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A B S T R A C T   

The rapid development of airports and the rapid spread of coronavirus disease 2019 (COVID-19) 
have brought increased attention to indoor environment quality, airflow organization, key 
pollutant dispersion, and ventilation modes in airport terminals. However, the characteristics of 
these parameters, especially carbon dioxide (CO2) and aerosol diffusion, are not fully understood. 
Therefore, in this study, the airflow patterns; CO2 and aerosol dispersion; and several thermal 
environment indices, including temperature, wind velocity, and predicted mean vote (PMV), of 
an airport terminal departure hall with high numbers of occupied passenger were numerically 
evaluated using the realizable k-ε and passive scalar models. The efficacies of three common 
ventilation modes, namely, up-supply and up-return, up-supply and down-return with different 
sides, and up-supply and down-return with the same side, were evaluated based on the CO2 
removal efficiency and spreading range of aerosols. The results indicated that under high numbers 
of occupied passenger conditions, these ventilation modes vary slightly, with respect to create a 
comfortable and healthy environment. In particular, the up-supply and down-return with 
different sides mode was the best among the modes considered, when comparing the indices of 
temperature, wind speed PMV, and CO2 emission efficiency. Conversely, with respect to 
decreasing the risk of aerosol exposure, the up-supply and down-return with the same side mode 
was the best. Overall, the results from this study provide fundamental information for predicting 
CO2 and aerosol exposure levels and will act as a reference for the design and operation of 
ventilation systems in airport terminal buildings.   

1. Introduction 

Since the 1990s, China’s airports have rapidly developed, and the construction volume of major regional airport terminals has 
doubled in the past 10 years [1]. Many airport terminals throughout China are currently undergoing or are facing reconstruction and 
expansion, including the Guangzhou Baiyun Airport, Xi’an Xianyang Airport, and Shanghai Pudong Airport [2]. In addition, the 
People’s Daily reported that China will build more than 30 new airports in the next three years [2]. Further, the rapid development of 
civil aviation airport terminals in China has made airplanes an indispensable means of transportation. Statistics show that the average 
annual passenger throughput of the top 10 hub airports in Asia ranges from 42,902,520 to 97,794,207 passengers [3], indicating that 
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people use airport terminals more frequently in today’s climate. Thus, large numbers of passengers waiting for flights in airport 
terminals are quite common in metropolitan areas, including Beijing, Shanghai, and Guangzhou. However, because airport terminals 
generally are large spaces, sometimes the ventilation form and air distribution design inside terminals are not effective enough in 
supplying fresh air and exhausting pollutants. 

The outbreak of coronavirus disease 2019 (COVID-19) highlighted the importance of ventilation in buildings. Previously, to a 
smaller extent, the severe acute respiratory syndrome virus in 2003, the Middle East respiratory syndrome virus in 2012, and other 
respiratory infectious diseases forced airport operators to pay attention to the problem of indoor air quality. Since 2021, local epi
demics have occurred in Shijiazhuang, Shenzhen, Nanjing, Haikou, and Shanghai, and the “breakthroughs” are all related to inter
national airports. The international airport has become an important place for the spread of the epidemic [4]. It is generally believed 
that droplets or aerosols produced by people’s breathing or other activities are carriers for virus transmission [5], and people are 
infected by inhaling droplets or aerosols with viral DNA or RNA. In general, infected people transmit virus particles during breathing, 
speaking, coughing, or sneezing [5–7]. As an important public place, airports are characterized by high occupancy flows. The high 
personnel density, long stay time, poor ventilation effect and long exposure time result in a greater exposure risk of pollutants, 
compared to other environments. Meanwhile, due to the characteristics of high numbers of occupied passenger, once an epidemic 
breaks out at the airport, it will cause the rapid expansion and large-scale spread, which will consume a lot of manpower, material and 
financial resources to eliminate it, causing great economic losses and social impact. Just as the failure of prevention and control of the 
epidemic at Nanjing Lukou Airport in 2021, causing the epidemic to spread to 5 provinces and 9 cities [8]. Therefore, the higher the 
risk of pollution transmission inside the airport and the serious consequences of the epidemic once it occurs, the related research is 
crucial. The environment construction in the airport terminals must incorporate the requirements of both human thermal comfort and 
good health with low transmission of infectious diseases. 

In the past 20 years, many scholars have conducted extensive research regarding ventilation form, air distribution, and air quality 
inside airport terminals. Regarding the indoor environment of an airport terminal, numerous studies have measured and investigated 
the thermal environment and human thermal comfort level in different areas by employing indices associated with the temperature, 
wind speed, thermal comfort predicted mean vote (PMV) and Predicted Percent Dissatisfied (PPD) [9–13]. According to field mea
surements from nearly 30 airport terminals in China, one survey found that the air-conditioning load of a terminal building has a 
significant correlation with the air-conditioning system. Field surveys of eight airports revealed that even if the forms of the cooling 
and air conditioning systems are the same, a difference in their arrangement has a notable effect on the airflow organization [1]. 
Extensive field surveys in three airport terminal buildings in the United Kingdom demonstrated the effect of the thermal environment 
on overall comfort and revealed consistent discrepancies [14]. Thus, a reasonable displacement of the ventilation systems could be 
beneficial for building a comfortable thermal environment in airport terminals. In conclusion, current researches are mostly based on 
thermal environmental parameters such as temperature and wind speed, and less attention has been paid to other pollutants such as 
CO2 and aerosols. However, as the world is increasingly concerned about environmental and health safety issues, it is not enough to 
only consider thermal environmental parameters. Research on the pollutants when evaluating the effectiveness of ventilation systems 
is necessary and urgent, especially at the airport terminals with high numbers of occupied passenger. 

Environmental health is also an important consideration when evaluating the environmental quality of airport terminals. Among 
various types of pollutants, the key pollutants affecting air quality and human respiration in the environment are carbon dioxide (CO2) 
and particulate matter (PM). Regarding aerosols or particles produced by human respiration, many studies have shown that particle 
size ranges from 0.01 μm to 2000 μm [5–7,15–21]. During speaking, coughing, and sneezing processes, larger size particles may be 
produced, whereas during breathing processes, particles sized 0.01 μm–5 μm are mainly produced. 

Other scholars have studied the effects of various pollutants, including CO2 and PM, in airport environments. Over the past three 
decades, CO2 has continuously been considered to be an important indicator in the evaluation of the air sanitation status of airports. 
Wang et al. showed that the air quality satisfaction of passengers is highly correlated with the CO2 concentration of an airport terminal 
[22]. Using the post assessment method, an indoor environmental quality test of 11 terminals in eight airports covering five climatic 
regions in China revealed that the indoor environmental quality of typical airport terminals in China basically meet current regulation 
standards [23], in which the indoor thermal environment compliance rate was higher than 70% and the average volume fraction of 
CO2 was no more than 700 ppm [24]. Based on long-term CO2 concentration monitoring data, Hong et al. proposed that the median 
values of CO2 concentration were lower than 550 ppm, except for the remote departure lounge. They believed that passive ventilation 
also plays an important role in diluting pollutants [25]. While evaluating the air infiltration efficacy of a hub airport terminal building, 
Liu et al. found that for the CO2 concentration, no obvious stratification characteristics were observed on different floors. Their results 
showed that the average values were 507 ppm, 532 ppm, and 648 ppm in the winter, spring, and summer, respectively [26]. Note that 
the concentration of CO2 in the terminal building in the summer was significantly higher than that in other seasons. In another study, it 
was found that the CO2 concentration in an airport terminal was 480–965 ppm, wherein the highest concentrations were observed at 
night, particularly at midnight. According to the airport’s flight plans, flight traffic and passenger flow are the most intense during 
these hours [27]. The study also showed that the more crowded the terminal, the higher the CO2 concentration. However, this level did 
not exceed 1000 ppm, indicating that the ventilation system worked effectively [27]. Ren conducted long-term online monitoring of 
indoor and outdoor PM2.5 and ultra-fine particle (UFP) concentrations in Tianjin airport terminals. Studies have shown that the 
seasonal variation of indoor PM2.5 concentrations is significant; however, the concentration of UFPs remains relatively stable in 
different seasons [28]. According to an air quality test of 9 large hub airports in the United States, the average PM2.5 levels of airports 
with designated smoking areas and smoke-free airports are 11.5 μg/m3 (range: 2.2–29.0 μg/m3) and 8.0 μg/m3 (range: 2–15.2 μg/m3), 
respectively [29]. The particle number concentrations in airport terminals present a bimodal size distribution that is completely 
different from the size distribution measured in a normal urban environment. Specifically, the total UFP exposure of passengers during 
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their entire waiting period is approximately equivalent to the exposure of 11 h in a normal urban environment [30,31]. Kim et al. [32] 
and Zanni et al. [33] monitored the PM contents and passenger flow inside and outside of airports and found that passenger traffic has 
an impact on airborne contaminants in terminal buildings. 

Overall, various studies have evaluated airport ventilation systems and airflow organization using thermal comfort as an indicator. 
However, research focusing on CO2, aerosol, and PM concentrations in airport terminals, especially under high occupancy conditions, 
is limited. Further, the pollutant dispersion and discharge efficiency of ventilation systems under situations with high numbers of 
occupied passenger are not yet fully understood. 

Therefore, the purpose of this study was to evaluate the airflow organization of a ventilation system based on the distributions of 
temperature, wind speed, PMV, and key pollutants (including CO2 and aerosols) at high numbers of occupied passenger airport ter
minals. To date, three main approaches have been employed to monitor thermal environment factors and pollutant patterns in airport 
environments: (1) field measurements, (2) particle image velocimetry (PIV) measurements, and (3) computational fluid dynamics 
(CFD) simulations. Considering the disadvantages of time consumption and poor repeatability for field and PIV measurements, the CFD 
technique is a suitable method with reasonable simulation precision and flexible repeatability. Thus, the CFD algorithm with the 
realizable k-ε turbulence closure scheme was adopted in this study. In addition, a Euler-Euler two fluid flow model was employed to 
simulate the dispersion of CO2 and aerosols. The significance of this study is the consideration of CO2 and aerosols when evaluating the 
efficiency of ventilation systems in airport terminals. The results of this study will provide guidance and act as a basis for the design and 
operation of ventilation systems in airport terminals and other similarly enclosed spaces with high numbers of occupied passenger. 

2. Methodology 

2.1. Turbulent flow model 

The realizable k-ε developed by Shih et al. [34] has been proven to perform well for a variety of flow conditions, including vortices, 
rotations, round jets, and thermal buoyancy plume [35–37], suitable for indoor environment modeling in terms of accuracy, 
computing efficiency and robustness [38–41]. The accuracy of results in our previous studies [42–46] is also acceptable to truly reflect 
turbulence and pollutant dispersion patterns. Thus, we also used the realizable k-ε turbulence model to simulate wind flow in a ter
minal waiting area. The governing equations include the continuity equation, momentum equation, energy equation, turbulent kinetic 
equation, and turbulent dissipation rate equation, which are expressed in Eq. (1). Note that based on the Boussinesq approximation, 
the velocity and temperature fields were coupled. 

∂(ρΦ)

∂τ + div(ρuΦ)= div(ΓgradΦ) + S (1)  

where ρ is the fluid density (kg/m3); Ф is a general variable that represents the velocity components u (m2/s), v (m2/s), and w (m2/s) in 
the momentum equation; T (◦C) is the temperature in the energy equation; k is the turbulent kinetic energy (J) in the turbulent kinetic 
equation; ε is the dissipation rate in the turbulent dissipation rate equation, τ is the time (s); div indicates divergence; U is the velocity 
vector; Г is the generalized diffusion coefficient; grad represents gradient; and S is the generalized source phase. 

2.2. Pollutants from breathing and transport models 

Owing to the high numbers of occupied passenger in airports, the pollutants produced by the human body are the main contributors 
and must be considered when studying the ventilation system and pollutant diffusion of airports. CO2 is an important indicator for 
evaluating air quality, and droplets and aerosol particles produced by respiration are important carriers of virus transmission. 
Currently, there are two particle stress analysis methods: models based on discrete particles (particle track or Euler–Lagrangian) or 
dual-fluid (Euler–Euler) models. The Euler-Euler model is a kinetic model for treating particles as continuous phases, and there are 
many studies [47–49] on the pollutant simulation by employing the abovementioned model. Some related studies show that the 
Euler-Euler model is acceptable for the motion prediction of small particles by comparing the numerical simulation results with the 
experimental results. Therefore, this study adopted the Euler–Euler model to predict contaminants diffusion including aerosol par
ticles, which is proposed by Ref. [50]. In this study, the numerical simulation of particle dispersion was accomplished assuming the 
following three points.  

a. The effect of particles on turbulent flow was assumed to be negligible because of the low particle volume fraction in the airflow. 
Interaction between the air and particles was treated as a one-way coupling, in which the air affected the particles.  

b. All particles were spherical, and the particle density was constant. According to the study by Ref. [51], the density of particle could 
be considered 1003 kg/m3.  

c. Only deposition was included as a source term during particle dispersion modeling. 

2.2.1. Pollutant diffusion model 
Because it is difficult to simulate particle diffusion and time constraints, the pollutant distribution considers several discrete cat

egories (where the particle size is constant), wherein the particle properties are treated as scalars (e.g., particle concentration). In each 
discrete particle category, the control transmission equation describing the CO2 and particle transmission is as follows: 

∂C
∂t

+
∂

∂xi

[

uiC −
(
D+ τp

) ∂C
∂xi

]

=S (2) 
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where C represents the CO2 or particle concentration, t is the time, xi (i = 1 2, 3) represents the directions of the three coordinates, ui is 
the average air velocity component in three dimensions, D is the molecular diffusivity of the CO2 or particle, τp is the turbulent 
diffusivity of the CO2 or particle, and S is the rate of change of the dispersion source phase. For CO2, S has only diffusion source phase, 
and for particles, S includes diffusion source and deposition source phase. 

The main influencing factors in particle movement are evaporation, deposition, resuspension and coagulation. The droplet 
evaporation process is mainly affected by two factors, the size of the droplet size and the relative humidity (RH) at the indoor 
environment. It can be seen that droplets with sizes of less than 5 μm completely evaporate within a few milliseconds, even under the 
conditions of high RH conditions [52,53]. Meanwhile, the airport ground is relatively clean and our simulation is a seated human body 
with small perturbations, the resuspension for particles is minimal and can be ignored in our study. In addition, Rim et al. [54] found 
that coagulation should be considered during high concentration periods (>20,000 cm− 3) by analyzing the effects of coagulation, 
deposition and ventilation in the indoor environment on the changes in particle attenuation. Since our research is on the distribution 
characteristics of aerosols in the terminal under steady-state conditions, the particle size is 0.01–2.62 μm and the concentration is not 
high, the coagulation process could also be ignored. Thus, only the deposition characteristic of particles is considered as a sink source 
during particle dispersion process. 

Molecular diffusivity is a constant of proportionality that relates the flux of gas pollutants to the concentration gradient. This 
relationship is termed Fick’s first law of dispersion. For CO2, the molecular diffusion coefficient can be determined using the following 
equation: 

D=
435.7T3/2

P
(
V

1
3
A + V

1
3
B
)2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
μA

+
1
μB

√

× 10− 4 (3)  

where T is the temperature (K); p is the atmospheric pressure (101,325 Pa); VA and VB are the molar volumes at the normal boiling 
point for gases A and B, respectively, and μA and μB are the molecular weights for gases A and B, respectively. 

For nanoscale particles, especially particles less than 100 nm, the Brownian diffusion of particles caused by the random thermal 
motion of gas molecules is distinct. According to Fick’s first law, the particle Brownian diffusivity D is given as: 

D=
kBTCC

3πμdp
(4)  

where kB is the Boltzmann constant (1.3807 × 10− 23 J K− 1), T is the air temperature (K), CC is the Cunningham slip correction co
efficient of particles, μ is the aerodynamic viscosity (Nm− 2), and dP is the particle diameter (m). The Cunningham slip correction 
coefficient of the particles can be calculated using the following equation: 

Cc = 1 +
λ
dp

[

2.514+ 0.800 exp
(

− 0.55
dp

λ

)]

(5)  

where λ is the average free path of an air molecule (m). To solve Eq. (5), turbulent flow can be treated as an ideal gas flow as follows: 

λ=
kBT
̅̅̅
2

√
πd2p

(6)  

where kB is the Boltzmann’s constant (1.3807 × 10− 23 J K− 1), T is the ambient temperature (K), d is the air molecular diameter (m), and 
p is the atmospheric pressure (Pa). 

To calculate the turbulent diffusivity τp of the pollutants, the turbulent Schmidt number Sct, which is defined as the ratio of the 
turbulent momentum diffusivity νt to the turbulent diffusivity τp of the pollutants, is used: 

Sct =
vt

τp
(7) 

The law of particle turbulent diffusion is very complex, as it is affected by the particle size and turbulence degree of the flow field. 
Currently, studies mainly use the analogy method with the gas turbulent diffusion coefficient to determine the turbulent diffusion 
coefficient of particles. In this study, the turbulence dispersion coefficient of the particles was determined by applying the Hinze-Tchen 
equation to calculate the particle turbulent diffusion coefficient, as shown in Eq. (8): 

vp

vt
=

(

1 +
τp

τt

)− 1

(8)  

where νp is the particle turbulent dispersion coefficient (m2s− 1), νt is the air turbulent dispersion coefficient (m2 s− 1), and τp is the 
particle relaxation time (s), which is given by: 

τp =
ρpd2

pCc

18μ (9)  

where ρP represents particle density. Furthermore, τt is the air turbulence fluctuation time (s), which can be calculated using the 
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following equation: 

τt =

̅̅̅
3
2

√

C3/4
μ

k
ε (10)  

where Cμ is the empirical constant, K is the turbulent kinetic energy, and ε is the turbulent dissipation rate. For the particle size range 
considered in this study, τp/τt ≤ 1, νp = νt. The value of νt was computed by solving the Reynolds-averaged Navier–Stokes (RANS) 
equations using the proposed k-ε turbulence model. 

2.2.2. Particle deposition model 
To ensure a comprehensive calculation, the deposition model was applied to the field function, and the source term (Sc) of the 

deposition-induced particle diffusion was calculated using the field function method, as follows: 

SC = − kCdp (11) 

The weighted average of the particle deposition fluxes in all directions was calculated according to the method proposed by Corner 
and Pendlebury [55], wherein the weighted average deposition rate of particles settling on each surface of the closed space is 
determined as follows [56]: 

k=
VdvAv + VduAu + VddAd

V
(12)  

where k is the weighted average deposition rate of particles (s− 1), Av is the area of the vertical surface (m2), Au is the area of the upper 
surface facing the normal direction (m2), Ad is the area of the lower surface facing the normal direction (m2), V is the volume of the 
enclosed space (m3). Vdu, Vdv, Vdd is the deposition rate of different surfaces, calculated in the supporting information. 

3. Model description 

3.1. Model geometry 

In this study, we established a geometric model using the terminal building of the Dalian Zhoushuizi International Airport as the 
research object. Owing to the complex internal structure of the terminal building, this model ignores areas in the terminal building that 
have little effect on the airflow. Because of the large size of the airport terminal building, only part of the west side of the terminal was 
selected as the simulation object. A simplified terminal model was established, for which the details are as follows. The waiting area we 

Fig. 1. Geometric and human body models.  
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selected was a 25 m × 24 m × 20 m geometric model. The air supply inlet is a circular nozzle with a diameter of 630 mm placed 3.5 m 
from the wall and 5 m above the ground, while the return air outlets are 1500 mm × 650 mm louver return air vents placed 0.5 m or 
4.5 m from the ground. 

The airport terminals are usually tall and large spaces, unlike common offices, hotels and other buildings, and diffusers are rarely 
used for air supply. Through extensive literature reading, the nozzle air supply is the most commonly used method in airport terminals 
[57–61]. In addition, there is currently a new form of air-conditioning with radiant floor and displacement ventilation system applied 
to airport terminals. However, other airports are less used except Bangkok International Airport, Hamburg International Airport in 
Germany and Xi’an Xianyang International Airport [62]. Based on the above mentioned, in our research, we have selected the most 
commonly used the nozzle air supply, and designed three common air supply methods: (1) up-supply and up-return, wherein there is a 
supply air outlet at the top and a return air outlet at the top of the opposite wall; (2) up-supply and down-return with different sides, 
wherein there is a supply air outlet at the top and a return air outlet at the bottom of the opposite wall; and (3) up-supply and 
down-return with the same side, wherein there is a supply air outlet at the top and a return air outlet at the bottom of the same wall. 

For passengers in the terminal, we established a 1:1:1 geometric model according to the sitting size of adults. The height of the 
human body is approximately 1.5 m, the length of the head is approximately 0.37 m, the maximum head radius is 0.17 m, and the 
length of the upper body is approximately 0.7 m. The nose is simplified as two circles with r = 0.005 m, and the mouth is simplified as 
an ellipse with a primary radius of 0.03 m and a secondary radius of 0.02 m. The geometric and human body models are shown in 
Fig. 1. 

3.2. CFD mesh establishment and simulation conditions 

After the model was established, it was necessary to mesh the model. The speed, precision, and convergence of the simulation 
calculations are closely related to the quality of the mesh. In this study, STAR-CCM + software was used to mesh the model. The mesh 
model used was an unstructured mesh and was used for the surface reconstruction. The mesh generator included a polyhedral mesh 
generator and a prism-layer mesh generator. The basic size of the grid was 2 m, and custom grid sizes were set in specific areas, such as 
the air supply outlet, return air outlet, and surface of the human body, for encryption. For the manikin, the mouth area is approxi
mately 1.884 × 10− 3 m2 with 117 refined surface meshes and the nose area is approximately 5 × 10− 5 m2 with 81 refined surface 

Fig. 2. Calculation model meshing diagram.  
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meshes. To overcome the disadvantages of the Realizable k-ε model when simulating low Reynolds number flows within the near-wall 
region, all y + Wall Treatments were also used in the study [63]. The all y + wall treatment is a hybrid treatment that attempts to 
emulate the high-wall treatment for coarse meshes, and the low-wall treatment for fine meshes. It is also formulated with the desirable 
characteristic of producing reasonable answers for meshes of intermediate resolution (that is, when the wall-cell centroid falls within 
the buffer region of the boundary layer). According to the simulation results, y + value surrounding the human body was in the range 
of 0.3–1. The grid diagram of the waiting area and human body, as well as the local enlargement diagram, are shown in Fig. 2. 

The supply air outlet is defined as the velocity inlet boundary condition, and the return air outlet is defined as the pressure outlet 
boundary condition. Moreover, the east side wall of the model was set as a flow-slip outlet condition, while the ceiling, floor, and other 
walls were set to have non-slip and adiabatic wall conditions. For the human body, the mouth was defined as a velocity inlet boundary 
condition, and the nose was defined as a pressure outlet boundary condition. The detailed calculation parameters are as follows:  

(1) According to the airport design specifications, the indoor design temperature in the summer is 26 ◦C, and the fresh air ratio is 
30%. Therefore, the supply air temperature was set to 18 ◦C.  

(2) According to the national standards of the People’s Republic of China, when the passenger density is less than or equal to 0.4 
people/m2, the minimum required fresh air volume/person is 19 m3/(h⋅person) [23]. Thus, the supply air speed was set to 3.39 
m/s.  

(3) Human body heat dissipation is related to many factors such as gender, age, clothing, labor intensity, and environmental 
conditions. According to the literature [64], in a state of extremely light work, like people in an environment such as an office, a 
hotel or a waiting hall, the human body emits about 134 W of heat, of which radiation, convection, and latent heat account for 
40%, 20%, and 20%, respectively. The surface area of the human body is approximately 1.6–2.0 m2. Thus, the human body was 
set to have a constant heat flow boundary of 71.7 W/m2.  

(4) A stable situation was considered in our study. In the steady state, we think that talking is a more common behavior than 
coughing, sneezing, etc. Thus we set a steady exhalation airflow to represent talking. According to the research of [65] on the 
respiratory rate of Chinese residents, we set the exhalation speed of the human mouth to be 0.58 m/s, and the nose inhales with 
a constant pressure of − 0.217 Pa.  

(5) The CO2 concentration in the exhaled air of the human body was 3.6% (36,000 ppm) [66].  
(6) The particle size data in Table 1 are obtained from the study of respiratory aerosols and droplets by Ref. [5], and we added the 

original figure to Fig. S1 in the supporting information. Owing to the complexity and inconvenience during the simulation, the 
continuous particle size distribution was divided into nine discrete categories. The division rule is based on the distribution 
characteristics of the particle size, where the particle size range is finer and coarser near the peak and off-peak sections of 
particle concentration. The nine particle size partitions were then selected as 0–22 nm, 22–28 nm, 28–45 nm, 45–90 nm, 
90–225 nm, 225–330 nm, 330–1004 nm, 1004–2042 nm and 2042–3000 nm. The particle size in Table 1 is the median particle 
size of each partitions.  

(7) As mentioned above in the manuscript, only deposition was considered in the particle dispersion simulation, Thus, for the 
boundaries including the wall and human body, particles are deposited when touching the boundaries. In addition, when 
simulating aerosol particle dispersion patterns, only one infected patient located at 6 different positions in Fig. 13 exhaled the 
viral aerosols using mouth at a constant flow, and that other healthy persons only inhaled the aerosols using nose. Meanwhile, 
particles at the air supply outlet is set to 0 to represent the air supply is virus-free. 

To evaluate the ability and robustness of the established numerical model in simulating CO2, particle diffusion, and deposition, we 
conducted independent tests on the grid. For the simulation calculations, we established models with approximately 1.88 million, 3.49 
million, and 5.57 million grids, respectively. The initial and boundary conditions of the grid tests were the same as those previously 
described. The simulation results are shown in Fig. 3. By analyzing the average values at different height planes, the wind speed and 
CO2 concentration distributions were found to be quite similar under different grid numbers, among which any obvious differences 
were less than 10%. This proves that the use of the 3,448,863 polyhedral grids for numerical simulation ensured calculation accuracy 
and improved simulation efficiency. 

In this study, the commercial CFD analysis software STAR-CCM+ was used for the simulation, and the realizable k-ε model was used 
to simulate parameters such as flow velocity, pressure, and turbulence in the air flow field. A passive scalar model was used to solve for 

Table 1 
Human breathing conditions.  

Particle diameter (nm) Particle number concentration (104 m− 3) Exhalation conditions Inspiratory conditions 

Temperature (◦C) Velocity (m/s) Temperature (◦C) Pressure (Pa) 

11 4.81 34 0.58 26 − 0.217 
25 44.8 
36 201 
67 364 
157 194 
277 75.6 
668 22.3 
1523 2.08 
2618 0.169  
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the CO2 and PM concentrations. To calculate the convection term in the control equation and the pressure-flow coupling format, we 
used the second-order upwind style and SIMPLE formats, respectively. When the residuals of the continuity equation and the energy 
equation were ≤10− 6, and the residuals of other equations were ≤10− 4, the numerical simulation is considered to be convergent. Thus, 
when the average temperature, speed, pressure, CO2 concentration, PM concentration, and other parameter values of the entire 
calculation area are stable, the numerical simulation is convergent. 

3.3. Model validation 

It is important to evaluate the validity of the model by comparing the results of the numerical simulations with real measurements. 
In our study, the concentrations of CO2 and PM2.5 in the arrival hall of the Zhoushuizi Airport were measured using existing in
struments to verify the model. In addition, we measured some parameters of the air outlet for model verification. 

To verify the model, we conducted an actual measurement at the arrival hall of the airport. Briefly, after counting the passenger 
flow of the airport over a day, we set the monitoring time to 12:00–20:00 every day. Four measuring points were set up in the arrival 
hall of the airport to monitor the temperature, wind speed, CO2 concentration, and PM concentration at each location. The floor plan of 
the airport arrival hall is shown in Fig. 4. Two points 1 and 4 are set near the two arrival exits A and B in the arrival hall. Meanwhile, 
considering a uniform distribution of the measuring points, the points 2 and 3 are set in the middle area of the arrival hall. The 
measuring point 2 located in the middle of one seated area, as shown in Fig. 4 b), the measuring point 3 located at an empty area of the 
hall, not close to any rest area. In addition, considering the height of the breathing area of the passengers, various test instruments were 
arranged on tripods at a height of 1.2 m. The mobile sampling system are shown in Fig. 4. To determine the changes in passenger flow 
in the seating area, a camera was placed nearby to take video. 

We conducted model verification using a model established in the arrival hall on the first floor of the terminal building. The size of 
the geometric model was 210 m × 20 m × 3.8 m. Other conditions, such as the air supply outlet and human body model, are described 
in Section 3.1. In addition, the penetration at the entrance of the terminal building in model verification was considered. During the 
actual measurement, the permeability coefficient was 0.7942 [67], and the outdoor atmospheric PM2.5 particle concentration was 
6.12 μg/m3 calculated by the Air Quality Index in the weather forecast. The geometric model used for model verification is shown in 
Fig. 5. 

The middle seat area in the arrival hall and the time period when the flow of people is stable were used for model verification. The 
size of the geometric model was 32 m × 20 m × 3.8 m. Other conditions, such as the air supply outlet and human body model, are 
described in Section 3.1. The geometric model used for model verification is shown in Fig. 5. 

The model verification results are listed in Fig. 6. These results are consistent with the field measurement results, and the maximum 
relative error is less than 10%, which is the general accuracy requirement for model prediction. Therefore, the model has sufficient 
accuracy for the further analysis of pollutant diffusion in the airport environment. 

Fig. 3. Mesh independence tests.  
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4. Results and discussion 

In the following sections, we consider two regions for analysis. One region is the “Department hall”, referring to the entire area. The 
other region is the “Respiratory region” considering the sitting state, referring to the area of 1–1.5 m in the vertical direction. 

To facilitate the analysis, we also establish three auxiliary planes in the simulation. One cross-section is the height of the 1.2 m 
horizontal surface considering the respiratory height of the occupied passengers, one section is a vertical surface cut off from near the 
top return air outlet, and one section is the vertical surface of the display streamline cut out from the center of the return air outlet. The 
associated charts are shown in the Supporting Information, Fig. S2. 

4.1. Temperature patterns 

4.1.1. Temperature analysis at the respiratory range 
As there are rest seats in the department hall for passengers waiting for their plane, a height of 1.2 m was considered to be the plane 

of human breathing. Fig. 7 shows the temperature field distribution characteristics of the 1.2 m height plane under the three venti
lation modes considered. Overall, the temperature in most regions of the breathing plane was maintained at 25–28 ◦C, which is similar 
to Huang et al.’s simulation results of Guangzhou Baiyun Airport [68]. Moreover, the temperatures in some areas close to the human 
body were obviously higher because temperature of the air exhaled by the human body is 34 ◦C, which increases the temperature of the 
airport terminal. In each of the three ventilation modes, the temperature on the side close to the air outlet was generally higher, which 
may indicate that the air outlet was too high, causing airflow to only weakly affect the area below the air outlet. As Zhao et al. once 
proposed, the position of the air outlet at the airport should be lowered a bit [62]. 

4.1.2. Temperature analysis across the entire department hall 
To clarify the thermal plume near the human body, the temperature distribution at vertical plane with the height no more than 4 m 

is shown in Fig. 8. The detailed location of the cross-section in the model could be found in Fig. S2 at the Supporting Information. It can 

Fig. 4. Schematic of field measurement area and actual sampling system.  

Fig. 5. Geometric model used for model verification.  
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be seen that in the up-supply and up-return ventilation method and up-supply and down-return with different sides ventilation 
method, there are significant upward human thermal plume near the human body. That is because the air outlet in the opposite side of 
the air flow did not sink significantly at the abovementioned two ventilation modes, the thermal plume around the human body 

Fig. 6. Model validation results.  

Fig. 7. The 1.2 m height plane temperature field of three ventilation forms.  
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developed without restriction. However, when ventilation is the up-supply and down-return with same side, the upward trend of the 
thermal plume near the human body is not obvious, more concentrated on the human body surface. That is due to the significant 
downward airflow in the lower region along ventilation direction at the up-supply and down-return with same side ventilation mode, 
and the upward thermal plume is not obvious due to the compression of the downward airflow, which could also be found in Fig. 10. 

Considering the breathing height of the human body when sitting, the respiratory region vertical height was set within the range of 
1–1.5 m for analysis. Table 2 lists the comparison results between the temperature in the department hall and the temperature in the 
respiratory region. 

As listed in Table 2, the temperatures in the respiratory region were 3.3 ◦C, 2.3 ◦C, and 1.9 ◦C higher than those in the department 
hall, for the up-supply and up-return, up-supply and down-return with different sides, and up-supply and down-return with same side 
modes, respectively. These higher temperatures may be because of the high density of people under high numbers of occupied pas
senger, which increases heat dissipation. This indicates that passenger flow is an important factor affecting temperature in airport 
terminals. 

When the ventilation mode was up-supply and down-return on the same side, the temperature in the department hall was the 
lowest, and the temperature difference between the respiratory region and the department hall was the smallest, indicating that the 
air-conditioning system plays the best regulatory role in this ventilation mode. When the ventilation mode was up-supply and up- 
return, the temperature in the respiratory region was almost 30 ◦C, which is much higher than the summer indoor design tempera
ture of 26 ◦C. Therefore, this ventilation mode is unfavorable. 

4.2. Wind velocity 

4.2.1. Wind velocity analysis at the respiratory range 
Fig. 9 shows the distribution characteristics of the wind speed field at the 1.5 m height plane under the three ventilation forms. The 

indoor wind speed of the comfort air-conditioning in the summer should be ≤ 0.3 m/s [23]. The wind speed cloud chart shown in Fig. 9 
shows that most areas in the terminal meet this requirement. Specifically, when the ventilation mode was up-supply and down-return 
with different sides, the wind speed distribution in the breathing plane of the department hall was the most uniform, and the area 
where the wind speed was greater than 0.2 m/s was less than that of the other two air supply modes. Further, the wind speed dis
tribution characteristics show that the wind speed near the return air outlet is too high, reaching as high as 0.5 m/s. 

Fig. 8. Temperature distribution of the vertical the vertical direction near the human body.  
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4.2.2. Wind velocity analysis of the entire department hall 
For clearly identify the difference among three different airflow patterns, a vertical cross-section at the center of one return airflow 

outlet(The location was shown in Fig. S2 at the supporting information) was established and the airflow vectors were shown in Fig. 10. 
It could be concluded that a significant stagnant wake appeared at the bottom left of Fig. 10 for the ventilation modes except the up- 
supply and down-return with same side mode. As the representative 1.2 m horizontal surface just transected the stagnant wake areas, 
due to low airflow disturbances and poor cooling effect, it seems to be reasonable when obtaining the high temperature, significant 
thermal plume and high PMV values at the bottom of Figs. 7 and 8 a), 8 b) and 11, respectively. Meanwhile, an obvious downward 
trend of wind velocity, especially at the areas far away from the supply air outlet, appeared when the ventilation mode is up-supply and 
down-return with same side. Those strong downward flow could significantly suppress the thermal plume around human bodies, 
which is consistent with the temperature distribution in Fig. 8 c). In addition, although the ventilation rate among three ventilation 
modes is the same, the differences in airflow patterns also deeply influenced the pollutant dispersion and aerosol transmission. 

The average wind speeds of the three ventilation modes in the department hall and the respiratory region are shown in Table 3. For 
these modes, the wind speed in the department hall was between 0.12 m/s and 0.18 m/s, and the wind speed in the breathing zone was 
between 0.10 m/s and 0.16 m/s. The wind speed in the breathing zone under each ventilation mode was approximately 0.02 lower 
than that in the entire department hall. The large number of passengers may cause the wind speed in the respiratory region to decrease. 
By comparing the average wind speeds of the three types of ventilation, it is obvious that the slowest wind speed is that of up-supply 
and down-return with different sides mode, followed by the up-supply mode and up-return and the up-supply and down-return with 
the same side mode. The results show that up-supply and down-return with different sides is the best form of ventilation, as it does not 
impose a strong sense of blowing. 

4.3. PMV analysis 

PMV is a comprehensive evaluation index based on the basic equation of human thermal balance and the grade of psychophysi
ological subjective thermal sensation. PMV index has been numerously verified to be correct when evaluating thermal comfort at the 
air conditioning environment including the airport terminal [10,11], Thus only PMV index was calculated during the simulation. It 
considers many factors related to human thermal comfort and is calculated as follows [66]:  

PMV = [0.303exp(-0.036 M)+0.0275] × {M-W-3.05[5.733–0.007(M-W)-Pa]-0.42(M-W-58.2)-0.0173 M(5.867-Pa)-0.0014 M 
(34-ta)-3.96 × 10− 8fcl[(tcl+273)4-(tr+273)4]-fclhc(tcl-ta)},                                                                                                (13) 

where M is the energy metabolic rate of the human body, which is determined by the amount of human activity (W/m2), as the 
passenger was slightly active, we took a value of 65 W/m2; W is the mechanical work done by the human body (W/m2), it is generally 
taken as 0; Pa is the partial pressure of the water vapor around the human body (kPa), there is a certain connection between it and the 
air temperature [69] and the calculation formula is shown in the Supporting Information; ta is the air temperature around the human 

Table 2 
Average temperature of three ventilation forms (◦C).   

Up-supply and up-return Up-supply and down-return with different sides Up-supply and down-return with same side 

Department hall 26.4 26.1 25.2 
Respiratory region 29.7 28.4 27.1  

Fig. 9. The 1.2 m height plane wind velocity fields of three ventilation forms.  
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body (◦C); tr is the average radiation temperature; tcl is the outer surface temperature of the clothes (◦C); hc is the convective heat 
transfer coefficient [W/(m2⋅K)], it was taken at 5.1 W/(m2⋅K) due to the indoor environment in the summer in our study; and fcl is the 
clothing area coefficient. The calculation formula for the clothing area coefficient could also been found in the Supporting Information. 

The PMV index represents the cold and hot feelings of the vast majority of people in the same environment and has a range of -3–3, 
wherein a value less than 0 means cold and a value greater than 0 means hot. This index can be used to evaluate whether a thermal 
environment is comfortable. The PMV field distribution characteristics of the breathing plane are shown in Fig. 11, and the PMV of the 
waiting area and the breathing area of people under the three types of ventilation are summarized in Table 4. 

The PMV distribution characteristics of the breathing plane show that most areas are within − 0.5–0.5, indicating that most people 
feel comfortable. Here high PMV values appearing around some passengers located at the bottom regions in Fig. 11 are attributed to 
the high temperature of air exhausted from the mouth or heated by human body. As you suggested, we added the vertical cross-section 
with streamlines in Fig. 10. The airflow patterns along the vertical direction indicated that a stagnant wake obviously appeared at the 
areas next to the side of the air supply outlet, just at the height of nearly 1.2 m that is consistent with the bottom regions in Fig. 11. 
Static airflow and the heating effect induced by human heat loss might contribute to a higher PMV values at the stagnant wake 
compared with higher airflow regions. In addition, as listed in Table 4, the PMV values in the department hall of the airport terminal 

Fig. 10. Velocity streamline distribution in the vertical direction perpendicular to return air outlet.  

Table 3 
Average velocity of three ventilation forms(m/s).   

Up-supply and up-return Up-supply and down-return with different sides Up-supply and down-return with same side 

Department hall 0.15 0.12 0.18 
Respiratory region 0.13 0.1 0.16  
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under the three ventilation forms are basically within 0.5, which meets the requirements of the air-conditioning design temperature. 
However, the PMV values in the respiratory region of the airport terminal under the three ventilation forms are exceeds 0.5, which may 
cause the level of thermal comfort to be “slightly warm” [70]. The increase in PMV near the breathing area of people may be because of 
the high occupancy concentration, which increases heat dissipation, causing the PMV to rise. 

4.4. CO2 concentration 

4.4.1. CO2 concentration analysis at the respiratory range 
The CO2 concentration distribution characteristics are shown in Fig. 12. In the airport department hall, the CO2 concentration in 

most areas of the breathing plane is below 1000 ppm, which meets indoor air quality standards. However, because people exhale CO2 
continuously, the concentration of CO2 in densely populated areas is relatively high, compared to other areas, some of which exceed 
1000 ppm. In all three ventilation modes, the CO2 concentrations near the side of the air supply were higher than that in other areas. 
This may be because of the higher position of the air supply outlet, which does not improve ventilation within the breathing area. 

4.4.2. CO2 concentration analysis along Z direction 
To analyze the CO2 concentration level in the vertical direction, we used different height planes to calculate the average CO2 

concentration, as shown in Fig. 13. First, the difference in the vertical CO2 concentration distribution between up-supply and down- 
return with different sides and up-supply and down-return with the same side is very small, but it is significantly higher when the 
ventilation mode is up-supply and up-return. The maximum concentration difference is approximately 2 m in height, and the value for 
up-supply and up-return mode is approximately 27.39% higher than that for the up-supply and down-return with different sides. At 
approximately 1.5 m of the human breathing area, the value for the up-supply and up-return mode is approximately 23.7% higher than 
that for up-supply and down-return with different sides. Simultaneously, in a space below 2 m, it can be clearly seen that the CO2 
concentration of the up-supply and down-return with different sides mode was lower than that of the up-supply and down-return with 
the same side mode. Although this difference is slight, as passengers mainly live in a space below 2 m, we considered the up-supply and 
down-return with different sides mode to be better. 

Fig. 13 shows that there is a significant increase in the CO2 concentration near the breathing plane of the person. This indicates that 
breathing during high numbers of occupied passenger impacts the CO2 concentration in the airport terminal. On this basis, it can be 
inferred that the CO2 concentration in the terminal building is higher than usual when the airport has high numbers of occupied 
passenger. 

4.4.3. CO2 concentration analysis in the entire department hall 
The average CO2 concentrations in the department hall and the respiratory region are shown in Table 5. The CO2 concentrations of 

the department hall and the respiratory region are both below 1000 ppm, and thus, meet air quality standards. However, regardless of 
ventilation form, the CO2 concentration in the respiratory region is much higher than that of the department hall, proving that the 
breathing of people has a notable effect on the CO2 concentration level in the airport terminal when there is high numbers of occupied 
passenger. 

Table 5 shows that the up-supply and down-return with different sides and up-supply and down-return with the same side modes 
have better CO2 discharge efficiency. In the terminal building, the CO2 concentrations of these modes are approximately 12.53% and 
4.66% lower, respectively, than the up-supply and up-return mode. Additionally, for the respiratory region, the CO2 concentrations of 
these modes were approximately 20.04% and 15.00% lower, respectively, compared with the up-supply and up-return mode. 

Fig. 11. The 1.2 m height plane predicted mean vote (PMV) fields of three ventilation forms.  
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4.5. Aerosol diffusion 

4.5.1. Characteristics of aerosol diffusion 
In the aerosol diffusion simulation, we selected six representative locations to place infected persons, and assumed that they would 

Table 4 
Predicted mean vote (PMV) values of three ventilation forms.   

Up-supply and up-return Up-supply and down-return with different sides Up-supply and down-return with same side 

Department hall 0.28 0.22 0.07 
Respiratory region 0.97 0.75 0.55  

Fig. 12. The 1.2 m height plane CO2 concentration fields for three ventilation forms.  

Fig. 13. CO2 concentration levels in the vertical direction.  

Table 5 
CO2 concentration values of three ventilation forms.   

Up-supply and up-return Up-supply and down-return with different sides Up-supply and down-return with same side 

Department hall 605 529.19 576.78 
Respiratory region 860.92 688.42 731.75  
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exhale harmful aerosol particles while breathing. The locations of the infected persons are marked with numbers in Fig. 14. 
At present, many closed environments, such as aircraft cabins, carriages, classrooms, etc., have used the Wells-Riley model for 

exposure risk assessment [71–74], but this model is based on a quanta generation rate that is highly correlated with the type of virus. 
With regard to the emerging new coronavirus epidemic, we found that the “quanta” study of the novel coronavirus is still rare and 
there is no particularly clear figure. Therefore, we finally introduced the intake fraction (IF) for evaluation. The IF is a method to 
Inhalable factor is a method to evaluate the hazards of pollutants from the perspective of human health, which has been applied to the 
assessment of exposure levels in much environmental pollution. It refers to the ratio of the amount of a certain pollutant discharged by 
a certain emission source that is absorbed by the human body to the total emission [75,76], i.e., the exposure efficiency of the emission. 
And it can be defined as follows: 

IF =

∫ t2
t1

C(t)IR(t)dt
Mt(t2 − t1)

(14)  

where C(t) is the transient particle concentration simulated in the model (particles/m3); IR(t) is the human respiration rate (m3/s), for 
which the adult male and female average value is 1.835 × 10− 4 m3/s; and Mt is the total amount of particles released by the particle 
emission source in a unit time period (particles/s), which was calculated to be 3291.5 particles/s for the human mouth area, respi
ration rate, and the exhaled volume of particles/unit area. 

As there is currently no standard for the inhalation factor of PM in the environment, this study used the average inhalation factor of 
0.00015 for underground garages, which was measured in a previous study [57], as the standard for dividing the probability of 
infection. Fig. 15 shows the iso-values of the particle concentration of the infected person at different positions during up-supply and 
up-return. Overall, areas with an IF exceeding 0.00015 form near the infected person (red in Fig. 15). This shows that breathing of the 
infected person will cause a different risk of infection at each location in the waiting hall. Regardless, the closer a passenger is to an 
infected person, the greater the risk of infection. Meanwhile, when consider the IF distribution along vertical direction, significant 
thermal plume around human body of infected person 3–6 that is far away from the air supply outlet climbed to almost 2.5 m high. 
Whereas, when infected person located near the air supply outlet that is Case 1 and 2 in the study, the thermal plume around the human 
body was destroyed due to the crosswind from the airflow inlet of ventilation systems. In addition, the closer the location is to the air 
supply side, the larger the area where the IF exceeds 0.00015. This suggests that the strong airflow on the air supply side causes PM to 
spread further. 

4.5.2. Exposure level evaluation in the department hall 
The volume-averaged IF values among three ventilation modes are listed in Table 6. When considering the averaged IF values in the 

whole department hall, up-supply and down-return with different sides could contribute to the lowest volume-averaged IF values 
among three ventilation modes, which is consistent with the results when considering CO2 as index. 

Whereas, as mentioned above, the differences in airflow patterns with the same ventilation rate might cause various aerosol 
transmission patterns. Thus, the volumes at which each infected person causes the IF to exceed 0.00015 under different ventilation 
modes are selected as another index when evaluating the aerosol transmission among three different ventilation modes and the results 
are listed in Table 7. Considering the high probability of infection, healthy people in an area where the IF exceeds 0.00015 will be 
infected. Therefore, the number of infected people near each patient is also listed in Table 7. The results show that the infected volumes 
caused by infected persons in the same position under different ventilation methods varied only slightly and were the largest at po
sitions 1, 3, and 6. When the infected person is in position 1 or 6, the up-supply and down-return with the same side mode is more 
advantageous, whereas when the infected person is in position 3, the up-supply and down-return with different sides is more ad
vantageous. By comparing the total volumes exceeding the IF in these six locations, we found that the up-supply and down-return with 
the same side had smaller volumes exceeding 0.00015, indicating that it had better ventilation. 

It could be concluded that the optimized ventilation mode is different when considering volume-averaged CO2 concentration and 
areas where the intake fraction (IF) exceeds 0.00015 and number of infected people as index, separately. Usually, up-supply and down- 
return with the different sides is verified as an effective ventilation mode with reasonable airflow patterns and high pollutant removal 
efficiency when considering the volume-averaged pollutant concentration as index in enclosed environment [77,78]. Whereas, when 
considering the range of aerosol transmission and the number of infected persons as index, to our knowledge, the up-supply and 
down-return with the same side in the study contributed to a better performance due to the restricted diffusion of aerosols and 
accumulation mainly at the respiratory region induced by the significant downward airflow at the lower areas in the vertical direction, 
shown in Fig. 10 c). 

5. Study limitations 

There are some limitations to this study that should be addressed in future work. First, because the airport terminal occupies a large 
area, and considering the accuracy and time of the calculation software, we examined only approximately one-third of the airport 
terminal area in the CFD calculation. Second, as the airport is a large transport hub, we only considered the scenario in which there was 
high numbers of occupied passenger, i.e., the situation where all the seats are full. However, in real life, airports do not always have 
high numbers of occupied passenger, meaning our data do not accurately reflect actual airport terminal data. In future studies, we will 
conduct research for different passenger flows. Third, we only evaluated three different ventilation modes, and thus, did not include all 
the ventilation modes employed at the airport. Further research is required to evaluate the efficacy of other ventilation modes. 
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6. Conclusions 

In this research, the distribution characteristics of temperature, wind speed, PMV, and CO2 and PM concentrations inside an airport 
terminal building were simulated using CFD simulation technology. According to a temperature analysis, the temperature in the 
department hall under the three ventilation modes should be maintained at 25–27 ◦C. However, the temperature in the respiratory 
region was higher, and the temperature of the department hall under the up-supply and up-return mode reached as high as 29.7 ◦C, 
indicating that its ventilation effect is poor. According to the wind speed analysis, the airflow distribution in the breathing plane of the 
up-supply and down-return with different sides ventilation mode was the most uniform, and there are fewer areas where the wind 
speed is greater than 0.3 m/s, compared with the other modes. Regarding the PMV of the respiratory plane, we found that the up- 
supply and down-return with the same side mode performed the best, followed by the up-supply and down-return with different 
sides and up-supply and up-return modes. For the three ventilation modes, the PMV values in the terminal building and the passenger 
breathing zone were in the range 0.07–0.28 and 0.55–0.97, respectively. The breathing zone PMV is much higher, indicating that the 
airport environment becomes hotter under high numbers of occupied passenger. 

As an important simulation object in this study, we analyzed the CO2 concentration field at the respiratory surface, the CO2 
concentration of the airport terminal, the CO2 concentration in the respiratory area, and the vertical concentration distribution 
characteristics of the airport terminal. The results showed that the CO2 concentration in the terminal building ranged between 500 
ppm and 600 ppm. However, the concentration of CO2 in the passenger breathing area was 26.8–42.3% higher than the CO2 con
centration in the terminal building under different ventilation modes. Considering the characteristics of the breathing zone and the 
overall and vertical distributions of CO2 in the terminal building, we believe that the most suitable ventilation mode is up-supply and 
down-return with different sides. 

By analyzing the diffusion characteristics of aerosol particles originating from infected persons in different locations under the 
three types of ventilation, we found that the up-supply and down-return with the same side mode was the best ventilation mode, which 
is inconsistent with the CO2 diffusion results obtained. In addition, we found that the spread of particles in the middle position was 
larger, leading to a greater risk of inhalation for people around the infected person. Moreover, locations that were either close to the 
exit or were sparsely occupied had a lower risk of inhalation and a lower risk of infection. 
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Fig. 14. Locations of infected persons in aerosol simulation.  
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Fig. 15. Iso-value of the particle concentration 0.00015 during up-supply and up-return with the same side.  

Table 6 
IF values of three ventilation modes in the department hall (10− 5).  

Location of infected persons Up-supply and up-return Up-supply and down-return with different sides Up-supply and down-return with same side 

1 5.641 5.451 5.415 
2 4.657 4.730 4.756 
3 5.698 5.683 5.632 
4 4.220 4.269 4.445 
5 5.715 5.457 5.571 
6 3.984 3.956 4.121 
Average 4.986 4.925 4.990  
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