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Abstract

Background: The advent of high-throughput transcriptomic screening technologies
has resulted in a wealth of publicly available gene expression data associated with
chemical treatments. From a regulatory perspective, data sets that cover a large
chemical space and contain reference chemicals offer utility for the prediction of
molecular initiating events associated with chemical exposure. Here, we integrate
data from a large compendium of transcriptomic responses to chemical exposure
with a comprehensive database of chemical-protein associations to train binary
classifiers that predict mechanism(s) of action from transcriptomic responses. First,
we linked reference chemicals present in the LINCS L1000 gene expression data
collection to chemical identifiers in RefChemDB, a database of chemical-protein
interactions. Next, we trained binary classifiers on MCF7 human breast cancer cell
line derived gene expression profiles and chemical-protein labels using six
classification algorithms to identify optimal analysis parameters. To validate classifier
accuracy, we used holdout data sets, training-excluded reference chemicals, and
empirical significance testing of null models derived from permuted chemical-
protein associations. To identify classifiers that have variable predicting performance
across training data derived from different cellular contexts, we trained a separate set
of binary classifiers on the PC3 human prostate cancer cell line.

Results: We trained classifiers using expression data associated with chemical
treatments linked to 51 molecular initiating events. This analysis identified and
validated 9 high-performing classifiers with empirical p-values lower than 0.05 and
internal accuracies ranging from 0.73 to 0.94 and holdout accuracies of 0.68 to 0.92.
High-ranking predictions for training-excluded reference chemicals demonstrating
that predictive accuracy extends beyond the set of chemicals used in classifier
training. To explore differences in classifier performance as a function of training data
cellular context, MCF7-trained classifier accuracies were compared to classifiers
trained on the PC3 gene expression data for the same molecular initiating events.

Conclusions: This methodology can offer insight in prioritizing candidate
perturbagens of interest for targeted screens. This approach can also help guide the
selection of relevant cellular contexts for screening classes of candidate perturbagens
using cell line specific model performance.
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Background
Animal-based chemical screening methods have evaluated only a fraction of commer-

cial chemicals for human safety [1]. New approach methodologies (NAMs) can increase

the pace of chemical safety testing by using high-throughput cell-based and in vitro ap-

proaches capable of rapidly screening thousands of chemicals simultaneously [2]. Estab-

lishing alternatives to traditional animal testing is a high priority for the US

Environmental Protection Agency (EPA), and a challenge that can be met by develop-

ing a multidisciplinary, tiered-testing approach [3]. The success of this strategy relies

on the development of methods for rapidly evaluating hazards across diverse and large

chemical inventories. One technology that offers utility for this goal is high-throughput

transcriptomics (HTTr). Several HTTr platforms have been used to explore chemical

bioactivity by interrogating the transcriptomic consequences of chemical exposure in

cell lines [4, 5].

One challenge of leveraging HTTr for chemical screening is the analysis and inter-

pretation of large data sets in which hundreds or thousands of gene expression levels

are measured across many chemicals and concentrations. Interpretation of such data-

sets requires time-intensive and specific application of expert knowledge or, more fa-

vorably, a systematic analysis that discounts noise and indicates the probability of

“true” biological signals that are relevant to chemical hazard identification. One com-

mon strategy for distilling this wealth of expression information is to use gene set en-

richment analysis to identify molecular pathways perturbed by chemical treatment [6].

However, while this approach may identify molecular networks perturbed by chemical

exposure, it may fail to identify the protein(s) on which a chemical initially acts. The

Adverse Outcome Pathway (AOP) framework provides a useful context for the distinc-

tion between these initial drug-protein interactions, and downstream molecular conse-

quences [7]. In this paradigm, chemicals interact with biological systems through a

series of events, beginning with a direct interaction with a biomolecule, such as a pro-

tein. This first step of an AOP is commonly called a Molecular Initiating Event (MIE).

MIEs in turn cause downstream key events at the molecular, cellular, and organ level,

ultimately culminating in an adverse outcome, such as disease, impaired development,

or impaired reproduction. Predicting the induction of MIEs from downstream tran-

scriptional consequences of chemical exposure is a formidable challenge in identifying

chemical hazards.

Machine learning (ML) methods provide a flexible framework to address this prob-

lem. To date, ML methods have leveraged chemical structure and gene expression data

to predict chemical targets for pharmaceutical repositioning [8–14], and to predict drug

induced liver injury [15]. One such study demonstrated that ML-based classifiers

trained on gene expression data can successfully predict therapeutic use categories for

candidate pharmaceuticals [13]. Other ML-based methods leverage a variety of data

types using a similarity approach to identify likely chemical-protein interactions by

training a single multiclassification model [14]. While these previous studies
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demonstrate the utility of ML approaches to predicting chemical activity from gene ex-

pression information, they have limitations. The prediction of chemical activity at the

resolution of use categories lacks the gene level granularity of MIE-level predictions

[13]. Additionally, many ML-based investigations have used gene expression profiles

derived from multiple cell lines in classifier training, thus complicating the identifica-

tion of cell line specific responses to chemical treatment [13, 14]. In this context, there

is value in developing models that account for cell line dependent effects in predicting

chemical activity from gene expression at the resolution of MIEs. As an early compo-

nent of a tiered chemical testing strategy, MIE predictions from HTTr data may offer

insight into hazard prioritization and assay selection for potency estimation.

Here, we predict MIEs through a ML-based classification approach (Fig. 1). We de-

veloped a methodology for predicting MIEs in specific cell lines by combining data

from RefChemDB [16], a database of chemical-target interactions compiled from mul-

tiple sources, and LINCS [17], a compendium of in vitro gene expression profiles asso-

ciated with chemical and genetic perturbagens of specific cell lines. Reasoning that

some MIEs may not be well predicted in certain cell types, we utilized a binary classifi-

cation approach (as opposed to a multiclassification approach), where separate binary

classifiers were trained for each MIE, thus allowing classifiers showing poor perform-

ance to be easily excluded from the analysis framework.

Classifiers were trained using one of six algorithms: 1) support vector machine with

linear kernel (SVM_L), 2) support vector machine with radial kernel (SVM_R), 3) sup-

port vector machine with polynomial kernel (SVM_P), 4) K-nearest neighbor (KNN), 5)

multilayer perceptron with multiple hidden layers (MLP), and 6) Naïve Bayes (NB). We

tested several sets of input features for model training, including pathway scoring. Bin-

ary classifiers were validated by four complementary approaches: 1) 5-fold cross

Fig. 1 Diagram of data processing and classifier training procedure. From left to right, LINCS chemical identifiers are
matched to DTXSIDs using ChemReg, then combined with chemical-target annotations from RefChemDB to produce
the integrated data for model training and evaluation. A subset of “exemplar” chemicals that are associated with MIEs
to be modeled are excluded from all training data sets for validation purposes. Training data sets for each MIE classifier
are then partitioned, and classifiers are trained with 5-fold cross validation using the caret package in R. 500 “null”
classifiers are generated simultaneously for the purpose of empirical significance testing. Performance for each classifier
is evaluated using a MIE-specific holdout data set, internal accuracy, and empirical significance testing, identifying a set
of candidate high performance classifiers. This set of candidate high performance classifiers undergoes a final phase of
screening using exemplar chemical-based validation
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validation, 2) validation on holdout data, 3) empirical significance testing, and 4) evalu-

ation of exemplar chemical activity predictions. Lastly, in the interest of testing whether

MIE prediction from transcriptomic profiles is dependent on cell line, we compared

the predictive accuracy of classifiers trained on data from the MCF7 breast cancer de-

rived cell line versus classifiers trained on data from the PC3 prostate cancer derived

cell line.

Materials and methods
To predict MIEs from gene expression, we trained binary classifiers using chemical-

target labels from RefChemDB [16] and gene expression profiles from the LINCS

L1000 gene expression compendium [17]. All data analysis was done in the R statistical

framework using version 3.6.0.

RefChemDB chemical-MIE annotations

To train binary classifiers to predict MIEs from gene expression, we leveraged annota-

tions from RefChemDB [16], a database of interactions between chemicals and proteins

distilled via automated curation from 15 different resources, including ChEMBL [18],

the Comparative Toxicogenomics Database [19], and Drugbank [20]. We downloaded

supplemental materials published in [16] containing 339,008 chemical protein annota-

tions. MIE annotations were derived by making minor modifications to RefChemDB

entries. Records where the “mode” of interaction between a chemical and protein was

“unspecified” were excluded to avoid incorporating chemicals that may have opposing

modes of action into the same model. Next, we generated a “MIE” label for each

RefChemDB entry by concatenating the RefChemDB “target” and “mode” fields. Finally,

we resolved conflicting records that had the same chemical and protein but opposing

modes by retaining the record with the highest “support level” (the number of unique

literature sources annotated in RefChemDB that support the interaction).

Some MIEs in RefChemDB are annotated for similar or identical sets of chemicals.

For example, if filtered to include only annotations with a support level of at least 5,

there are 83 chemicals linked to Carbonic anhydrase 1 (CA1) and Carbonic anhydrase

2 (CA2) inhibition, 82 of which are shared. This was expected, as members of the same

gene family that have considerable homology (60% in the case of CA1 and CA2 [21])

often have high affinity for a common set of ligands. On the other hand, there are well

documented examples of ligands that display variable binding affinity for receptors that

share considerable sequence homology [22]. However, resolving MIE activation at the

resolution of individual paralogs of a gene family is untenable because there are so few

chemicals annotated as uniquely interacting with specific paralogs in most cases, and

these are insufficient to train classifiers for any MIEs. Instead, we developed a data-

driven strategy for combining MIEs with similar sets of associated chemicals. We first

generated a metric of similarity between every pair of MIEs annotated in RefChemDB

by calculating the Jaccard index based on the proportion of associated chemicals that

are shared by each pair ð JðA;BÞ ¼ jA⋂Bj
jB⋃AjÞ. This similarity matrix was then converted into

dissimilarity by subtracting every value from 1. Similar MIEs were clustered into groups

based on their relatedness using the ‘hclust’ R function. Finally, we used the ‘cutree’ R
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function with h = 0.7 to group similar MIEs together for model training, and manually

generated names for the resulting clusters (Supplemental File 1).

LINCS L1000 gene expression data

To train classifiers to predict MIEs using gene expression, we required a gene expression

data set to train models that had sufficient overlap with chemicals annotated in

RefChemDB. To meet this need, we used the LINCS L1000 gene expression database

[17]. This compendium contains gene expression profiles derived from data collections

spanning 83 cell lines exposed to over 20,000 chemicals. The number of chemicals and

gene expression profiles is variable across cell types represented in LINCS L1000 data

(Supplemental Fig. 1), with the largest number of profiles generated in MCF7 (42,049)

and PC3 (35,154) cells, derived from human breast cancer and prostate cancer respect-

ively. Therefore, we initially trained classifiers using only profiles generated from MCF7

cells and subsequently trained corresponding classifiers using only PC3-derived profiles.

Level 5 data (moderated Z-scores) were downloaded from the gene expression omni-

bus [23] for LINCS phase1 and phase2. The LINCS metadata use a customized primary

identifier for chemical perturbagens (Broad_IDs) that have not been harmonized or

mapped to other chemical databases. To match LINCS perturbagens with chemicals

annotated in RefChemDB, LINCS chemicals were registered into ChemReg and curated

using processes described previously [24]. Registering chemicals into ChemReg pro-

duces unique DSSTox Substance Identifiers (DTXSIDs) that are publicly available on

the CompTox Chemicals Dashboard [https://jcheminf.biomedcentral.com/articles/10.11

86/s13321-017-0247-6] (https://comptox.epa.gov/dashboard/), a web-based application

providing access to chemical property data and in vivo and in vitro toxicity data for

nearly 900,000 chemicals. Broad_IDs were matched to DTXSIDs in ChemReg using

additional chemical descriptors extracted from LINCS metadata files, including canon-

ical SMILES, InChIKeys, and chemical names (Supplemental File 2). 4,284 of 21,299

(20%) unique chemical identifiers in LINCS were successfully mapped to a DTXSID

using ChemReg.

Most chemicals present in the LINCS data set have multiple associated gene expres-

sion profiles. Some chemicals were screened at multiple concentrations and with vary-

ing durations, resulting in multiple profiles for a single chemical, in addition to

replicate experiments generating profiles with identical conditions. The number of pro-

files associated with each chemical varies from chemical to chemical, with a median of

6 profiles in MCF7 cells for the LINCS chemicals mapped to a DTXSID in

RefChemDB. Previous ML-based investigations have limited the heterogeneity of train-

ing data by restricting training data sets to a single concentration and exposure dur-

ation [25]. We sought to leverage the multiple gene expression profiles available for

each chemical to increase the available data for classifier training, and therefore did not

restrict gene expression profiles based on treatment duration or concentration. How-

ever, a subset of chemicals represented in LINCS (90 compounds) were associated with

over 20 gene expression profiles and thus have the potential to dominate training data

sets. To limit the amount of information that any one chemical can contribute to train-

ing data sets, a maximum of 20 gene expression profiles (selected at random) per

chemical were used in classifier training. Finally, gene expression measurements in the
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form of moderated Z-scores were standardized by subtracting from every probe that

probe’s mean across all gene expression profiles and dividing by the standard deviation

using the ‘preProcess’ function in R library caret with “center” and “scale” methods, as

done in previous ML-based investigations using LINCS data [10] .

Binary classification algorithms

To optimize models, we evaluated the performance of six different classification algo-

rithms for model training. A subset of these algorithms were based on Support Vector

Machines (SVMs). SVMs are a popular class of algorithm for biological binary classifi-

cation problems [26]. SVMs trained with linear, polynomial, and radial basis kernels are

denoted as SVM_L, SVM_P, and SVM_R, respectively. Multi-layer perceptrons have

been shown previously to outperform SVM-based classification approaches in predict-

ing chemical use categories from L1000 gene expression data [13]. To see if this held

true for our analysis, we also trained models using Multi-layer Perceptrons (MLP), as

well as two other popular classification algorithms: Naïve Bayes (NB) and k-nearest

neighbor (KNN). All classifier training was done using the caret package v6.0–83 in the

R statistical framework [27]. SVM, MLP, and NB classifiers were trained using calls to

the kernlab v0.9–27, RSNNS v0.4-12, and naivebayes v0.9.6 R libraries, respectively.

Hyperparameter tuning for model optimization was performed automatically by caret

using the grid search default in the ‘train_control’ function.

Input features

Previous ML-based investigations using LINCS L1000 data have shown that pre-

processing gene-level expression information into pathway scores can significantly im-

prove multi-classifier performance [13]. We therefore tested a set of classifiers gener-

ated using pathway features. Pathway scores were calculated using a modified version

of single-sample Gene Set Enrichment Analysis (ssGSEA), as described previously [28,

29] using all LINCS L1000 genes (landmark + inferred genes) for 2232 pathways de-

rived from the canonical pathways set of MSigDB (v7.0) [30]. Pathway scores were then

normalized using the identical procedure as gene-level standardization.

To explore how the selection of input features affects classifier performance, we

trained models using three types of L1000 derived features: 1) Moderated Z-scores for

all genes (LINCS landmark and inferred), 2) Moderated Z-scores for LINCS landmark

genes only, and 3) Pathway scores.

Model training and evaluation approach

The classifier training and validation pipeline is outlined in Fig. 1. Briefly, our approach

was to train a binary classifier for each MIE by labeling LINCS L1000 gene expression

profiles with MIE labels based on annotations in RefChemDB. We focused on

RefChemDB annotations with a support level of at least 5, as previous analyses demon-

strated relatively high agreement between RefChemDB annotations and ToxCast assays at

or above this support level [16]. First, we identified suitable MIEs for modeling using two

criteria: 1) MIEs must be linked to at least 5 chemicals in RefChemDB by at least 5 litera-

ture sources each (support level > = 5) and; 2) the total number of LINCS profiles associ-

ated with the set of MIE-linked chemicals in the target cell line must be ≥50. LINCS
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perturbagens (and their associated gene expression profiles) lacking high-confidence an-

notation in RefChemDB (support level > = 5) were excluded from model training. Using

these criteria, we identified 51 MIEs with sufficient data for modeling.

For each MIE, training data sets were formed using RefChemDB chemical-MIE linkages

to identify and label suitable LINCS gene expression profiles. First, a collection of “MIE-

active” LINCS profiles was generated by selecting LINCS profiles associated with chemi-

cals that are linked to a given MIE. Then, an equally sized collection of “MIE-inactive”

profiles was generated by randomly selecting profiles that met two criteria: 1) profiles

must not be associated with chemical treatments linked to the MIE being modeled at any

support level nor with any mode and 2) profiles must be associated with a different MIE

with a support level ≥ 5 (Fig. 2). After aggregating equally sized MIE-active and MIE-

inactive profiles, 20% of profiles in each set were randomly selected as holdout data and

excluded from model tuning and training. Binary classifiers were trained on the remaining

profiles with 5-fold cross validation and hyperparameter selection using the caret package

in R [27]. This process is summarized in pseudocode below.

� For each MIE with sufficient training data:

� Generate list of “MIE-active” chemicals associated with MIE from RefChemDB

� Generate collection of N MIE-active profiles linked to MIE-active chemical treat-

ments in the selected cell line

� Generate collection of N MIE-inactive profiles linked to chemicals that are not

annotated for the MIE

� Select 20% each of MIE-active and MIE-inactive profiles as holdout data

� Remaining 80% of profiles are designated as training data set

� For each algorithm in (SVM_L, SVM_P, SVM_R, NB, KNN, MLP)

� For each unique combination of hyperparameters (grid search)

� Train classifier using 5-fold cross validation:

� Split model training data into 5 equal subsets

� For each subset k:

� Combine non-k subsets and train model on these data

Fig. 2 Example schematic of training data set structure for ESR-1/2 (−) classifier. Binary classifiers were
trained using “MIE-Active” and “MIE-Inactive” collections of gene expression profiles that are equal in
number. In this example, the MIE-Active set is comprised of profiles derived from chemical treatments that
are associated with ESR1 or ESR2 inhibition based on RefChemDB annotations. The MIE-Inactive training set
is comprised of an equal number of profiles derived from chemical treatments that have no annotation for
ESR1 or ESR2 in RefChemDB
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Test model on k

� Identify optimal hyperparameter configuration that returns the highest average

accuracy (proportion of correct assignments) across the 5 folds

� Test accuracy of model with optimal hyperparameters using holdout data

� Return internal (average accuracy from 5-fold cross validation) and holdout ac-

curacies for optimal hyperparameter configuration

Assessment of model performance

Classifier training and holdout data sets were comprised of equal numbers of MIE-

Active and MIE-Inactive profiles (Fig. 2). Because these data sets are balanced with re-

spect to labels, we used accuracy, defined here as the proportion of correct assignments

ð TPþTN
TPþTNþFPþFNÞ as an intuitive metric for measuring classifier performance. Internal ac-

curacy for each model was taken as the mean accuracy score from 5-fold cross valid-

ation as calculated by caret and extracted from the results object returned by the ‘train’

function. For hyperparameter tuning, the hyperparameter configuration and resulting

trained model association with the highest internal accuracy was used for all further

analysis. To account for possible overfitting, we used holdout data to calculate holdout

accuracy independent of training data. However, this approach faces a challenge due to

1:many relationships between chemicals and profiles in LINCS. Gene expression pro-

files in the holdout data set were selected at random from the pool of MIE-active and

MIE-inactive profiles in which there are often multiple profiles for any one chemical

treatment. Thus, while the individual profiles in holdout data are distinct from those

used for training, there is overlap in which chemical treatments were performed for

profiles in the training and holdout data sets. This may introduce unwanted bias in

measuring classifier accuracy with the holdout data set. Previous ML studies focused

on predicting drug induced liver injury from LINCS data have addressed this challenge

by partitioning all profiles associated with a given chemical into either training or hold-

out data sets [15]. Unfortunately, this solution was not suitable for the current study, as

most MIEs have too few associated chemicals to partition training and validation data

on a per-chemical basis. To address this challenge in the current study, we supple-

mented our evaluation on holdout data with an additional collection of training-

excluded exemplar chemicals and an empirical significance assessment.

Model validation with empirical significance testing

Previous ML-based analyses of LINCS data restricted training data to one profile

per perturbagen [5]. In the interest of training robust classifiers by leveraging the

wealth of gene expression profiles in LINCS, we opted to include up to 20 profiles

per chemical in model training. However, we recognized that this approach might

be biased towards MIEs with a small set of annotated chemicals. Such classifiers

might achieve spuriously high accuracies simply due to the relatedness of profiles

derived from the same chemical treatment in the MIE-active set, without identify-

ing mechanism of action signatures shared across MIE-active chemicals. To com-

pensate for this possible source of bias, we adapted an empirical significance

methodology used previously in investigations of quantitative trait loci, and in ML-

based study of drug induced liver injury [15, 31].
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We ascertained the value of information added for MIE-active labels by generating

null classifiers for each MIE. To generate training data sets for null models, training

data were randomized by swapping each chemical in the MIE-active set with a single

replacement chemical, selected at random from the set of chemicals with at least as

many available profiles in LINCS. Only chemicals that were associated with at least one

other MIE in RefChemDB, but not associated with the original classifier’s MIE, were

eligible to be selected as replacement chemicals. Thus, null classifiers were trained on

profiles derived from the same number of chemicals as their “original” counterparts,

but with no association to the target MIE. After randomly selecting chemicals to be

used in training, the number of LINCS profiles to be used in classifier training for each

replaced chemical was limited to the number of profiles associated with the MIE-active

chemical from the original model. Thus, null models were trained on the same number

of LINCS profiles, distributed across the same number of chemicals as the original

model from which they were derived.

Null classifiers followed the same training and validation procedures as original

models. Internal and holdout validation accuracy were recorded for each iteration of

null model training. For each of the 306 classifiers (51 MIEs × 6 algorithms), 500 null

data sets were generated and corresponding classifiers trained. Then, an empirical sig-

nificance test was performed by calculating p-values from the proportion of null classi-

fiers that achieved internal accuracies higher than their original counterparts, similar to

the strategy used previously [31]. Candidate high-performance models were identified

as classifiers that achieved an internal accuracy ≥95% of null model accuracies, corre-

sponding to an empirical p-value ≤0.05.

Classifier validation with exemplar chemicals

To assess model performance independently of internal and holdout accuracies, we ex-

cluded a set of “exemplar” chemicals (and all their associated LINCS gene expression pro-

files) from all training and holdout data sets, including for null classifiers. To select

exemplar chemicals, we used a data-driven approach. First, we generated a list of candi-

date chemicals by taking the union of the top 10 chemicals for each MIE ranked by sup-

port level. We then iteratively selected one exemplar chemical for each MIE that did not

yet have an exemplar selected, with the constraint that the exclusion of the chemical

could not reduce the remaining training data to < 5 chemicals or < 50 total profiles for

any MIE on the list. If a selected exemplar chemical was in the list of top 10 supported

chemicals for multiple MIEs, that exemplar chemical was assigned to all these MIEs, and

all were removed from the list for further exemplar selection. This process identified 31

exemplar chemicals assigned to 44 of the 51 MIEs. All profiles associated with these ex-

emplar chemicals were subsequently excluded from all classifier training (Table 1). For 7

MIEs (51 total MIEs – 44 MIEs with candidate exemplars), no chemical among the candi-

date exemplars could be excluded from classifier training without resulting in the loss of

sufficient training data, so no exemplar chemical was assigned.

Classifier validation with Kolmogorov–Smirnov test

To further validate classifiers independent of training data, MIE predictions were gen-

erated for each classifier for all 76,843 MCF7 derived LINCS profiles. Predictions
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Table 1 Summary of Available Training Data for MCF7-Trained Classifiers

MIE
Name

MIE
Active
Profiles

MIE Active
Chemicals

Exemplar Chemical Name Exemplar
Chemical
DTXSID

Exemplar
Chemical Support
Level

ABCB1
(−)

283 25 Quinidine DTXSID4023549 20

ACE (−) 57 6 Fosinopril DTXSID1023079 6

A/B-CHE
(−)

50 7 NA NA NA

ADRA1A
(+)

67 10 Epinephrine DTXSID5022986 10

ADRA2A
(+)

58 7 Epinephrine DTXSID5022986 8

ADRB-1/2
(−)

67 8 Nadolol DTXSID3023342 5

ADRB-1/3
(+)

51 6 Epinephrine DTXSID5022986 8

ADRB2
(+)

55 9 Epinephrine DTXSID5022986 5

ALOX5
(−)

51 5 MK 886 DTXSID5041067 5

APP (−) 71 5 NA NA NA

AR (−) 56 5 Progesterone DTXSID3022370 7

AR (+) 52 8 17-Methyltestosterone DTXSID1033664 10

CA-9/12
(−)

76 10 4-(2-
Aminoethyl)benzenesulfonamide

DTXSID20188814 10

CA-many
(−)

51 7 NA NA NA

CA-1/2
(−)

90 13 (RS)-(+/−)-sulpiride DTXSID1042574 36

CYP19A1
(−)

70 7 Naringenin DTXSID1022392 10

CYP2D6
(−)

52 5 Quinidine DTXSID4023549 34

CYP3A4
(−)

144 13 Quinidine DTXSID4023549 6

DHFR/
TYMS (−)

56 6 Methotrexate DTXSID4020822 43

DRD2 (−) 118 14 Haloperidol DTXSID4034150 50

DRD2 (+) 125 15 Dopamine DTXSID6022420 26

EGFR/
ERBB2 (−)

140 9 Erlotinib DTXSID8046454 55

ESR-1/2
(−)

68 5 Tamoxifen DTXSID1034187 30

ESR-1/2
(+)

145 12 17beta-Estradiol DTXSID0020573 142

FLT1/KDR
(−)

122 10 Erlotinib DTXSID8046454 10

FLT3 (−) 84 5 NA NA NA

HDAC (−) 174 10 MS-275 DTXSID0041068 37

HMGCR
(−)

50 5 Mevastatin DTXSID4040684 14

HRH1 (−) 110 14 Astemizole DTXSID9020110 5

HTR2A 67 8 Haloperidol DTXSID4034150 11
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associated with non-chemical treatments or chemical treatments present in a classifier’s

training data set were then excluded. Classifier performance was then assessed using

chemicals associated with each MIE in RefChemDB, but at support levels below our

initial threshold for training data (i.e. support level = 3 or 4). A subset of associations at

this support level are likely spurious [16], however the legitimate associations at this

support level should lead to an enrichment of higher prediction scores within this sub-

set of chemicals as compared to other chemicals in the L1000 data with no association

to the MIE. When sufficient low-support chemicals are available for a candidate high

performance classifier, this enrichment should be separable from random chance when

the scores are considered in aggregate. To test this hypothesis, we used a one-tailed

Table 1 Summary of Available Training Data for MCF7-Trained Classifiers (Continued)

MIE
Name

MIE
Active
Profiles

MIE Active
Chemicals

Exemplar Chemical Name Exemplar
Chemical
DTXSID

Exemplar
Chemical Support
Level

(−)

JAK2 (−) 54 5 NA NA NA

KCNH2
(−)

369 34 Haloperidol DTXSID4034150 14

KIT (−) 88 5 NA NA NA

MAO-A/B
(−)

75 11 Tranylcypromine DTXSID2023694 10

MAPK14
(−)

78 5 NA NA NA

MET (−) 114 7 Cabozantinib DTXSID10233968 10

MTOR/
PI3K (−)

204 12 Everolimus DTXSID0040599 5

NR1I2 (+) 50 6 17beta-Estradiol DTXSID0020573 5

NR3C1
(+)

100 10 Clocortolone pivalate DTXSID0045460 5

PDE3A
(−)

67 5 Cilostamide DTXSID3045140 5

PDE4-A/
B/D (−)

56 5 Piclamilast DTXSID3040227 9

PDGFRB
(−)

66 6 Erlotinib DTXSID8046454 9

PPAR-A/
D/G (+)

137 16 Ciglitizone DTXSID0040757 38

PTGS-1/2
(−)

247 28 Flurbiprofen DTXSID0037231 14

SCN-1/2-
A (−)

51 5 Lidocaine DTXSID1045166 5

SCN5A
(−)

100 9 Lidocaine DTXSID1045166 6

SLC22A-
1/2 (−)

63 7 Quinidine DTXSID4023549 14

SLC22A6
(−)

55 6 Methotrexate DTXSID4020822 6

SLC6A-2/
3/4 (−)

192 18 Nisoxetine DTXSID0045175 11

TOP2A
(−)

75 7 Doxorubicin DTXSID8021480 12

TUB (−) 104 8 Vinblastine DTXSID8021430 12
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Kolmogorov–Smirnov (KS) test. Using the ‘ks.test’ function [32] in R to determine if

ranked predictions associated with moderate-support chemicals (combined with a

training-excluded exemplar chemical, if available) are significantly higher than the dis-

tribution of predictions across all LINCS profiles.

Comparison of model performance by cellular context

In the context of transcriptomic differences between cell lines at baseline, we hypothe-

sized that some MIE classifiers would perform better using data from some cell lines

relative to others. To identify MIEs that show cell type specific differences in predic-

tion, we trained a separate set of models using LINCS gene expression profiles derived

from the PC3 prostate cancer derived cell line. PC3 cells differ from MCF7 cells in

terms of baseline gene expression and tissue of origin, and thus exhibit a different rep-

ertoire of proteins that can be perturbed by chemical treatment. Also, the PC3 cell line

has the second highest number of associated gene expression profiles in the LINCS

data set (Supplemental Fig. 1), thus ensuring the maximal number of classifiers can be

trained for comparison to MCF7-trained counterparts.

Results
LINCS chemical perturbagens were matched to DTXSIDs which are generated upon

chemical registration into the ChemReg chemical registration system [24]. Of 21,299

unique chemicals in LINCS metadata, 4920 (23%) were successfully linked to a

DTXSID. LINCS perturbagens were then matched to RefChemDB chemical-MIE anno-

tations. Filtering RefChemDB with a minimum support level of 5 and eliminating con-

flicting annotations yielded 601 distinct MIEs and 1181 unique chemicals, 765 (65%) of

which were represented in LINCS. After integrating RefChemDB and LINCS L1000

meta data, we identified 51 MIEs with sufficient data (≥5 chemicals; ≥50 profiles) for

classifier training. We explored 6 algorithms and 3 input feature types, generating a

total of 918 distinct classifiers. Binary classifiers were trained for each MIE using bal-

anced sets of “MIE-active” profiles, associated with chemical treatments linked to the

MIE through RefChemDB, and a set of “MIE-inactive” profiles, selected at random

from chemical treatments with no RefChemDB linkage with the MIE.

Landmark gene-based models out-perform other feature types

Classifiers were trained using LINCS L1000 gene expression data in the form of moder-

ated z-scores (LINCS level 5 data). These values are derived from 978 measurements of

landmark genes directly measured by the L1000 assay, and inferred expression of an

additional 11,350 genes [17]. To determine if the use of inferred genes results in im-

proved classifier accuracy, we first trained classifiers using both landmark and inferred

genes. For comparison, we trained a second set of classifiers using landmark genes only.

Landmark gene-based classifiers achieved significantly higher internal accuracies than

models trained on all LINCS genes, regardless of the classification algorithm used

(Fig. 3A, paired Wilcoxon test p < 1.9 × 10− 3).

Previous ML investigations of LINCS data have shown improved performance for

models trained on gene expression data that are pre-processed into pathway scores

[13]. To test if this finding holds for our use case, we trained a third set of classifiers on
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pathway scores derived using ssGSEA [28] on all landmark and inferred genes for 2232

gene sets from the MSigDB canonical pathways collection. Landmark gene classifiers

out-performed pathway score classifiers (Fig. 3A, paired Wilcoxon test p < 1.2 × 10− 2).

79% of landmark gene classifiers out-performed corresponding classifiers using all

LINCS genes and pathway scores for the same MIE and classification algorithm. Due to

the magnitude of difference in accuracies between feature types, and the consistency of

these findings across classification algorithms, we focused on landmark gene-based

classifiers for further analysis.

Optimal training algorithms are MIE-dependent

Focusing on classifiers trained with landmark genes, we then compared performance

across training algorithms (Fig. 3B and C). Using the internal accuracy as a metric of al-

gorithm performance, mean accuracies across MIEs ranged from 0.60 for KNN

Fig. 3 Comparison of internal accuracy scores across input feature types and training algorithms. A)
Distributions of internal accuracies for 51 MCF7-trained MIE classifiers are shown as box-and-whisker plots
for each combination of 6 classification algorithms and 3 input feature types. Each box spans the inter-
quartile range, with the thicker line indicating the median. Whiskers on each plot indicate the range of data
within 1.5x IQR beyond the upper and lower quartiles, and outlier data points beyond this range are
plotted as individual dots. Within each classification algorithm, paired Wilcoxon tests were performed to
determine if accuracies were significantly different when trained on different feature types. P-values are
denoted for the relationships indicated. B) Distributions of internal accuracies for 51 MCF7-trained landmark
gene MIE classifiers are shown as box-and-whisker plots for each classification algorithm. Pairwise Wilcoxon
tests were performed to compare the top three performing algorithms (SVM_P, SVM_L, and SVM_R), with p-
values denoted for the relationships indicated. C) Scatter plots comparing internal accuracies across 6
classification algorithms for MCF7-trained landmark gene classifiers
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classifiers to 0.73 for SVM_P classifiers. SVM_P classifiers performed significantly bet-

ter than SVM_L and SVM_R (paired Wilcoxon test, p-value = 10− 8), which were the al-

gorithms with the next highest mean accuracies of 0.67 and 0.66 respectively.

A potential pitfall of ML-based models is overfitting, in which models perform well

on training data, but fail to generate accurate predictions on new data. To detect over-

fitting in models trained by each algorithm, we compared internal accuracies with hold-

out accuracies using one tailed, paired, Wilcoxon tests (Fig. 4). Internal accuracies were

not significantly higher than holdout accuracies with the exception of classifiers trained

with SVM_P. Classifiers trained with SVM_P showed significantly lower holdout accur-

acies than internal accuracies (paired one-tailed Wilcoxon test p-value = 0.031), sug-

gesting overfitting. Therefore, classifiers trained using the SVM_P algorithm were

excluded from further analysis. In the absence of SVM_P models, there was not a clear

winner among ML algorithms with respect to internal accuracies (SVM_L vs SVM_R,

paired one-tailed Wilcoxon test p-value = 0.21, Fig. 3B). Thus, rather than restricting

the analysis to a set of classifiers trained by any one algorithm, we instead considered

classifiers from all five remaining algorithms (excluding SVM_P) for further

optimization.

Empirical significance testing identifies high performance classifier candidates

One caveat of the current study design is that MIE classifiers were trained on sets of

gene expression profiles, where multiple profiles may correspond to the same chemical

Fig. 4 Comparison of internal and holdout accuracy. Distributions of internal and hold-out accuracies for 51
MCF7-trained MIE classifiers are shown as box-and-whisker plots for each classification algorithm. Within
each classifier, a paired one-tailed Wilcoxon test was performed to test whether holdout accuracies were
greater than internal accuracies across all MIEs
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treatment. This was necessary to build training data sets with adequate numbers of ex-

amples of MIE-linked gene expression changes. However, for MIEs linked to a small

set of chemicals, we considered the possibility that the resulting classifiers might

achieve spuriously high accuracies simply due to the relative homogeneity of profiles in

the MIE-active sets derived from few unique chemical treatments (possibly as few as 5

unique chemicals), without capturing a mechanism of action relevant to the MIE. To

explore the possibility, we first compared internal accuracy with the number of chemi-

cals used in classifier training (Supplemental Figure 2A). This analysis revealed a weak

trend that MIEs with fewer training chemicals tend to have higher internal accuracies

on average. This correlation did not appear statistically significant in most cases, but

was consistent across all six training algorithms. We note that some of the most accur-

ate classifiers are trained on the smallest number of chemicals, e.g. Topoisomerase 2-

alpha (TOP2A (−)) was trained on 75 profiles corresponding to 7 chemicals and

achieved an internal accuracy of 0.88 and an external accuracy of 0.87. Therefore, to

more thoroughly assess each classifier for potential issues with training data homogen-

eity, we opted to use an empirical significance testing approach.

A series of empirical significance tests were performed. The goal of these tests was to

ascertain if a classifier’s performance was driven by real gene expression changes asso-

ciated with the MIE of interest, or, if performance is driven by spurious commonality

in gene expression that occurs by chance among any set of n random chemicals. For

each classifier, a corresponding collection of 500 null classifiers was trained by the ran-

dom replacement of MIE-active chemicals in the training data set. We then once again

evaluated the relationship between training chemical number and spuriously high

model accuracy by comparing the mean internal accuracy from each set of 500 null

classifiers with the number of chemicals used in the MIE-active set (Supplemental Fig-

ure 2B). Mean null accuracies showed a significant and negative correlation with train-

ing chemical number, confirming the need for empirical assessments of classifier

performance that incorporate null accuracies.

To estimate the potential of each individual MIE classifier to achieve spurious predic-

tions, we compared the internal accuracy of each original model to the distribution of

internal accuracies achieved by corresponding null models using an empirical signifi-

cance test (Fig. 5). Empirical p-values were derived from the proportion of null models

that achieved an internal accuracy greater than or equal to that of the original classifier.

Classifiers were considered as candidate high performance classifiers if ≤5% of null

models out-competed their original counterpart, corresponding to a p-value of less

than 0.05. For MIEs with multiple classifier algorithms passing this threshold, we se-

lected the algorithm with the highest internal accuracy score. Using these criteria, we

identified candidate high performance classifiers for 20 MIEs to focus on for further

validation (Table 2). Internal accuracies for these classifiers ranged from 0.65 to 0.94,

with a median of 0.77.

Classifier validation with exemplar reference chemicals

In selecting candidate high performance classifiers, models trained with SVM_P were

excluded from consideration given the significant differences in internal and holdout

accuracy (Fig. 4). Despite this consideration, holdout accuracies for candidate high
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performance classifiers were significantly lower than internal accuracies (pvalue = 0.018,

one tailed paired Wilcoxon test), underscoring the need for additional validation. To

achieve this, classifier performance was validated using training-excluded exemplar che-

micals. Gene expression profiles from LINCS were imputed into candidate high per-

formance classifiers, generating MIE activation predictions. To summarize exemplar

predictions on a per-chemical basis, we took the median of prediction scores for a par-

ticular classifier across all LINCS profiles associated with the same chemical. To make

exemplar chemical predictions comparable across classifiers, we converted these pre-

dictions into percentile ranks (Fig. 6A). Candidate high performance classifiers were

then evaluated by the percentile rank of their corresponding exemplar chemical

(Table 3). Of the 18 candidate high performance classifiers for which exemplar chemi-

cals were available, 9 classifiers ranked their exemplar chemicals among the top 10% of

all LINCS chemicals (bolded rows, Table 3). Candidate models with exemplar chemi-

cals that failed to meet this threshold were excluded from further consideration. We

then evaluated the performance of the remaining 9 confirmed high performance classi-

fiers by inspecting the predictions for all exemplar chemicals (Fig. 6B). Erlotinib, Clo-

cortolone pivalate, 17 beta Estradiol, Tamoxifen, and MS-275 showed top-ranking

predictions for their respective classifiers (FLT (−), MR3C1 (+), ESR-1/2 (+), ESR-1/2

(−), and HDAC (−)). However, vinblastine, doxorubicin, everolimus, and mevastatin

also produced high-ranking predictions for other classifiers associated with MIEs for

which they were not annotated.

Confirmed high performance classifiers show high-ranking predictions for MIE-linked

chemicals not used in training

To further validate the remaining 9 confirmed high performance classifiers, we lever-

aged RefChemDB chemical-MIE associations with a moderate support level (support

level 3–4). These linkages were previously excluded from training data sets because a

previous comparison to in vitro assay results has shown that these associations are

more likely to be spurious relative to linkages with a higher support level [16]. On the

other hand, we reasoned that even if a subset of chemical-MIE associations are spuri-

ous, moderate-support annotations should be enriched for real chemical-MIE

Fig. 5 Example of empirical significance tests. Distributions of internal accuracies from 500 null models are
shown as histograms. Internal accuracy from the corresponding original model is marked by the blue
vertical line. A) Empirical testing results for the AR (+) classifier, which generated an internal accuracy higher
than 97.2% of null models, resulting in empirical p-value = 0.028. B) Empirical testing results for the A/B-CHE
(−) classifier, which generated an internal accuracy score higher than only 43.8% of null models, resulting in
empirical p-value = 0.562
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relationships. If a sufficient number of such moderate-support annotations are available

for a high performance classifier, this enrichment of higher prediction scores should be

statistically significant. Importantly, this test involves a set of chemicals that were ex-

cluded from the original training data sets.

To test this, we compared prediction ranks for these moderate support chemicals

to the background rank distribution using a one-tailed KS test. Of the 9 confirmed

high performance classifiers, 8 generated ranked predictions for moderate-support

linkages that were significantly higher than the background distribution (Table 3,

Supplemental Figure 3). Thus, confirmed high performance classifiers return rela-

tively high predictions for their RefChemDB-associated chemicals not used in clas-

sifier training.

Table 2 Performance Statistics for MCF7-Trained Candidate High Performance Classifiers

MIE
Name

Classification
Algorithm

Internal
Accuracy

Holdout
Accuracy

MIE Active
Profiles

MIE Active
Chemicals

Mean Null
Accuracy

Empirical
p-value

ADRA2A
(+)

SVM_R 0.72 0.86 58 7 0.60 0.03

ALOX5
(−)

NB 0.73 0.55 51 5 0.61 0.01

AR (+) NB 0.71 0.60 52 8 0.61 0.03

DRD2 (−) SVM_R 0.68 0.54 118 14 0.58 0.03

ESR-1/2
(−)

MLP 0.89 0.92 68 5 0.69 0.00

ESR-1/2
(+)

SVM_L 0.85 0.79 145 12 0.64 0.00

FLT1/
KDR (−)

MLP 0.75 0.69 122 10 0.66 0.02

HDAC
(−)

SVM_L 0.82 0.78 174 10 0.67 0.00

HMGCR
(−)

MLP 0.79 0.85 50 4 0.66 0.03

HRH1 (−) MLP 0.71 0.61 110 14 0.61 0.01

JAK2 (−) SVM_L 0.88 0.85 54 5 0.71 0.01

KCNH2
(−)

SVM_R 0.66 0.64 369 34 0.58 0.00

MAPK14
(−)

SVM_L 0.86 0.93 78 5 0.73 0.03

MET (−) SVM_L 0.83 0.70 114 7 0.70 0.01

MTOR/
PI3K (−)

SVM_R 0.90 0.88 204 12 0.70 0.00

NR3C1
(+)

SVM_R 0.73 0.68 100 10 0.60 0.01

PTGS-1/2
(−)

SVM_R 0.65 0.65 247 28 0.58 0.00

SLC22A6
(−)

KNN 0.70 0.64 55 6 0.58 0.02

TOP2A
(−)

SVM_L 0.88 0.87 75 7 0.67 0.00

TUB (−) SVM_L 0.94 0.90 104 8 0.59 0.00
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Model performance varies as a function of training data cell line

To explore whether the ability to predict MIEs varies across celluar contexts, a separate

series of classifiers was trained on profiles from chemical treatments of the PC3 cell

line. Of the 51 MIEs modeled with MCF7-trained data, 46 (91%) had sufficient training

data in PC3 cells. To train PC3 classifiers comparable to MCF7-trained counterparts,

we used landmark gene features. In order to maximize comparability between classifiers

trained in each cell line, we selected SVM_L-based classifiers for comparison. Classi-

fiers trained with SVM_L on MCF7-derived profiles were compared with algorithm and

MIE-matched PC3-derived classifiers based on internal accuracies (Fig. 7). MCF7 and

PC3-trained classifiers showed significant correlation between accuracies (r = 0.57,

pval = 3 × 10− 5). Additionally, the classifiers with the highest internal accuracies were

the same in both cell types (TUB (−) and MTOR/PI3K (−)). On the other hand, a sub-

set of models showed relatively dissimilar accuracies between cell types. The AR (+)

model showed relatively higher internal accuracy when trained on MCF7 data (0.85)

compared to training on PC3 data (0.49), while ADRB-1/2 (−) showed relatively higher

accuracy when trained on PC3 data (0.80) as opposed to MCF7 (0.53). Because MCF7

cells are known to be estrogen-responsive, we suspected that a greater diversity of es-

trogen receptor-interacting chemicals may have been assayed in MCF7 cells relative to

PC3 cells. Such an imbalance in training data could potentially drive differences in

model accuracy between the cell types. However, an inspection of the training data for

these classifiers reveals similar numbers of chemicals and profiles were available for

ESR-1/2 activation in both cell types (Table 4).

An alternative explanation for these differences in classifier accuracies between MIE-

matched models is an underlying difference in expression of the relevant target genes

Fig. 6 Validation of candidate high-performance classifiers using exemplar chemicals. A) Workflow for
converting LINCS profile MIE predictions to within-chemical percentile ranks. B) Heatmap of exemplar
chemical percentile ranks for confirmed high performance classifiers. Heatmap columns are organized by
classifier. Heatmap rows correspond to training-excluded exemplar chemicals. Cell shading represents the
percentile rank for each chemical returned by each classifier. Dark green corresponds to a value of 1
(highest ranked prediction for chemical to activate the MIE) and white corresponds to 0 (lowest ranked
prediction for chemical to activate the MIE). Cells marked with a ‘*’ indicate the corresponding exemplar
chemical assigned to each MIE based on RefChemDB annotations
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between cell lines. To investigate this further, we downloaded normalized expression

(NX) values from the Human Protein Atlas v20 [33] for MIE target genes in MCF7 and

PC3 cell lines. These values represent transcripts per million derived from RNA-seq

profiling that were further normalized with a trimmed mean approach, pareto scaling,

and batch correction, and are specifically intended for comparison of relative mRNA

levels of individual genes across diverse cell lines. For MIEs that were associated with

multiple genes (discussed in section 2.1), a representative NX value was calculated by

taking the median NX value from the set of gene targets contained in the MIE. Based

on these data, we hypothesize that the increased performance of the AR (+) classifier

trained on MCF7 data is likely a result of higher expression of AR in MCF7 cells (NX:

1.2) compared to PC3 cells (NX: 0.0). Conversely, we found that ADRB2 mRNA was

not detectable in MCF7 cells but shows strong expression in PC3 (NX: 10.5), which

corresponds to the increased accuracy of the ADRB-1/2 (−) classifier. To explore this

relationship systematically, we calculated the log2 fold-change in NX values between

the two cell lines for all MIE target genes (MCF7/PC3, adding a pseudo count of 0.1 to

both values, see Fig. 7 and last column in Table 4). In particular, we found that MIE

classifiers corresponding to target genes with substantially higher expression in MCF7

cells tended to have better overall performance when trained on MCF7 data. Thus, dif-

ferences in classifier performance across cell type correspond in part to differences in

Table 3 Validation Statistics for MCF7 Trained Candidate High Performance Classifiers

MIE Name Exemplar
Chemical

Exemplar
Rank

Exemplar Percent
Rank

KS Test
Chemicals

KS Test p-
value

ADRA2A (+) Epinephrine 2826 / 11,666 0.76 2 0.09

ALOX5 (−) MK 886 4291.5 /
11,672

0.63 3 0.87

AR (+) 17-
Methyltestosterone

10,226 /
11,665

0.12 10 0.02

DRD2 (−) Haloperidol 3042 / 11,623 0.74 8 0.09

ESR-1/2 (−) Tamoxifen 26 / 11,661 1.00 5 0.10

ESR-1/2 (+) 17beta-Estradiol 517 / 11,604 0.96 22 0.03

FLT1/KDR
(−)

Erlotinib 1125 /
11,620

0.90 23 0.34

HDAC (−) MS-275 357 / 11,589 0.97 13 0.00

HMGCR (−) Mevastatin 922 / 11,672 0.92 3 0.00

HRH1 (−) Astemizole 8838 / 11,630 0.24 14 0.61

JAK2 (−) NA NA NA 4 0.34

KCNH2 (−) Haloperidol 3438 / 11,522 0.70 22 0.01

MAPK14 (−) NA NA NA 13 0.87

MET (−) Cabozantinib 5357 / 11,626 0.54 3 0.56

MTOR/PI3K
(−)

Everolimus 3 / 11,572 1.00 11 0.01

NR3C1 (+) Clocortolone
pivalate

322 / 11,639 0.97 19 0.02

PTGS-1/2 (−) Flurbiprofen 4782 / 11,556 0.59 20 0.41

SLC22A6 (−) Methotrexate 8663 / 11,671 0.26 18 0.52

TOP2A (−) Doxorubicin 16 / 11,652 1.00 5 0.02

TUB (−) Vinblastine 27 / 11,636 1.00 6 0.00

Bolded entries are the nine confirmed high performance classifiers as determined by an exemplar percent rank ≥0.90
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the expression of the target proteins underlying each MIE, but are not fully explained

by simple analysis of the target gene mRNA expression.

Discussion
In the current study, we trained binary classifiers to predict MIEs from gene expression

profiles and optimized both input feature type and classification algorithm. By integrat-

ing LINCS and RefChemDB in a ML framework for MIE prediction, our analysis has

the following primary findings: 1) We identified landmark genes as an optimal feature

type for MIE prediction based on internal accuracies, 2) Of the 51 MIEs modeled, 9

MIEs generated classifiers that performed significantly better than null models and that

were further validated using training-excluded chemicals and profiles, and 3) Classifier

accuracy varied based on the cell line from which training data were derived, and may

be associated with differences in baseline expression of MIE-linked genes.

Previous studies of drug-use category prediction showed that classifiers trained on

pathway scores outperformed analogous models trained on individual gene features

[13], prompting our evaluation of pathway score-based classifiers. Surprisingly, we

found that models trained on pathway features underperformed relative to models

trained on landmark genes. This may be attributable to differences in the level of

granularity modeled in each study. Our work attempts to predict chemical bioactivity

Fig. 7 Classifier accuracy across cell types. 46 MIEs are plotted by internal accuracy score for models trained
using MCF7 derived data (X axis) and for models trained using PC3 derived data (Y axis). For both cell types,
internal accuracy scores are computed based on the SVM Linear (SVM_L) algorithm using landmark genes
as the feature type. The dashed identity line is shown in green (slope = 1, intercept = 0). The best fit line is
shown in black (slope = 0.55, intercept = 0.29). The correlation coefficient R and corresponding t-test p-value
are shown at the top of the plot. Points are shaded by the disparity in expression of the associated MIE
target gene(s) between cell lines, based on the log2 fold change in NX values from the Human Protein
Atlas. Red and blue points correspond to higher relative expression in MCF7 and PC3 cell lines, respectively.
For visualization purposes, values greater than 4 and less than − 4 were capped at 4 and − 4, respectively
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Table 4 Classifier Statistics for MIEs Modeled using MCF7 or PC3 Profiles

MIE
Name

MCF7
Accuracy

MCF7 MIE
Active
Profiles

MCF7 MIE
Active
Chemicals

PC3
Accuracy

PC3 MIE
Active
Profiles

PC3 MIE
Active
Chemicals

Accuracy
Difference
(MCF7 – PC3)

L2FC
NX
Value

AR (+) 0.85 52 8 0.49 50 8 0.36 3.70

ADRB-1/3
(+)

0.73 51 6 0.51 52 7 0.22 −1.58

ALOX5
(−)

0.72 51 5 0.58 50 6 0.14 0.00

ESR-1/2
(+)

0.81 145 12 0.67 148 12 0.14 5.43

ADRA2A
(+)

0.65 58 7 0.51 51 7 0.14 0.00

SCN5A
(−)

0.70 100 9 0.57 92 9 0.13 3.58

PDE4-A/
B/D (−)

0.71 56 4 0.58 51 5 0.13 −0.35

CYP3A4
(−)

0.66 144 13 0.56 121 12 0.10 0.00

EGFR/
ERBB2 (−)

0.79 140 9 0.69 112 9 0.10 0.30

ESR-1/2
(−)

0.87 68 5 0.78 67 5 0.10 5.43

ACE (−) 0.53 57 6 0.44 54 6 0.09 0.49

PDE3A
(−)

0.58 67 5 0.50 56 5 0.08 −3.58

SLC22A6
(−)

0.56 55 6 0.48 52 6 0.08 3.17

FLT1/KDR
(−)

0.70 122 10 0.63 92 10 0.07 −2.81

CA-1/2
(−)

0.69 90 13 0.62 63 13 0.07 0.00

CYP2D6
(−)

0.65 52 5 0.59 50 5 0.06 0.42

MET (−) 0.81 114 7 0.75 66 7 0.06 −4.60

HDAC (−) 0.82 174 10 0.77 153 10 0.05 −0.71

KCNH2
(−)

0.60 369 34 0.57 304 33 0.03 2.00

PDGFRB
(−)

0.83 66 6 0.80 54 6 0.03 0.00

CYP19A1
(−)

0.57 70 7 0.54 66 7 0.03 2.00

TUB (−) 0.96 104 8 0.94 66 8 0.02 −1.29

KIT (−) 0.81 88 5 0.79 76 5 0.02 0.00

PTGS-1/2
(−)

0.62 247 28 0.61 227 28 0.01 −0.58

HTR2A
(−)

0.58 67 8 0.57 64 7 0.01 0.00

DRD2 (−) 0.58 118 14 0.57 114 15 0.01 1.58

MTOR/
PI3K (−)

0.90 204 12 0.91 146 12 −0.01 −0.23

SCN-1/2-
A (−)

0.65 51 5 0.66 50 5 −0.01 −1.32

TOP2A
(−)

0.88 75 7 0.89 58 6 −0.02 0.61
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at the level of specific molecular targets, as contrasted with previous work [13], which

trained classifiers using labels linked to broader therapeutic use categories.

Previous ML-based investigations incorporating LINCS L1000 data have shown that

deep-learning-based approaches yielded superior accuracy in predicting general chem-

ical use categories relative to SVM-based classifiers [13]. We were therefore surprised

that SVM classifiers out-competed multilayer perceptron in our analysis. One possible

explanation is that unlike previous work [13], in which a single multi-classifier was

trained to predict broader chemical use-case labels, our approach involved training a

separate binary classifier for each MIE, a task for which SVMs are generally well-suited

[26]. Another possible contributor to the relatively low accuracy of our MLP-based

classifiers is that the default hyperparameters for this training algorithm (as encoded in

the R library caret) are limited to a single hidden layer due to compute time con-

straints. However, the training and validation framework presented in the current work

can be used to test additional models and hyperparameter combinations in the future.

Confirmed high performance classifiers assigned relatively high prediction scores to

the corresponding exemplar chemicals, which were completely excluded from the train-

ing data. However, some classifiers assigned high ranking prediction scores to chemi-

cals for which they were not annotated. For example, Everolimus received a high

Table 4 Classifier Statistics for MIEs Modeled using MCF7 or PC3 Profiles (Continued)

MIE
Name

MCF7
Accuracy

MCF7 MIE
Active
Profiles

MCF7 MIE
Active
Chemicals

PC3
Accuracy

PC3 MIE
Active
Profiles

PC3 MIE
Active
Chemicals

Accuracy
Difference
(MCF7 – PC3)

L2FC
NX
Value

HRH1 (−) 0.53 110 14 0.55 94 14 −0.02 −5.04

DRD2 (+) 0.61 125 15 0.63 115 15 −0.03 1.58

FLT3 (−) 0.74 84 5 0.76 60 5 −0.03 0.00

MAO-A/B
(−)

0.68 75 11 0.70 69 10 −0.03 −0.49

AR (−) 0.60 56 5 0.66 54 5 −0.06 3.70

CA-9/12
(−)

0.59 76 10 0.66 50 10 −0.07 1.82

ABCB1
(−)

0.54 283 25 0.61 236 25 −0.07 0.00

SLC6A-2/
3/4 (−)

0.58 192 18 0.68 178 18 −0.09 0.00

PPAR-A/
D/G (+)

0.64 137 16 0.74 129 16 −0.10 −2.00

NR1I2 (+) 0.60 50 6 0.70 67 6 −0.10 0.00

ADRB-1/2
(−)

0.51 67 8 0.62 58 8 −0.11 −3.39

NR3C1
(+)

0.76 100 10 0.90 92 10 −0.14 −0.28

DHFR/
TYMS (−)

0.43 56 6 0.58 54 6 −0.14 0.57

ADRA1A
(+)

0.47 67 10 0.62 63 10 −0.15 0.00

APP (−) 0.42 71 5 0.60 70 5 −0.18 −0.04

SLC22A-
1/2 (−)

0.61 63 7 0.78 55 6 −0.18 −1.70

ADRB2
(+)

0.53 55 9 0.80 50 9 −0.27 −6.73
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ranking prediction for MTOR/PI3K (−), to which it is linked through RefChemDB an-

notations, but was also a high-ranking prediction for TOP2A (−), for which it is not an-

notated. These MIEs are related in that induction of either can be linked to decreased

cell proliferation. MTOR (Mechanistic Target of Rapamycin) and a downstream path-

way that includes Phosphoinositide 3-kinase (PI3K) is a major regulator of cell growth

and proliferation, while TOP2A (Topoisomerase 2-alpha), is a nuclear enzyme that al-

ters topology of DNA to facilitate replication. The high ranking prediction of Everoli-

mus for TOP2A (−) may therefore result from the convergence of distinct MIEs onto

the same key events through shared molecular consequences. While Everolimus is

known to inhibit MTOR but not TOP2A, the inhibition of either of these targets is

known to induce apoptosis [34, 35]. Similar cross-talk between antiproliferative path-

ways in MCF7 cells (MTOR/PI3K (−), TOP2A (−), ESR-1/2 (−)) likely also explains the

high-ranking predictions for Methotrexate (Fig. 6B), a chemotherapeutic that acts via

inhibition of dihydrofolate reductase [36]. These off-target positive predictions may

therefore reflect a limitation of the current methodology. However, we emphasize that

the current methods were developed to predict potential hazards in tier-1 high-

throughput screening efforts [3], and in that framework would require additional valid-

ation with orthogonal assays to confirm relationships between chemicals and their re-

spective MIEs. Therefore, the primary consideration in terms of predictive performance

is the sensitivity of the confirmed high performance classifiers, as demonstrated by their

ability to recover training-excluded exemplar chemicals among the top 10% of

predictions.

An additional limitation of the current work is sparse data on which to train classi-

fiers. Previous ML-based investigations have leveraged more general labels capturing

overall toxicity or chemical use categories to train classifiers using expression profiles

associated with hundreds of chemicals. In contrast, models produced by the current

work are trained using as few as 5 chemicals associated with much more specific bio-

logical activities, such as AR inhibition. One reason for this sparseness in the training

data is that currently there are relatively few chemicals associated with certain MIEs

with high levels of literature support. RefChemDB is the product of an automated cur-

ation process and therefore contains some spurious chemical-target associations. To

ensure the validity of our training data, we limited MIE-active chemicals to those with

a support level corresponding to at least 5 separate sources of evidence for the associ-

ation. It is likely that a subset of chemical-MIE annotations with lower support levels

are valid and could therefore be added to the available training data as additional evi-

dence becomes available. A second contributor to the sparseness of the training data is

limited overlap between chemicals annotated in RefChemDB, and chemicals surveyed

in LINCS. Of the 1181 chemicals annotated in RefChemDB with a support level ≥ 5,

only 765 (65%) have available data in LINCS.

We addressed the sparseness of the data by first clustering similar targets into a sin-

gle MIE, such as HDAC1 (−) and HDAC2 (−), using a data-driven strategy based on

overlapping chemical associations in RefChemDB. This strategy generated MIEs that

can easily be associated with AOPs, without unnecessarily distinguishing between gene

family members for which there are a limited number of chemicals that display family

member specific affinity. We also increased the size of our training data sets by lever-

aging multiple examples of each chemical treatment in the LINCS data, including those
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tested at multiple concentrations and exposure durations. We also performed an em-

pirical significance test using null models matched to the number of chemicals and

profiles used to train each MIE model. This test should identify cases where the model

accuracy is likely to reflect spurious commonalities between profiles for a small number

of chemicals, rather than the true transcriptional signature of the MIE.

Another limitation of the current methodology was the data-driven selection of ex-

emplar chemicals. This selection paradigm considered MIE-chemical support level, fre-

quency of annotation across MIEs, and minimal training data set volume to identify

suitable exemplar chemicals (see section 2.8). We used this data-driven approach for

exemplar selection to remove our own bias of chemical-MIE linkages from the analysis.

However, performing this selection without expert knowledge of metabolism and mo-

lecular crosstalk may have resulted in less than ideal exemplar chemicals. For example,

our strictly data-driven method selected 17-Methyltestosterone as the exemplar for AR

(+). AR (+) passed empirical significance testing (p-value = 0.03) but failed to generate a

high-ranking prediction for 17-Methyltestosterone (87.66 percentile). On the other

hand, 17-Methyltestosterone did return high-ranking predictions for TUB (−), ESR-1/2

(+), and TOP2A (−), none of which are linked to the chemical in RefChemDB. Consid-

eration of the literature reveals 17-Methyltestosterone is estrogenic due to the ease of

its conversion to estrogen by aromatase in MCF7 cells, which may explain the high

ranking prediction for ESR-1/2 (+) [37].

To explore if MIE predictions differed as a function of the cellular context of training

data, we compared classifiers trained on MCF7-derived data with models trained on

PC3-derived data. Of the models with sufficient gene expression profiles in LINCS for

training in both cell types, a subset, such as TUB (−), showed relatively high and com-

parable internal accuracy across cell lines. For MIEs modeled by classifiers that demon-

strate comparable performance across cell lines, it may be advantageous to attempt to

improve classifier accuracy further by training classifiers with an expanded set of train-

ing data derived from multiple cell lines in LINCS.

While some classifiers showed relatively similar results across both cell lines, a

subset of MIE classifiers showed markedly different internal accuracies as a func-

tion of the cell line on which they were trained (Table 4). This disparity in per-

formance could not be explained by differences in the volume of LINCS L1000

data available for model training in each cell type, but was partially associated with

differences in baseline expression of MIE target genes in each cell line. However,

some MIEs, such as NR3C1 (+) showed a disparity in classifier performance despite

similar baseline mRNA expression levels reported in Human Protein Atlas (MCF7

NX: 3.6; PC3 NX: 4.4) It is also possible that such differences in classifier perform-

ance are attributable to cell line specific differences in the expression of cofactors

and other signaling molecules that enhance or repress the responsiveness to a par-

ticular MIE signal, though this is not explored in the current study.

While the relative responsiveness to estrogen receptor modulators in MCF7 cells is

well studied [38], the relative suitability for screening various other MIEs across differ-

ent cellular contexts has not been broadly explored. Thus, in addition to predicting

chemical bioactivity, the methods presented here may also provide utility in selecting

which cell lines are the most informative for screening candidate compounds for

Bundy et al. BioData Mining            (2022) 15:7 Page 24 of 27



activation of specific MIEs based on the relative performance of classifiers trained on

data from different cell types.

Conclusions
The current study used a binary classification approach to predict MIEs induced by

chemical exposure based on gene expression data. We explored a variety of modeling

parameters including input feature type, classification algorithm, and cellular context of

training data. Candidate high performance classifiers were identified with empirical sig-

nificance testing, and further validated using training-excluded exemplar reference

chemicals.

Systematic comparison of models generated with MCF7 and PC3 derived profiles

identified MIEs that were modeled with markedly different accuracies in each cell type,

emphasizing the importance of cellular context in model training. As demonstrated by

training-excluded exemplar chemical predictions, we propose that a subset of classifiers

offer utility in predicting MIEs from L1000 gene expression data. Methods developed

herein could be integrated into EPA’s current tiered testing paradigm to prioritize che-

micals for further study within a framework of new approach methodologies [3]. Future

work will involve the evaluation of model performance on an expanded set of L1000

gene expression profiles, as well as an investigation of the extensibility of LINCS L1000

trained classifiers in successfully predicting MIES using gene expression data produced

on other HTTr platforms.
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