Table 2.
Performance Statistics for MCF7-Trained Candidate High Performance Classifiers
| MIE Name | Classification Algorithm | Internal Accuracy | Holdout Accuracy | MIE Active Profiles | MIE Active Chemicals | Mean Null Accuracy | Empirical p-value |
|---|---|---|---|---|---|---|---|
| ADRA2A (+) | SVM_R | 0.72 | 0.86 | 58 | 7 | 0.60 | 0.03 |
| ALOX5 (−) | NB | 0.73 | 0.55 | 51 | 5 | 0.61 | 0.01 |
| AR (+) | NB | 0.71 | 0.60 | 52 | 8 | 0.61 | 0.03 |
| DRD2 (−) | SVM_R | 0.68 | 0.54 | 118 | 14 | 0.58 | 0.03 |
| ESR-1/2 (−) | MLP | 0.89 | 0.92 | 68 | 5 | 0.69 | 0.00 |
| ESR-1/2 (+) | SVM_L | 0.85 | 0.79 | 145 | 12 | 0.64 | 0.00 |
| FLT1/KDR (−) | MLP | 0.75 | 0.69 | 122 | 10 | 0.66 | 0.02 |
| HDAC (−) | SVM_L | 0.82 | 0.78 | 174 | 10 | 0.67 | 0.00 |
| HMGCR (−) | MLP | 0.79 | 0.85 | 50 | 4 | 0.66 | 0.03 |
| HRH1 (−) | MLP | 0.71 | 0.61 | 110 | 14 | 0.61 | 0.01 |
| JAK2 (−) | SVM_L | 0.88 | 0.85 | 54 | 5 | 0.71 | 0.01 |
| KCNH2 (−) | SVM_R | 0.66 | 0.64 | 369 | 34 | 0.58 | 0.00 |
| MAPK14 (−) | SVM_L | 0.86 | 0.93 | 78 | 5 | 0.73 | 0.03 |
| MET (−) | SVM_L | 0.83 | 0.70 | 114 | 7 | 0.70 | 0.01 |
| MTOR/PI3K (−) | SVM_R | 0.90 | 0.88 | 204 | 12 | 0.70 | 0.00 |
| NR3C1 (+) | SVM_R | 0.73 | 0.68 | 100 | 10 | 0.60 | 0.01 |
| PTGS-1/2 (−) | SVM_R | 0.65 | 0.65 | 247 | 28 | 0.58 | 0.00 |
| SLC22A6 (−) | KNN | 0.70 | 0.64 | 55 | 6 | 0.58 | 0.02 |
| TOP2A (−) | SVM_L | 0.88 | 0.87 | 75 | 7 | 0.67 | 0.00 |
| TUB (−) | SVM_L | 0.94 | 0.90 | 104 | 8 | 0.59 | 0.00 |