Skip to main content
. 2022 Feb 18;13:813072. doi: 10.3389/fimmu.2022.813072

Table 2.

Predictive performance of EGFR status and EGFR mutated subtypes using three methods in the training and testing cohorts.

Methods Cohorts AUC(95%CI) Accuracy(%) Sensitivity(%) Specificity(%)
EGDFR Mutation Status
DL Training 0.880(0.871-0.892) 0.805(0.797-0.815) 0.832(0.820-0.845) 0.783(0.769-0.798)
Testing 0.842(0.825-0.855) 0.763(0.750-0.777) 0.797(0.777-0.818) 0.769(0.746-0.789)
Radiomics Training 0.838(0.827-0.850) 0.769(0.758-0.779) 0.794(0.780-0.812) 0.760(0.743-0.771)
Testing 0.805(0.789-0.827) 0.735(0.720-0.755) 0.768(0.748-0.793) 0.716(0.696-0.734)
Joint Training 0.919(0.914-0.924) 0.840(0.831-0.850) 0.839(0.829-0.852) 0.831(0.820-0.844)
Testing 0.895(0.883-0.907) 0.819(0.803-0.835) 0.791(0.765-0.816) 0.850(0.834-0.870)
EGFR Subtypes
DL Training 0.842(0.828-0.855) 0.753(0.740-0.769) 0.716(0.696-0.739) 0.853(0.836-0.873)
Testing 0.805(0.779-0.829) 0.732(0.707-0.755) 0.707(0.676-0.742) 0.815(0.787-0.849)
Radiomics Training 0.809(0.791-0.829) 0.725(0.708-0.743) 0.672(0.647-0.702) 0.848(0.830-0.870)
Testing 0.767(0.735-0.791) 0.697(0.663-0.728) 0.705(0.670-0.745) 0.742(0.712-0.773)
Joint Training 0.873(0.860-0.884) 0.790(0.776-0.804) 0.758(0.739-0.778) 0.862(0.844-0.881)
Testing 0.841(0.818-0.864) 0.767(0.746-0.790) 0.767(0.732-0.798) 0.827(0.803-0.858)

EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand-1; DL model, deep learning model.