest, 2009) can be used as a test
statistic and effect measure (Heyvaert & Onghena, 2014a). It is also possible to use
consistency measures as test statistics (Tanious et al., 2020). Furthermore, specific
proposals for test statistics have been made for ATDs (Manolov & Onghena, 2018, and
Manolov, 2019, suggest comparing the data paths represented by the lines connecting
the measurements from the same condition) and for CCDs (Onghena et al., 2019,
suggest using the mean absolute deviation between the measurements and the criteria).
Finally, when using a randomization test, apart from choosing an effect measure, it is
important to select a randomization scheme that is appropriate for the specific SCED
(see Levin et al., 2018, for multiple-baseline designs; Onghena, 1992, for withdrawal/
reversal designs; Levin et al., 2012, and Onghena & Edgington, 1994, 2005, for ATDs;
and Ferron et al., 2019, and Onghena et al., 2019, and for CCDs).

In summary, a randomization test can be used in conjunction with visual analysis,
mean differences, nonoverlap indices, or even with multilevel models (Michiels et al.,
2020). Thus, a randomization test can use a within-case or an across-case effect
measure as a test statistic. It should be noted that the purpose of using a randomization
test is for tentative causal inference (not for population inference) and not for quanti-
fying the magnitude of effect. Randomization can also be used for controlling false
positives in the context of response-guided experimentation when performing masked
visual analysis (Byun et al., 2017; Ferron et al., 2017; Joo et al., 2018). In this context
of use of randomization, the aim is not to produce an effect measure. For these reasons,
this article does not discuss randomization tests further, although using a randomization
test is recommended whenever there is randomization in the design.

Within-Case Effect Measures

Nonoverlap Indices

Vannest and Ninci et al. (2015) advocate for nonoverlap indices because these are easily
calculated by hand and easily interpreted, and do not require normally distributed data.
Nonoverlap indices are especially justified when the data cannot be meaningfully
represented by a mean or trend lines (Parker, Vannest, & Davis, 2011a). The nonoverlap
indices can be used if the sole interest is in quantifying the percentage of data separation
between different phases. Some nonoverlap indices require absence of baseline trend:
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this is the case, for instance, of the Nonoverlap of All Pairs (NAP; Parker & Vannest,
2009). Other nonoverlap indices control for trend: Tau-U with baseline trend control
(Parker, Vannest, Davis, & Sauber, 2011b) and the Baseline corrected Tau (Tarlow,
2017). Thus, it has to be emphasized that not all nonoverlap indices have similar features
or strengths and limitations (see Parker et al., 2011a, for a review) and that variants of
one index such as the Tau can be quite different. For instance, the Tau-U and Baseline
corrected Tau are different in how they control for baseline trend (Manolov, 2018;
Tarlow, 2017). Only a limited number of nonoverlap indices have an established
sampling distribution (i.e., NAP and Tau-U without baseline control). However, the
interpretation of the confidence intervals and p-values associated with these indices is
subjected to the assumption of independent data (Pustejovsky & Swan, 2018). More-
over, nonoverlap indices do not quantify the magnitude of intervention effectiveness
(Carter, 2013); in particular, they cannot quantify differences in amount of separation
between data points once complete overlap is achieved.

Regression-Based Quantifications

Simple ordinary least squares (OLS) regression can be used to quantify the change in
outcome level between baseline and intervention conditions (or between intervention
conditions if a baseline phase is missing, as in the case of ATDs in which the relative
effectiveness of several interventions is commonly compared). Piecewise regression is
an extension of simple OLS that accounts for time trends during the baseline and
intervention conditions (Center et al., 1985, Van den Noortgate & Onghena, 2003).
Instead of providing a quantification of changes in level, it provides separate quanti-
fications of changes in level and slope due to the intervention. The quantification can be
expressed both in raw and standardized units (Van den Noortgate & Onghena, 2003,
Van den Noortgate & Onghena, 2008). Another regression-based quantification is
obtained in the context of a generalized least squares (GLS) regression
(Swaminathan, Rogers, Horner, Sugai, & Smolkowski, 2014b), for which a Bayesian
approach for drawing inferences has been presented (Swaminathan, Rogers, & Horner,
2014a). The effect size proposed by Swaminathan, Rogers, and Horner, on the basis of
the regression model, is an overall effect, combining the change in level and the change
in slope and can be expressed in raw or standardized units. GLS is different from OLS
in that it can model several functional forms of autocorrelation as well as enabling
modeling count outcomes (Swaminathan et al., 2014a). In terms of the appropriate
situations for applying GLS, sufficient data are necessary for estimating autocorrelation
precisely and the change in level, and in trend need to be visually inspected in order to
assess the meaningfulness of the quantification (Maggin et al., 2011).

Log–Response Ratio

The log–response ratio has been advocated on the basis of its insensitivity to procedural
details such as series and observation session length (Pustejovsky, 2019), as well as due
to the possibility to express it in meaningful terms as a percentage change (Pustejovsky,
2018). Its use is justified when the intervention does not consistently lead to the
extinction of the target behavior and when there are no time trends and autocorrelation
(Pustejovsky, 2018).
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Comparison to a Predefined Goal

It has been suggested that a goal line be superimposed on the graph with the time-series
data (Riley-Tillman et al., 2020). The number of sessions required to reach a
preestablished criterion can be counted (Kipfmiller et al., 2019). In terms of a quanti-
fication of the effect, the percentage of the goal obtained (Ferron et al., 2020) expresses
the level achieved in relation to the preestablished goal.

Across-Case Quantitative Analysis Techniques

Between-Case Standardized Mean Difference

In an attempt to bring the credibility of SCED research findings to the same level of
group-comparison design studies, Hedges et al. (2012, 2013) introduced a statistical
model for estimating a design-comparable effect-size estimate, also known as the
between-case standardized mean difference effect size for SCEDs (BC-SMD). The
BC-SMD is an effect measure that can be interpreted on the same scale as standardized
mean differences from group-comparison designs (i.e., Cohen’s d). In general, re-
searchers are familiar with this quantification and therefore interpretations are more
straightforward because there is an established scale reflecting what can be considered
“small,” “medium,” or “large.” Another advantage of the BC-SMD is that results of
SCEDs can be combined with results from group-comparison designs (e.g., Zelinsky &
Shadish, 2018), providing more evidence related to the intervention effectiveness being
investigated in both types of designs, thus allowing for an increase in external validity.
The use of the BC-SMD in its original version (using moment estimation; Hedges et al.,
2012, 2013) is justified when its assumptions and requirements are met: at least three
participants with similar data patterns (i.e., the effect is an immediate and sustained
change in level in the absence of trend); normal distribution of within-case errors and
between-case variation; and constant within-case variance and auto-correlation param-
eters across cases. The within-case errors follow a first-order auto-regressive term. It
should be noted that the BC-SMD can also be estimated using (restricted) maximum
likelihood estimation (Pustejovsky et al., 2014; Valentine et al., 2016) with fewer
assumptions. Although the original BC-SMD using moment estimation can be con-
ceptualized as a HLM (Hedges et al., 2013), it is Pustejovsky et al.’s (2014) proposal
that uses the same estimation procedure as HLMs.

Hierarchical Linear Models

HLMs are general modeling techniques that can be thought of as extensions of
regression-based techniques (i.e., simple OLS and piecewise regression, Moeyaert,
Ugille, Ferron, Beretvas, & Van den Noortgate, 2014b). HLM can be conceptualized
as an approach resulting in across-case regression-based quantifications. Therefore, the
justifications previously provided for regression-based quantifications are also applica-
ble here. Two-level HLMs can be used when there are several participants included in
the same study, as in a multiple-baseline design (Ferron et al., 2009), but also for other
SCEDs that involve multiple participants such as a replicated withdrawal/reversal
design (Shadish et al., 2013). The unique benefit of using HLM is that it results in an
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estimate of an overall intervention effect (quantified as a change in level and/or change
in slope) across participants (expressed in raw or standardized units). This makes it
possible to make more generalized inferences about the effect of an intervention. It
should be noted that HLM is a modeling technique that can be applied to estimate
effect-size measures. Depending on the HLM specification, different effect-size mea-
sures of interest can be estimated. Two commonly used HLM parameterizations result
in an across-participant estimate of the change in outcome level as well as the change in
slope between baseline and intervention conditions (Moeyaert et al., 2014b). The
underlying estimation procedure is commonly (restricted) maximum likelihood or
Bayesian estimation (Moeyaert et al., 2017). The decision regarding how to model
the data in the context of a multilevel model can be made in relation to the measurement
characteristics of the outcome (Declercq et al., 2019), according to the specific SCED
used (Moeyaert et al., 2014b; Shadish et al., 2013), and the linear or nonlinear data
pattern expected or observed (Shadish, Zuur, & Sullivan, 2014b).

In addition to estimating effects, variability in the effectiveness of the intervention
between participants can be estimated. This is informative because an intervention
might work in general but not to the same degree for all the study participants.
Multilevel models can also handle data complexities such as autocorrelation, as-
suming it is similar in the baseline and intervention condition, or treating it as
heterogeneous (Moeyaert, Ferron, Beretvas, & Van den Noortgate, 2014a) and count
data (Declercq et al., 2019). In terms of performance, this technique has been shown
to estimate without bias overall intervention effects (even with as few as three
participants; Ferron et al., 2009), but not the variances (Baek et al., 2020). If the
research interest lies in an estimate of the intervention effect across cases, then the
two-level HLM is appropriate and recommended, even with a small number of
participants. If the research interest lies in capturing between-participant variability
in the intervention effect, then more study participants are needed—but even then
biases should be anticipated.

Regarding the relation between HLMs and other quantitative analysis techniques, it
should be noted that the BC-SMD can be estimated using HLM. An extension of the
basic model underlying the BC-SMD was proposed by Pustejovsky et al. (2014) for
computing a standardized mean difference when trends are modeled and allowed to
vary between participants and a restricted maximum likelihood estimation is used
instead of moments estimation. Moreover, HLM could be used in connection with
other quantitative techniques, such as applying a multilevel meta-analysis model (a
particular form of HLM) to within-case effect-size quantifications or by using gener-
alized linear mixed models (e.g., random effects Poisson models), where the effect-size
metric is a form of log–response ratio.

Using Within-Case Quantifications for Aggregation

When several basic effects are evaluated in the same study, it is first necessary to verify
what proportion of time the basic effect is replicated, for instance, requiring a 3:1 ratio
of effects to no effects (Cook et al., 2015). Second, a weighted or an unweighted mean
can be used to combine the quantifications obtained for each basic effect (Parker et al.,
2011b; Schlosser et al., 2008; Swaminathan et al., 2014b), in order to obtain an
aggregate quantification of the intervention effectiveness. Apart from aggregating the
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effect as an average, it is usually informative to assess the variability of effects within-
and between-cases, which can be useful for identifying relevant moderator variables.
Another option is to use an across-case quantification, such as the BC-SMD (assuming
a similar data pattern across participants) or HLM (with the possibility of quantifying
variations across participants). The latter two options are recommended because the
inverse of the variance is used as a weight to combine effect sizes.

The Dimensions

The dimensions presented in the current document are based on the SCED literature,
including methodological research (see “Overview of Single-Case Quantitative Anal-
ysis Techniques, ” above, and Appendix A) and published applied research (see
Fingerhut et al., 2020). Table 1 includes the dimensions and their facets that can be
used for properly justifying the selection of an effect measure as part of the a priori data
analytical plan.

Dimension 1: Research Question and/or Type of Quantification Desired

The first dimension refers to the intended use of the data analytical approach. An initial
facet to consider is the kind of analysis to perform. Formative analysis is performed as
part of the data-gathering process itself and is crucial for designs that implement some
form of response-guided experimentation, e.g., deciding when to change the conditions
(Connell & Thompson, 1986; Swan et al., 2020). Formative analysis is commonly
performed via visual inspection, whereas quantitative techniques are useful for sum-
mative analysis following data collection (Ledford et al., 2019). Likewise, the assess-
ment of whether a functional relation or experimental control is established is mainly
done via visual analysis (Maggin et al., 2018; Wolfe et al., 2016), taking the close
interaction between the researcher and the participants into consideration (Perone,
1999).

If the aim is to provide a quantitative summary of the degree of intervention
effectiveness, a choice between within-case or across-case quantification is necessary
(Odom et al., 2018; Swaminathan et al., 2014a). In addition, for several within-case
(e.g., nonoverlap indices) and across-case quantifications (e.g., BC-SMD and
regression-based quantifications) it is possible to focus on either the descriptive
information or the inferential information. The descriptive information is the effect
measure (i.e., the value of the nonoverlap index, the estimate of the BC-SMD, or the
estimates of interventions effects in a HLM), whereas the inferential information is
represented by the confidence intervals of these effect measures. In addition, by using a
randomization test, a p-value and confidence intervals (Michiels et al., 2017) can be
obtained at the within-case or the across-case levels using the HLM approach. The
researcher can decide whether to focus on the descriptive or inferential information
depending on the aims of the analysis and the tenability of the assumptions required for
the validity of the inferential information (e.g., if independent data is to be assumed or
normally distributed residual).

Another facet to take into consideration is the kind of summary statistics desired
(e.g., whether to express it in standardized or raw units; Manolov et al., 2014).
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Table 1 Dimensions and Facets for Justifying the Selection of Effect Measures

Dimensions Facets Choices Within Facets

Research question or type
of quantification desired

Formative or summative
analysis

Formative analysis: Visual analysis
Summative analysis: Quantification

Presence of functional
relation or quantification

Functional relation: Visual analysis
Quantification: Effect measure

Unit of analysis to which
the research question
refers

Individual analysis: Within-case quantification
Aggregation: Across-case quantification

Descriptive or inferential Focus on the effect size or on the p-value or
confidence interval

Measurement units of the
effect measure

Raw (same measurement units as the outcome
variable) or comparable (standardized,
percentage)

Focal data feature Choose one (level, trend, variability, immediacy,
overlap) or state explicitly that several features
will be quantified, looking for converging

Design features Type of design Multiple-baseline design, reversal, alternating
treatments design, changing criterion design,
combined

Replication • Within-case (e.g., reversal design) or across-case
(e.g., multiple-baseline design)

• An across-case replication can be inherent to the
design (multiple-baseline design across
participants) potentially leading to an
across-case quantification or additional (reversal,
alternating treatments design, changing criterion
design, multiple-baseline design across behav-
iors and across participants) potentially entailing
several within-case quantifications

• Anticipated variability in treatment effectiveness
across cases

Randomization Present or not; to use in the analysis via a
randomization test or not to use

Response-guided
experimentation

Is there a preestablished control for false positives?

Data characteristics Number of units of analysis • Depends on whether a within-case quantification
or an across-case quantification is to be used.

• Consider whether the number of units is sufficient
according to the evidence available for the
analytical technique.

Number of measurements
per phase or condition

• Are summaries of level and trend expected to be
reliable?

• Are standard errors expected to be estimated with
precision? (effect on p-values and confidence
intervals)

• Will there be enough statistical power?

Outcome variable(s)
scale(s)

Ordinal? Interval (continuous)? Ratio scale
(counts)?

Anticipated challenges (not
found post hoc)

• Autocorrelation: Effect measure assumes
independence? Does it handle autocorrelation?

163Perspectives on Behavior Science (2022) 45:153–186



Intervention effectiveness can be reflected in standardized units (BC-SMD, see Hedges
et al., 2012, 2013; standardized regression coefficient, see Van den Noortgate &
Onghena, 2008), as a percentage (e.g., mean baseline reduction, see Olive & Smith,
2005; a transformation of the log–response ratio, see Pustejovsky, 2018), in raw units
reflecting the original scale (e.g., unstandardized regression coefficient, see Van den
Noortgate & Onghena, 2003; the slope and level change, see Solanas et al., 2010). An
example in applied literature of an effect measure being used because it is unstandard-
ized or standardized can be found in Good (2019) and Lanovaz et al. (2019),
respectively.

Finally, given that it is possible to provide a quantification regarding several data
features (i.e., level, trend, variability, immediacy, overlap; Kratochwill et al., 2010,
2013), it is necessary to decide, prior to gathering the data and looking at the most
salient data feature, which is the focal data feature (or multiple focal features). An
example in applied literature of a quantification being used because it is can measure
change in trend can be found in Caron and Dozier (2019).

Dimension 2: Design Features

Several design features are expected to be reported (Tate et al., 2016) and they can be
used for informing the selection of an effect measure. On the one hand, certain
quantifications are only applicable (or more easily and meaningfully applicable) to
certain SCED types. For instance, the BC-SMD has been developed to reflect

Table 1 (continued)

Dimensions Facets Choices Within Facets

Evidence on the performance when there is
autocorrelation?

• Missing data
• Outliers
• Potential impossible projections of baseline trend
• Unequal time intervals between observations

Expected data pattern Baseline data pattern • Expectations about stability (variability) and the
usefulness of a summary measure of level

• Need to model time trend

Intervention effect Immediate effect vs. progressive or delayed effect

Desirable features of the
quantitative analysis
techniques

Statistical properties • Adequate levels of Type I error rates and
statistical power; confidence interval coverage;
bias and Mean Square Error when estimating

• Better performance than another quantification
• Discriminability when applied to real data

Known sampling
distribution (under
certain assumptions)

• Standardizing
• Constructing confidence intervals
• Possibility for inverse variance weighting relevant

for quantitative integrations

Quantifications easily
represented visually

• Main quantifications and summaries are easily
represented on the time series plot?

• Data transformations or trend corrections are
easily represented on the time series plot?
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intervention effectiveness for reversal and multiple-baseline designs (Hedges et al.,
2012, 2013; Pustejovsky et al., 2014), but cannot be applied to alternating treatments
designs. The mean absolute distance is a meaningful test statistic only for changing
criterion designs (Onghena et al., 2019). HLMs are most easily applicable to multiple-
baseline designs (Ferron et al., 2009), although their application to other design
structures including a replication across individuals is also possible (Moeyaert et al.,
2014b; Shadish et al., 2013).

Two other especially relevant design features, replication and randomization, were
previously mentioned. The kind of replication (within-case or across-case) is related to
the type of SCED as well as whether the quantification is performed at the within-case
or across-case level. If the researcher expects considerable variability across cases (due
to any differences they might have in terms of the type, severity, or history of the issue
treated), it may be less meaningful to summarize the results about different cases in a
single effect measure. Regarding randomization, it can enable either a masked visual
analysis in the context of response-guided experimentation (Byun et al., 2017; Ferron
et al., 2017) or a statistical inference about causality when using a randomization test
(Onghena, 2020).

Dimension 3: Data Characteristics

In terms of the expected features of the data, several quantities can be expected to be
known a priori, although changes to the initial plan may take place during the course of
the study. First, the number of participants is usually preestablished and it is relevant for
across-case quantifications, such as the BC-SMD or the HLM approach. For BC-SMD
and HLM, a minimum of three study participants is needed and unbiased intervention
effects can be expected, but the standard errors are likely to be biased, and thus p-values
and confidence intervals are likely inappropriate for such a small number of partici-
pants. Thus, the number of participants is relevant for the precision of estimates and
also for statistical power. An example in applied literature of an effect measure being
used because of the number of participants can be found in Raulston et al. (2019).

A second relevant quantity is the number of measurements1 available. On the one
hand, the number of measurements per phase can have an impact on the effect measures
(Pustejovsky, 2019). On the other hand, this quantity is also relevant for the precision
of estimates and as well as statistical power (although it is less important than the
higher-level units in HLM). In relation to statistical power, in randomization tests it is
mainly related to the number of possible randomizations, which is related both to the
number of participants and the number of measurements available as well as the
randomization scheme (e.g., see Levin et al., 2018, for multiple-baseline designs; see
Onghena & Edgington, 2005, for alternating treatments designs). An example in
applied literature of an effect measure being used because of the number of measure-
ments can be found in Raulston et al. (2019).

1 We can distinguish between phase and alternation designs (Onghena & Edgington, 2005). In phase designs,
such as multiple baseline and a reversal, the number of measurements refers to the quantity of data points
available in each phase. In contrast, in an alternation design such as an alternating treatments design, the
number of measurements refers to the number of data points for a given condition, considering the whole
alternation sequence.
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Another facet refers to the measurement characteristics (i.e., the measurement scale)
of the outcome. Only nonoverlap indices are applicable to ordinal data and in case the
target behavior is measured via a (subjective) rating scale that is only ordinal, effect
measures based on means or on trend lines cannot be meaningfully applied. On the
other hand, there are certain effect measures such as the log–response ratio
(Pustejovsky, 2018, 2019) and the Bayesian response ratio (Natesan Batley et al.,
2020) that are applicable only when there is an absolute zero, such as when the
outcome variable is expressed as a frequency (i.e., a ratio scale). Furthermore, certain
effect measures used only for descriptive purposes (e.g., the standardized mean
difference and the slope and level change procedure; Solanas et al., 2010) are applica-
ble to both interval and ratio scale measures. However, for standardized mean differ-
ences accompanied by standard errors for constructing confidence intervals, it is
common to assume that the outcome is measured continuously (Valentine et al.,
2016). A distinction between an interval and ratio scale outcome is necessary for
modeling techniques such as regression-based quantifications and HLMs, which as-
sume normality and continuous outcome. When the outcome is a count, which is
common when direct observation is used for gathering data (Pustejovsky, 2019),
modifications in the modeling may be necessary (Declercq et al., 2019). It is also
important to consider whether the use of direct observation is accompanied by the more
recommendable momentary time sampling (Cook & Snyder, 2020) or by partial
interval recording (Pustejovsky & Swan, 2015); partial interval recording leads to a
quantification of frequency or to a quantity that is not directly interpretable in terms of
either frequency or duration, which may lead to misrepresenting the magnitude of effect
for certain effect measures (Ledford et al., 2015; Pustejovsky et al., 2019).

Another facet refers to challenging aspects of the data that can be anticipated, so a
way of dealing with them can also be decided prior to gathering the data. In relation to
autocorrelation, certain techniques take it into account (e.g., HLMs, BC-SMD, the GLS
approach by Swaminathan et al., 2014b, and the interrupted time series simulation
approach by Tarlow & Brossart, 2018), whereas others (e.g., NAP, Tau-U) assume it is
absent in order to consider their standard errors valid. In addition, there are effect
measures ignoring autocorrelation that do not aim at any statistical inference (e.g.,
standard errors, confidence intervals). Examples of such quantifications are mean
baseline reduction (Olive & Smith, 2005), percentage of data points exceeding the
median (Ma, 2006), slope and level change (Solanas et al., 2010), and the ratio of
distances (Carlin & Costello, 2018).

Regarding the possibility of missing data, several methods are applicable (Hox,
2020; Kwasnicka & Naughton, 2020) and have been tested for SCED data, such as
expectation-maximization and multiple imputation (Chen et al., 2020; Peng & Chen,
2018; Smith et al., 2012). A different approach is followed in randomization tests (see
De et al., 2020, for a randomized marker approach). In the context of HLMs, to the best
of our knowledge a review of how missing data has been handled is available only
outside of the SCED context (Dedrick et al., 2009). However, it has been stated that one
of the advantages of HLMs is the precise handling of missing data (Wiley & Rapp,
2019).

Finally, trend estimation could be compromised by outliers (Vannest et al., 2012)
and unequal time intervals between measurement occasions. Although outliers cannot
be anticipated with confidence, it may be reasonable to opt for robust effect measures.
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In addition, when trend projection takes place (e.g., piecewise regression, GLS,
Baseline corrected Tau) an excessively long intervention phase may lead to obtaining
impossible predictions (Manolov, 2018; Manolov et al., 2019; Parker et al. 2011b).
Finally, unequal time intervals between measurement occasions have been considered
an issue in the graphical display of the data, in terms of misrepresenting temporal
information if the session number suggests a false uniformity (Kubina et al., 2017). The
meaning of time trend differs according to whether time is represented as session
number or, for example, calendar days. Unequal time intervals can also have influence
on the way in which autocorrelation is modeled; in particular, a first-order
autoregressive model may not be adequate. Thus, greater caution in the interpretation
of trends and autocorrelation is required when data are to be gathered at unequal time
intervals.

Dimension 4: Expected Data Pattern

In the context of randomization tests, the test statistic should be chosen before gathering
the data, according to the type of effect expected (Heyvaert & Onghena, 2014a, 2014b;
Levin et al., 2017). This idea is extended to other analytical options for SCED data,
which is in line with current recommendations (Maggin et al., 2020). Deciding the
analytical plan prior to gathering the data on the basis of the expected data pattern is
possible when there is sufficient previous evidence on the specific kind of dependent
variable or outcome score and the intervention. Thus, expectations are related to
specific outcomes or target behaviors and interventions. For instance, spontaneous
improvement prior to introducing an intervention can be expected in rehabilitation
(Krasny-Pacini & Evans, 2018; Solomon, 2014, also reports the presence of trend in
school interventions) and gradual and slower changes can be expected when measuring
academic performance (Maggin et al., 2018). Spontaneous improvement can be repre-
sented by an improving baseline trend. It is important to use the information available
regarding whether an improving baseline can be expected, because it can be difficult to
decide on the basis of the data whether there is a clear trend or not (Chiu & Roberts,
2018). Moreover, the literature shows that there are different ways for deciding whether
trend should be controlled for (Tarlow & Brossart, 2018): (a) if the trend is stable
according to the envelope constructed around it (Lane & Gast, 2014); (b) if the trend
estimate is at least 0.20 (Vannest & Ninci, 2015); (c) if the trend is statistically
significant (Tarlow, 2017); or (d) always, because trend control is part of the procedure
(Solanas et al., 2010). Deciding on the basis of previous knowledge is easier than
following a variety of criteria, whose suggestions may not coincide. Likewise, it must
be decided how exactly to estimate trend and how to control for it, given that there are
multiple options for both steps (Manolov, 2018) and it is not advisable to try out several
and select the one that is most favorable (Carlin & Costello, 2018). An example in
applied literature of an effect measure being used because it can account for trend in the
baseline phase can be seen in Gertler and Tate (2021).

A slower change in the dependent variable or a gradual improvement during the
intervention phase is conceptualized as a delayed or progressive effect. Such effects do
not need to be discarded, as the latency of the change after the onset of the intervention
depends on the type of intervention and domain of functioning (Kazdin, 2019), i.e., the
contextual information is crucial (Lieberman et al., 2010). Related to this, expecting a
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delayed effect or a transition state between conditions (Brogan et al., 2019) or extinc-
tion bursts (Barnard-Brak et al., 2020) can justify focusing on part of the observations
obtained; Fisher & Lerman, 2014; Levin et al., 2017; Porcino et al., 2020). Likewise, it
is possible to focus on the end of the baseline and the beginning of the intervention
phase when an immediate effect is expected (Michiels & Onghena, 2019). Another
option is to use models that are specifically applicable to gradual change (Swan &
Pustejovsky, 2018; Verboon & Peters, 2020).

Dimension 5: Desirable Features of the Quantitative Analysis Techniques

An effect measure, and quantitative analysis technique in general, should be statistically
sound. This requirement can be defined in different ways, according to the descriptive
or inferential use of the effect measure. For description, discriminability between
different magnitudes of intervention effectiveness is relevant (Parker et al., 2009;
Parker et al., 2011b). In particular, a problem for discriminability are floor and
(mainly) ceiling effects (e.g., the impossibility to distinguish between differently
effective interventions once complete nonoverlap is achieved). For inference, the lack
of bias and the relative efficiency (and, thus, mean square error) of the estimate are
some of the desirable features that are usually assessed (e.g., Hedges et al., 2012, 2013;
Manolov & Solanas, 2013; Moeyaert et al., 2017; Swan & Pustejovsky, 2018), as well
as confidence interval coverage (e.g., Baek et al., 2020; Ferron et al., 2009). A different
set of inferential statistical properties refers to null hypothesis significance testing. In
particular, Type I error rates (i.e., false positives) and statistical power (i.e., true
positives) are commonly assessed (e.g., Borckardt et al., 2008; Declercq et al., 2019;
Levin et al., 2018; Michiels & Onghena, 2019). An example in the literature of an
effect measure being used because it does not demonstrate a ceiling effect can be seen
in Ginns and Begeny (2019).

Except for randomization tests (Craig & Fisher, 2019), inferential information
requires that the quantification has a known approximate sampling distribution. In
particular, a known sampling distribution makes possible standardizing (Swaminathan
et al., 2014b; Van den Noortgate & Onghena, 2008), constructing confidence intervals,
and using inverse variance weighting for meta-analysis (Parker et al., 2011b; Shadish,
Hedges, & Pustejovsky, 2014a). Such knowledge about the sampling distribution
comes at the price of certain assumptions about the data or the residuals (Hedges
et al., 2012, 2013; Moeyaert et al., 2018; Pustejovsky & Swan, 2018). An example in
the literature of an effect measure being used because it has a known sampling
distribution can be seen in Garwood et al. (2019).

Beyond the aforementioned statistical properties, a desirable feature can be defined
in terms of its performance relative to other effect measures (e.g., in terms of consis-
tency with visual analysis, correlation with other quantifications, or lack of sensitivity
to potentially irrelevant procedural details). Such comparison studies have been
performed for nonoverlap indices (e.g., Chen et al., 2016; Wolery et al., 2010;
Yucesoy-Ozkan et al., 2020), regression-based quantifications (Brossart et al.,
2006) and for several quantifications of different kinds (e.g., Barton et al.,
2019; Campbell, 2004; Pustejovsky, 2019). An example in applied literature of
an effect measure being used because it correlates with another quantification
can be seen in Lanovaz et al. (2019).
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Fig. 1 Flowchart for Selecting an Effect Measure according to Several Dimensions
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In relation to the strong tradition of using visual analysis in SCED research (Ledford
et al., 2019; Maggin et al., 2018), it is important for quantifications and any potential
transformation of the data to be easily represented visually. This is relevant for effect
measures as diverse as nonoverlap indices (Tarlow, 2017) and regression-based quan-
tifications (Declercq et al., 2020; Moeyaert et al., 2014b; Parker et al., 2006). Note that
the requirement is not necessarily for quantifications to correlate well with the decisions
made by visual analysts, because their performance may not be optimal (Ninci et al.,
2015).

Finally, it should be noted that Dimension 5 may be difficult to apply, because there
is insufficient evidence regarding the performance of all effect measures proposed for
SCED data analysis. For instance, to the best of our knowledge, no simulation
study has been performed on the mean baseline reduction (see Campbell, 2004,
for a field test), the ratio of distances (Carlin & Costello, 2018), or on the
interrupted time series simulation (Tarlow & Brossart, 2018). Finally, it is not
feasible for a single article (text such as this one) to summarize all the evidence
available on all possible effect measures.

The Flowchart

Transforming the Dimensions and Facets into a User-Friendly Flowchart

The selection of the effect measure and the justification of this selection is made easier
by using the flowchart (Fig. 1) rather than Table 1. However, the flowchart is a
simplification of Table 1, because it is based on some, but not all, of the facets included
in the table. The dimensions can be understood as an integration of methodological
aspects to be kept in mind, whereas the flowchart simplifies the set of dimensions and
facets and is designed as a decision tree that can be readily used by applied researchers.
For instance, a facet of Dimension 2 (Design features) omitted is the presence of
randomization. However, we recommend complementing the descriptive information
provided by an effect measure with the inferential information provided by a p-value
arising from a randomization test (when randomization is used). Suggestions for
effect measures to be used as test statistics were provided in the “Randomiza-
tion and Randomization tests” section, above. Response-guided experimentation
(another facet of Dimension 2) is also not discussed, but the interested reader is
referred to Byun et al. (2017), Ferron et al. (2017), Joo et al. (2018), and Swan
et al. (2020). Finally, certain data characteristics (Dimension 3) such as the
level of measurement of the outcome variable, missing data, outliers, and
autocorrelation are not reiterated here, given that, in general for all effect
measures, they entail the need for greater caution in the interpretations. How-
ever, for certain quantitative analysis techniques such as HLMs it is possible to
build the model in such a way as to account for count data and autocorrelation.

In summary, when reporting the data analytical decisions made, an applied research-
er can report the dimensions and facets that were used as a basis for justifying
the quantification chosen (as per Table 1), as well as the pathway followed,
according to the flowchart.
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The flowchart also illustrates the relations between facets, both within and across
dimensions, and also the relation between effect measures. Considering that the focus is
put on quantifications for summative analysis, the initial decisions are related to a facet
of Dimension 1 (i.e., the unit of analysis), which is necessarily related to two facets of
Dimension 2 (the type of SCED and the kind of replication it entails). For ATDs and
CCDs there are specific analytical options and certain potential focal data features (a
facet of Dimension 1), such as overlap and or immediacy, may not be as meaningful or
critical as for other SCEDs.

The expected data pattern is the third crucial aspect in the flowchart, after consid-
ering the unit of analysis and the type of design and replication. The expected data
pattern (Dimension 4) determines the focal data feature of the quantification (Dimen-
sion 1).

Across-Case Quantifications: The Left Pathways in the Flowchart

Given that the presence and type of replication defines the first decision point in the
flowchart, a note is required. It is necessary to distinguish across-case replications (i.e.,
an MBD across participants, a replicated reversal design, or ATD) from within-case
replications (i.e., an MBD across behaviors or settings, a reversal design, or an ATD for
a single participant). HLMs (including the BC-SMD) are conceptually applicable only
to replications across cases. For within-case replication, within-case quantifications can
be used.

Following the path for across-case quantifications (to the left of the flowchart), the
type of design (a facet from Dimension 2), the anticipation about the similarity across
cases (a facet from Dimension 3), and the expected data pattern (Dimension 4) are
relevant for assessing whether the BC-SMD is a reasonable quantification. In case the
heterogeneity across cases is to be quantified and the presence of baseline or interven-
tion phase trend is considered likely, the BC-SMD could be substituted by a less
restrictive HLM such as the one proposed by Pustejovsky et al. (2014). Moreover,
HLMs incorporating separate trend lines for the different conditions and random effects
are applicable beyond MBDs and replicated reversal designs (e.g., to ATDs and CCDs,
see Shadish et al., 2013), unlike the BC-SMD. In relation to Dimension 1, the focus on
the descriptive information (estimates of treatment effect, as immediate effect and effect
on time trend) or on the inferential information (p-values and/or confidence intervals) is
a decision to be made by the researcher, but focusing on the descriptive information
requires fewer assumptions. Model building (e.g., the decisions regarding whether to
include general trend and the effect of the intervention on the time trend, and which
effects to model as random) could be guided by the visual analysis of the actually
obtained data (Baek et al., 2016). Another option we recommend, following Ferron
et al. (2008), is to select the model a priori on the basis of the expectations and previous
evidence. Nevertheless, it is still possible to plan a post-hoc verification that the initially
chosen model is meaningful for the data actually obtained and does not represent a
gross misspecification. In that sense, any subsequent changes in the model need to be
explicitly labeled as data-driven. Finally, in relation to Dimension 3 (Data characteris-
tics) and Dimension 5 (Desirable features of the quantitative analysis techniques), it
must be considered whether the application of the BC-SMD or a HLM is reasonable
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considering the number of participants and the number of measurements finally
available.

Within-Case Quantifications: The Right Pathways in the Flowchart

Alternating Treatments and Changing Criterion Designs

When the unit of analysis is the participant, within-case quantifications can be used,
following the path to the right of the flowchart. The decision about the quantification
depends, first, on the design used. For a changing criterion design, the range-bound
version and the percentage of conforming data (McDougall, 2005) can be appropriate
as a quantification of the degree to which the data match the preestablished criteria (see
also Manolov et al., 2020, as an alternative way for specifying the acceptable range).
For ATDs, the mean difference can be used, or a quantification comparing the data
paths directly: a comparison that entails actual and linearly interpolated values, abbre-
viated ALIV (Manolov & Onghena, 2018).

Multiple-Baseline and Reversal Designs: Variable Data

For multiple-baseline and reversal designs, the expected data pattern (a facet from
Dimension 4) defines the focal data feature (a facet from Dimension 1). In case the data
are expected to be variable and not well represented by a mean/median or trend line, a
nonoverlap index can be recommended (Parker et al., 2011a). Another reason for using a
nonoverlap index could be in relation to the measurement characteristics of the outcome.
In particular, nonoverlap indices are applicable to ordinal data (Parker et al., 2011a; Parker
et al., 2011b; see also Parker & Hagan-Burke, 2007), whereas a mean difference or a
comparison of regression slopes requires interval or ratio scale data. In addition,
regression-based quantifications require parametric assumptions such as a normally
distributed residual. In relation to the kind of information to use (Dimension 1) and the
knowledge on the sampling distribution of the indices (Dimension 5), we recommend
focusing on the descriptive measure, because the inferential information (i.e., the standard
errors for obtaining p-values or constructing confidence intervals) depends on the unlikely
assumption of independent data. For choosing among nonoverlap indices, if there is no
expectation for an improving baseline trend, the NAP (Parker & Vannest, 2009) can be
used. In contrast, if there is such an expectation, we recommend using the Baseline
corrected Tau (BCT), forcing trend correction regardless of the statistical significance of
baseline trend, because the statistical power of this test is not sufficient for short baselines
(Tarlow, 2017). We do not recommend using the BCT without baseline trend correction
when no baseline trend is expected, because this would be equivalent to using Tau as
proposed by Parker, Vannest, Davis et al., (2011b), but its interpretation is less straight-
forward than the interpretation of the NAP. BCT represents an improvement over Tau-U
(Parker et al., 2011b), because it provides stronger control for baseline trend and it does not
produce out-of-range values. Our recommendation for BCT over Tau-U is also related to
the lack of clarity regarding the exact interpretation of Tau-U (Brossart et al., 2018).
Nevertheless, BCT is not without flaws, because it corrects for linear trend, estimated
using the robust Theil-Sen method, and trend extrapolation may lead to impossible
projections (Manolov et al., 2019). Unreliable trends and impossible projections are
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related to a Dimension 3 facet, namely the number of measurements available in each
phase, with a short baseline combined with a long intervention phase constituting a major
problem. For that reason, we recommend a planned post-hoc verification with the actually
obtained data. In case such impossible projections are obtained, the correction of baseline
trend may be unreasonable and the value of BCT may not be validly interpretable.

Multiple-Baseline and Reversal Designs: Summarizing Data via Mean or Trend Lines

For multiple-baseline and reversal designs, if stable data and an immediate effect are
expected, a comparison of level is the logical option. A subsequent decision refers to the
desiredmeasurement units of the quantification (a facet fromDimension 1). The comparison
in level can be expressed as a percentage change (Olive & Smith, 2005), which can be
obtained from the log–response ratio (Pustejovsky, 2018), or as the percentage of goal
obtained (Ferron et al., 2020). Another option is to quantify the difference in level in
standard deviations: this is achieved via the within-case standardized mean difference
(Busk & Serlin, 1992) or dividing the estimate of the immediate effect in piecewise
regression (Center et al., 1985) by the root mean square error (Van den Noortgate &
Onghena, 2003). Finally, the difference in level can be expressed in the same measurement
units as the outcome, via the slope and level change procedure (Solanas et al., 2010).

For multiple-baseline and reversal designs, if an improving baseline trend and/or a
progressive effect is expected, there is an additional decision to make. One option is to
use an overall quantification that accounts for the difference in level and trend jointly:
this is achieved via the GLS approach yielding a regression-based quantification
(Swaminathan et al., 2014b), by quantifying the average distance between the projected
baseline trend line to the fitted intervention phase trend line. This overall difference can
be expressed in raw or standardized terms (referring to a facet of Dimension 1). Given
that there is trend extrapolation, just like in the BCT (although the trend line is fitted
following a different estimation method), we reiterate our caution in relation to
impossible projections, especially for certain combinations of phase lengths (Dimen-
sion 3). Another option is to obtain separate quantifications of the change in level and
change in slope. This can be achieved via piecewise regression (Center et al., 1985) or
the slope and level change procedure (Solanas et al., 2010).

Demonstration of the Usability of the Flowchart for A Priori Justification

The use of the flowchart to provide an a priori justification for the SCED selection as part of
the protocol will be demonstrated using the protocol by Clanchy et al. (2019), which is one
of the protocols identified by Fingerhut et al.’s (2020) literature review. Given that no data
have yet been gathered or made public, the analytical decision cannot be based on (or biased
by) the data at hand. In terms of the design, Clanchy et al. (2019) plan to use anMBD across
three participants (sample 1), replicated across three more participants (sample 2). The
number of sessions for the baseline, given the staggered introduction of the intervention, will
be 5, 8, and 11. For the intervention phase, 12 sessions are planned. Participants will be
assigned at random to each of the two studies and afterwards at randomonce again to each of
the baseline lengths. Unequal spacing between sessions in the intervention phase is planned
(more frequent sessions in the beginning of the intervention and less frequent sessions in the
end), but equal spacing of sessions is expected in the baseline phase. In terms of the data
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characteristics of interest, Clanchy et al. (2019) explicitly mention the need to take autocor-
relation into account and the importance of estimating trends and controlling for baseline
trend. In terms of the research question, the authors are interested in studying the consistency
of effects across participants.

Following the flowchart presented in Fig. 1, it is worth noting that there is replication across
participants, whichmakes possible the use of across-case quantifications (i.e., the left pathways
of the flowchart). The design is anMBD across participants for which both the BC-SMD and
more complex HLMs are applicable and both take autocorrelation into account. Given that
trend is highlighted, as well as the desire to study the consistency across participants, a HLM
including trend and quantifying the degree of heterogeneity across cases is required. That is, a
model underlying the BC-SMD assuming stable levels and similarity across cases (Hedges
et al., 2012, 2013) is insufficient whereas the more recent version by Pustejovsky et al. (2014)
would be appropriate. For modeling trend, the time variable can be coded in such a way as to
represent real time, instead of just session number (Moeyaert et al., 2014b), taking the unequal
spacing in the intervention phase into consideration. Autocorrelation can be modeled as
homogeneous or heterogeneous (Moeyaert et al., 2014a). Moreover, using random effects
can be included to represent and quantify the variability in the effects across participants.
Finally, amoderator variable could be included, to code for each of the six participantswhether
they belong to sample 1 or to sample 2, in order to checkwhether there are differences between
these samples. Given the presence of randomization in the design, a recent proposal for the
combined use of the HLMapproach and a randomization test for obtaining p-values (Michiels
et al., 2020) could be used for data analysis.

Discussion

Building on the Existing Literature

Identifying and improving questionable research practices is necessary (Hantula, 2019).
In terms of SCED data analysis, there have already been suggestions on how to achieve
such an improvement, for instance via preregistration (Hales et al., 2019; Johnson &
Cook, 2019), by choosing a test statistic on the basis of the effect expected (Heyvaert &
Onghena, 2014a, 2014b; Levin et al., 2017), and by being explicit regarding whether
any hypotheses were established before or after exploring the data visually (Kwasnicka
& Naughton, 2020). The underlying reason for this article is to help researchers avoid
capitalizing on chance, which is especially likely when analyzing the data according to
the most salient data features or trying multiple analyses and reporting the one that
suggests that an intervention effect is present. For that purpose, we propose a set of
dimensions and facets to be used when selecting a SCED quantification as part of the a
priori data analytical plan. These dimensions represent a systematic organization and
integration of factors previously mentioned by the creators of the several effect
measures to account for the multiple pieces of information that need to be considered
when making analytical decisions.

174 Perspectives on Behavior Science (2022) 45:153–186



Recommendations for Applied Researchers

General Recommendations

The following recommendations refer to summative analysis and not to formative
analysis for response-guided experimentation or to exploratory research in a domain
with no previous empirical evidence. We suggest that applied researchers explicitly
refer to each of the dimensions and the relevant facets. The information provided for
these dimensions and facets can be used to follow the flowchart from Fig. 1, suggesting
a pathway that helps to determine a priori the most appropriate quantification and to
justify the selection. If the authors plan to use several quantifications and verify the
convergence of conclusions (or to perform a sensitivity analysis), this must be men-
tioned as well, in order to avoid selective (and biased) reporting of results, which could
lead to overestimating intervention effectiveness.

In certain situations, a change in the data analytical plan can take place. For
instance, if there are unexpected modifications during data collection stage or if
certain features of the data obtained seem to invalidate the quantifications chosen
a priori. In such cases, reporting both the planned and the post-hoc analyses is
recommended. Thus, when reporting the result of the planned analysis, it is
necessary to alert the reader that the assumptions of the effect measure have not
been met or that it is likely to misrepresent the data at hand (whichever is
applicable). Moreover, when reporting the result of the effect measure selected a
posteriori, it is necessary to highlight that this measure is not the one initially
planned and that its selection may entail a form of overfitting. We also recom-
mend performing a sensitivity analysis, comparing the conclusions that would be
reached by the planned and the post-hoc analyses, with the confidence in the
conclusions being higher when these conclusions coincide and the need for
caution when interpreting the effect measures being greater otherwise.

A distinction between a priori expectations and post-hoc analyses might be
relevant for preventing false positives. Moreover, reporting that the findings do
not match the expected data patterns can be useful for prompting research into the
potential reasons for the unexpected results and for improving the interventions or
the fidelity with which they are implemented (Tincani & Travers, 2018). Finally, a
comprehensive evaluation of the effect of the intervention needs include social
validity indicators (Horner et al., 2005), beyond the visual inspection and the
quantifications.

Recommendations in Relation to the Flowchart

The flowchart presented in this article is based on the convergence of dimensions and is
designed to reflect the intended use of the SCED quantifications, as established by their
creators. For a good conceptual understanding of the quantification and its main
features, we strongly recommend that applied researchers consult original sources.
For that purpose, apart from the references provided in this article, a list of selected
publications is made available as Appendix A at https://osf.io/t96fc/. In addition, we
recommend that applied researchers provide details about the software or tool that will
be used for obtaining the quantification of choice. As an aid, we provide a list of
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selected freely available tools, as Appendix B at https://osf.io/t96fc/. In summary, we
consider that prior to conducting the study, the whole analysis program should be
included.

Limitations and Future Research

Regarding specific types of SCEDs, the focus of this article is put on the most common
options, in particular A–B comparisons, which are the building block of MBDs and
reversal designs, and ATDs and CCDs. For combined designs, there are recent
quantitative proposals (Moeyaert et al., 2020). In relation to MBDs across participants,
it should be noted that the BC-SMD is applicable for combining intervention effects,
but the logic of MBDs usually requires comparing within-series and between-series
(Hayes, 1981). For this latter purpose, the interested reader can consult Ferron et al.
(2014) and Joo and Ferron (2019).

This article refers mainly to summative quantifications in present of previous
evidence, but is not intended to suggest that formative analysis or response-guided
experimentation is not useful or that exploratory research is inappropriate and that
specific expectations are always required. Following Simmons et al. (2011), it is
suggested that researchers explicitly state when their study is exploratory and, if
possible, gather more data, presenting a replication (confirmatory) study with additional
participant(s), using the same analytical approach as in the original exploratory study.

In relation to the flowchart, it includes multiple decision points and pathways, because
SCEDs can be different and the focus can be put on different data features, which renders the
decision-making process complex. Nevertheless, the flowchart is still a simplification of the
set of dimensions and facets and simplifying it further would not represent reality. In terms
of the degree of comprehensiveness of the flowchart, we believe that it reflects the most
common pathways, but that researchers using it can probably identify additional ones. For
instance, the current version of the flowchart has omitted the need to deal with nonlinear
trends, becausemany effectmeasures assume linear trends (Solomon et al., 2015). However,
it is not reasonable to expect that all trends are linear and continue unabated in time (Parker
et al., 2011b). In consequence, several analytical options for dealing with nonlinear trends
have been discussed: for instance, in the context of the generalized least squares regression
analysis proposal by Swaminathan, Rogers, Horner, Sugai, and Smolkowski (2014b), when
using generalized additive models (Shadish et al., 2014b), when using multilevel models
(Hembry, Bunuan, Beretvas, Ferron, & Van den Noortgate, 2015), and in the context of
randomization tests (Solmi et al., 2014). A review of these modeling options is beyond the
scope of this article, but it is necessary to state that any previous evidence on a possible
nonlinear trend must be taken into account when deciding a priori how to analyze the data.
In absence of evidence for nonlinearity, parsimony would call for initially opting for
modeling trend as linear. In case the actually obtained data suggest nonlinear trends, it is
important to consider how such nonlinearity can be interpreted from a substantive perspec-
tive, before deciding how to analyze the data. For instance, a nonlinearity stemming from a
delayed effect (see Levin et al., 2017) needs to be distinguished from a nonlinearity
stemming from an effect that reaches an asymptote (see Swan & Pustejovsky, 2018). If
an alternative effect measure or modeling technique is decided after the data are obtained, a
distinction between the planned analysis (involving linear trend) and a post-hoc analysis
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(including nonlinear models) would be necessary. This distinction should follow the same
rules for reporting as stated in the previous section.

In terms of future research, the current version of the flowchart can serve as an initial
step for a dialectic research process in which it is continuously improved by re-
searchers. Any subsequent modifications in the flowchart, on the basis of the experi-
ence and expertise of other researchers with different backgrounds (applied, method-
ological, statistical) is likely to increase its usefulness.

In order to explore the effect of using an effect measures selected a priori versus
choosing the quantification to the features of the actually obtained data, a field test
would be useful. A comparison of a priori versus post-hoc analyses can inform about
the degree to which there is difference between the two approaches and in what
direction. In particular, it can be assessed whether the planned analyses lead to more
conservative quantifications of effect.
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