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Abstract

Protein phosphorylation is a key regulatory mechanism involved in nearly every eukaryotic 

cellular process. Increasingly sensitive mass spectrometry approaches have identified hundreds 

of thousands of phosphorylation sites but the functions of a vast majority of these sites 

remain unknown, with fewer than 5% of sites currently assigned a function. To increase our 

understanding of functional protein phosphorylation we developed an approach for identifying the 

phosphorylation-dependence of protein assemblies in a systematic manner. A combination of non-

specific protein phosphatase treatment, size-exclusion chromatography, and mass spectrometry 

allowed us to identify changes in protein interactions after the removal of phosphate modifications. 

With this approach we were able to identify 316 proteins involved in phosphorylation-sensitive 

interactions. We recovered known phosphorylation-dependent interactors such as the FACT 

complex and spliceosome, as well as identified novel interactions such as the tripeptidyl peptidase 

TPP2 and the supraspliceosome component ZRANB2. More generally, we find phosphorylation-

dependent interactors to be strongly enriched for RNA-binding proteins, providing new insight 

into the role of phosphorylation in RNA binding. By searching directly for phosphorylated amino 

acid residues in mass spectrometry data, we identified the likely regulatory phosphosites on 

ZRANB2 and FACT complex subunit SSRP1. This study provides both a method and resource 

for obtaining a better understanding of the role of phosphorylation in native macromolecular 

assemblies. All mass spectrometry data is available through PRIDE (Accession #PXD021422).
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INTRODUCTION

Protein phosphorylation is a key cellular regulatory mechanism offering a reversible switch 

by which cells can activate and inactivate proteins1. Phosphorylation has been identified to 

be responsible for such processes as cellular replication2, apoptosis3, and transcription4,5 by 

actions such as modulating protein conformation6 and interactions7,8. With the increasing 

sensitivity of liquid-chromatography tandem mass spectrometry (LC-MS/MS) the ubiquity 

of protein phosphorylation is starting to be revealed and it is currently estimated that 75% 

of the human proteome may be phosphorylated9. Correspondingly, there have been many 

high-throughput phosphoproteomic studies resulting in hundreds of thousands of observed 

phosphorylation sites across many different cell types, tissues, and perturbed states10,11. 

This has resulted in a plethora of known phosphoproteins and phosphosites, but we lack 

insight into the function of most of these sites, or even if they are functional, leading to the 

suggestion that many observed phosphosites might represent biological noise12–14.

Recently, there have been several studies focused specifically on systematically identifying 

functions of protein phosphosites. Several of these studies have used computational 

strategies to make predictions of functional phosphosites. These approaches include use 

of 3D structure scanning to predict the effect of phosphates on interactions8, use of site 

conservation to predict a site’s functionality13,15,16, and more recently the development of 

a machine learning classifier that uses a variety of biochemical and evolutionary features to 

determine the probability of a site’s functionality in the form of a functional score17. These 

methods and their associated functional score predictions have provided great resources 

for the field and have given a sense of scale of the biological role of phosphorylation in 

the cell. Experimental approaches for high-throughput identification of protein phosphosite 

functions have been largely lacking. More recently, a promising approach has been to 

use a modified thermal proteome profiling (TPP) approach where the TPP protocol is 

conducted in conjunction with phosphoproteomics to identify functional phosphosites18–21. 
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This method has proven useful to directly determine whether a phosphosite is likely to be 

functional or not. However, it fails to identify the specific nature of the function of the 

site, and this problem can be similarly indicated in nearly all of the current methods for 

identifying functional phosphorylation in a high-throughput manner.

To this end, we sought to develop an approach to specifically identify protein 

phosphorylation that regulates protein interactions. This method uses differential 

fractionation (DIFFRAC22) of chromatographically separated control and phosphatase-

treated native (non-denatured) cell extracts, as measured by protein mass spectrometry 

on each chromatographic fraction, in order to detect changes in protein assemblies. 

Additionally, we developed and used orthogonal scoring methods for ranking proteins 

with the most notable phosphorylation-dependent changes in their separation behaviour. 

Using this “phospho-DIFFRAC” method, we gathered information on global functional 

phosphorylation and identified novel phosphorylation-mediated interactions in HEK-293T 

cells. Lastly, we were able to identify specific phosphosites in our data likely responsible for 

mediating several of the interactions. The data from this study provide a resource for better 

understanding the roles of phosphorylation in protein interactions.

MATERIALS & METHODS

Cell culture

HEK-293T cells were grown in Dulbecco’s Modified Eagle Medium with 10% Fetal Bovine 

Serum at 37°C and 5% CO2. Cells were passaged between 70–80 % confluence.

Phospho-DIFFRAC sample preparation

HEK-293T cells were washed and removed from 10 cm petri dishes using cold PBS pH 

7.2. Cells were transferred to a 1.5 mL microcentrifuge tube and pelleted at 500 rpm for 3 

minutes at 10°C. Supernatant was then removed and the wet cell pellet was weighed. 800 

uL of Pierce IP lysis buffer (Thermo) was then added to the cells along with the addition of 

protease inhibitor (cOmplete ULTRA Tablets, Mini, EASYpack Protease Inhibitor Cocktail). 

The tube was kept on ice with soft intermittent mixing. The lysate was then spun at 17,000 

g for 10 minutes at 4°C and the supernatant was split into two tubes. 100X phosphatase 

inhibitor (G-Biosciences PhosphataseArrest I) was diluted to 1X in one of the two tubes and 

PBS was added to the other. MnCl2 to a concentration of 1 mM and NEBuffer for Protein 

MetalloPhosphatases (NEB) diluted to a 1X concentration were added to both tubes. 4000 

U of Lambda Protein Phosphatase was then added to the phosphatase tube and buffer was 

added to the other control sample. Samples were then incubated at 37°C for 30 min shaking 

at 60 rpm. Following incubation, samples were then filtered (0.45 μm Ultrafree-MC filter 

unit (Millipore)) spun at 12,000 g for 2 min, 4°C) to remove insoluble aggregates prior to 

fractionation.

Size-exclusion chromatography

Treated and control cell lysates were subjected to size exclusion chromatography (SEC) 

using an Agilent 1100 HPLC system (Agilent Technologies, ON, Canada) with a multi-

phase chromatography protocol as previously described23. Soluble protein (250 μL, 
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2 mg/mL) was applied to a BioSep-SEC-s4000 gel filtration column (Phenomenex) 

equilibrated in PBS, pH 7.2 at a flow rate of 0.5 mL min-1. Fractions were collected every 

0.375 mL. The elution volume of molecular weight standards (thyroglobulin (Mr = 669 

kDa); apoferritin (Mr = 443 kDa); albumin (Mr = 66 kDa); and carbonic anhydrase (Mr = 29 

kDa); Sigma) was additionally measured to calibrate the column.

Mass spectrometry

Fractions were filter concentrated to 50 μL, denatured and reduced in 50 % 2,2,2-

trifluoroethanol (TFE) and 5 mM tris(2-carboxyethyl)phosphine (TCEP) at 55 °C for 45 

minutes, and alkylated in the dark with iodoacetamide (55 mM, 30 min, RT). Samples 

were diluted to 5 % TFE in 50 mM Tris-HCl, pH 8.0, 2 mM CaCl2, and digested with 

trypsin (1:50; proteomics grade; 5 h; 37 °C). Digestion was quenched (1 % formic acid), 

and the sample volume reduced to ~100 μL by speed vacuum centrifugation. The sample 

was washed on a HyperSep C18 SpinTip (Thermo Fisher), eluted, reduced to near dryness 

by speed vacuum centrifugation, and resuspended in 5% acetonitrile/ 0.1% formic acid for 

analysis by LC-MS/MS. Peptides were separated on a 75 μM × 25 cm Acclaim PepMap100 

C-18 column (Thermo) using a 3–45 % acetonitrile gradient over 60 min and analyzed 

online by nanoelectrospray-ionization tandem mass spectrometry on an Orbitrap Fusion 

or Orbitrap Fusion Lumos Tribrid (Thermo Scientific). Data-dependent acquisition was 

activated, with parent ion (MS1) scans collected at high resolution (120,000). Ions with 

charge 1 were selected for higher-energy collisional dissociation fragmentation spectrum 

acquisition (MS2) in the ion trap, using a Top Speed acquisition time of 3-s. Dynamic 

exclusion was activated, with a 60-s exclusion time for ions selected more than once. MS 

from one of the three replicates was acquired in the UT Austin Proteomics Facility.

Protein identification

Prior to protein identification, the human reference proteome (Acc: 02–2019) was 

downloaded from the Uniprot database24 to serve as the mass spectrometry reference 

database. Raw formatted mass spectrometry files were first converted to mzXML file format 

using MSConvert (http://proteowizard.sourceforge.net/tools.shtml) and then processed using 

MSGF+25, X! TANDEM26, and Comet27 peptide search engines with default settings. 

MSBlender28 was used to integrate peptide identifications and subsequently map to protein 

identifications. A false discovery rate of 1% was used for peptide identification. The false 

discovery rate for protein identification was estimated to be 10%29. Protein elution profiles 

were assembled using unique peptide spectral matches for each protein across all fractions 

collected.

Aligning elution traces

We observed by eye that across replicates there was a 1–2 fraction offset in elution traces. 

To mitigate against errors introduced by offsets in chromatography fraction positions, a set 

of proteins (VCP, FASN, GLU2B, COPG1, E41L2, WDR1, TERA, and PGK1) was selected 

as internal standards based on not exhibiting elution shifts upon addition of phosphatase and 

consistent observation in high abundance across all replicates. A sliding window Pearson 

coefficient was estimated to determine the appropriate integer fraction offset and the elution 

traces of all proteins were adjusted accordingly. Notably, the phosphatase-treated sample of 

Floyd et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2022 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proteowizard.sourceforge.net/tools.shtml


replicate 3 had an offset of 12 fractions (due to collecting additional fractions during the 

flow-through) which was determined and adjusted in this manner. Supp Table 1 reports the 

elution profiles with this offset applied.

DIFFRAC score estimation

To score elution profile changes upon phosphatase treatment we compare a protein’s control 

elution trace to the phosphatase-treated elution trace, as illustrated in Figure 2A and first 

described in ref.22. To estimate this change we calculate the L1-norm between the two traces 

(equation 1),

Dp = ∑
i = 1

N
Xp, i − Y p, i ,

where N represents the total number of fractions collected and p represents an individual 

protein. X and Y represent abundance of control and experiment (phosphatase-treated) 

respectively. We next normalize Dp by the total abundance seen for protein p in both the 

control and treated group (equation 2),

Dpnorm =
Dp2

∑i = 1
N Xp, i + ∑i = 1

N Xp, i
,

This was done for all three biological replicates and the median Dp
norm for each protein 

was used as our DIFFRAC score. This score can be converted to a Z-score or p-value to 

determine a significance threshold, as previously described22; for the purposes of this work, 

we simply considered proteins scoring above the 95th percentile as potential hits, i.e. those 

proteins with the strongest evidence for phosphosites regulating protein interactions. Supp 

Table 2 reports all proteins identified with their scores.

Differential abundance score estimation

To score elution profile changes based on peptide spectral matches per fraction (PSMs/

fraction) we first estimated differential abundance between each control and phosphatase-

treated fraction for every protein (equation 3),

Z =
fi, 1 − fi, 2

fi, 0 1 − fi, 0 /N1 + fi, 0 1 − fi, 0 /N2
,

where fi,1 is the frequency of PSMs for a protein in the phosphatase-treated sample in 

fraction i, fi,2 is the frequency of PSMs for a protein in the control sample in fraction i, 
and the numerator represents the difference in sampled proportions of PSMs for protein 

in fraction i in the control and phosphatase-treated samples. The denominator represents 

the standard error of the difference under the null hypothesis in which the two sampled 

proportions are drawn from the same underlying distribution with the overall proportion 

fi,0 = (ni,1 + ni,2)/(N1 + N2) where ni,1 is the total PSMs for a protein in fraction i in the 
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phosphatase-treated sample, ni,2 is the total PSMs for a protein in fraction i in the control 

sample, N1 is the total PSMs observed in the phosphatase-treated sample across all proteins 

and fractions, and N2 is the total PSMs observed in the control sample across all proteins 

and fractions. Z-scores were estimated for each fraction for all three replicates and combined 

to give a per-fraction Z-score, Zp, using Stouffer’s z-score method (equation 4):

Zp =
∑i = 1

k Zi
k ,

where k = 3. These scores were subsequently combined into a single protein Differential 

Abundance Z-score, ZDA, by applying Stouffer’s method to all per-fraction Z-scores for a 

given protein (equation 5):

ZDA =
∑i = 1

k Zp, i
k ,

where k = # of fractions with observations.

Gene Ontology and domain enrichment analysis

gProfiler was used for GO enrichment analysis. The 316 identified phospho-DIFFRAC hits 

were analyzed using the default gProfiler settings. The top 10 GO molecular function terms 

were used for visualization. Protein domain enrichment analysis was done using the DAVID 

tool on the phospho-DIFFRAC hits. Default settings were used for this analysis.

Phosphopeptide identification

324 raw files from mass spectrometry experiments on both an Orbitrap Fusion and Lumos 

machines were converted to the mzML format using MSConvert with the peak picking 

filter selected. The files were split into their respective replicate directories and analyzed 

in 3 separate batches. MSFragger 2.4 on the command line was used for modification 

identification with the human proteome UP000005640 (accessed 3/25/2020) containing 

reversed protein sequences as a decoy database. A closed search was used with the 

fragment mass tolerance adjusted to 75 ppm. Variable modifications included in the search 

were N-terminal acetylation (42.01060), methionine sulfoxidation (15.99490), and serine/

threonine/tyrosine phosphorylation (79.96633). Spectra were then assigned to peptides and 

processed using PeptideProphet with default settings. Protein identification was performed 

using ProteinProphet with default settings. A false discovery rate for all identification steps 

was set at 1%.

Precision-recall analysis of the scoring methods

A positive dataset was constructed using proteins annotated in the PhosphoSitePlus 

database10 as having phosphorylation regulated molecular associations. This set of proteins 

was combined with all proteins from the study by Ochoa et al17 with functional scores 

greater than 0.5 to form our final positive set. The negative set for this analysis were all 
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proteins identified in this study that were not included in the positive set. Precision and 

recall were estimated for the DIFFRAC and DA scores using Scikit-learn30 in Python 2.7.

RESULTS & DISCUSSION

Identifying functional protein phosphorylation using differential fractionation

The phospho-DIFFRAC method is grounded in previous work on co-fractionation mass 

spectrometry (CF-MS)23,31. CF-MS identifies protein complexes by separating proteins in 

their native assemblies along a biochemical gradient using non-denaturing separations and 

utilizes the tendency of proteins in a complex to co-elute, as detected by protein mass 

spectrometry on the resulting biochemical fractions, in order to identify protein interactions 

and complexes. CF-MS was more recently adapted in the form of DIFFRAC to identify 

RNA-binding protein (RBP) complexes by looking for changes in elution patterns between 

a control and RNase-treated sample when both samples are separated by size on a size-

exclusion chromatography (SEC) column22. The DIFFRAC approach has been effective 

in different biological systems, including different cell types and embryonic tissues32, and 

we realized that the method could be applied to identify regulatory mechanisms of protein 

interactions. To this end, we applied DIFFRAC to identify phosphorylation-mediated protein 

interactions.

Phospho-DIFFRAC works by chromatographically separating, e.g. as by a non-denaturing 

SEC, two samples of cell lysate, one of which (the control) has protein phosphorylation 

preserved through the addition of a phosphatase inhibitor, and the other of which (the 

treatment) has accessible phosphate modifications removed by incubation with a non-

specific protein phosphatase, Lambda Protein Phosphatase (Fig 1a)33. Following separation, 

proteins in each resulting fraction are identified and quantified using mass spectrometry28, 

resulting in an abundance profile for every protein that captures its elution across each 

chromatographic separation. Phosphorylation-dependent changes in protein abundance or 

interactions can then be identified by comparing each protein’s elution profiles from 

the control and phosphatase-treated samples. For example, a protein gaining a high 

molecular weight peak in the phosphatase-treated sample compared to the control suggests 

phosphorylation could be destabilizing an interaction involving that protein. Alternatively, 

a protein gaining a low molecular weight peak in the phosphatase-treated sample might 

suggest the presence of interactions stabilized by phosphorylation.

In order to evaluate the utility and power of this approach, we performed phospho-

DIFFRAC on three biological replicates of HEK-293T cells grown in standard laboratory 

conditions (Fig. 1a). In total, across the three replicates, we collected and analyzed 314 

SEC fractions by mass spectrometry. Over 12,000 proteins were identified consistently 

across all three replicates (Fig 1b), indicating high coverage of the proteome by replicate 

measurements, and we computed elution profiles for each of these consistently observed 

proteins across the phosphatase-treated and control sample separations.

To validate the method we first inspected the elution traces of proteins known to have 

interactions regulated by protein phosphorylation. Serine/arginine-rich splicing factor 1 

(SRSF1) is a key component of the spliceosome as well as involved in transcription 
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regulation, mRNA stability and transport, and translation34. SRSF protein kinase 1 

(SRPK1) sequentially hyperphosphorylates the Arginine and Serine rich (RS) domain 

of SRSF1 resulting in a decreased affinity for RNA35. We observed a distinct shift 

in our data corresponding to the expected phosphorylation sensitivity of SRSF1. When 

dephosphorylated we observed a peak eluting in the megadalton (MDa) range likely 

corresponding to the RNA-bound SRSF1 and correspondingly we observed a low 

molecular weight peak for our putatively phosphorylated sample likely corresponding to 

the monomeric form of SRSF1 (Fig 1c).

Additionally, the FACT complex subunit Structure-specific recognition protein 1 (SSRP1) 

is another protein known to form phosphorylation-sensitive interactions that we observed 

to have an elution shift (Fig 1d). This subunit is known to non-specifically bind to DNA 

when dephosphorylated and loses affinity to DNA upon phosphorylation by Casein Kinase 

2 (CK2)36. We observed a MDa peak in the phosphatase-treated sample that is likely 

DNA bound FACT complex and in both the phosphatase-treated and phosphatase-inhibited 

samples we observed a lower molecular weight peak between 66 and 200 kDa that closely 

corresponds to the expected unbound FACT complex mass of about 201 kDa.

Finally, we looked at a negative control protein that we did not expect to have an elution 

shift between the two samples. While it is rare to identify an abundant protein that is not 

phosphorylated, coatomer subunit gamma-1 (COPG1) provided a likely negative control 

as it is not known to be heavily phosphorylated and the sites which are phosphorylated 

on the protein are not highly predicted to be functional (Ochoa et al. max functional 

score: 0.327)17. As well, it is only known to form interactions with other members 

of the coatomer complex of which the assembly and composition is not known to 

be phosphorylation-sensitive. Tellingly, we did not observe any elution change between 

the two samples confirming that COPG1 is not likely to have interactions regulated 

by protein phosphorylation (Fig 1e). Phospho-DIFFRAC proved to be highly-replicable 

at discriminating between proteins known to have interactions regulated by protein 

phosphorylation and those not likely to be regulated by the modification.

Scoring phosphorylation-dependent elution changes

Confident that the experimental component of the method was working, we then turned 

towards systematically scoring the interaction changes we identified. In the previous 

work identifying RNA-binding proteins a single “DIFFRAC score” was estimated using 

a normalized L1-norm (equation 1 and 2)22, treating each complete elution trace as a single 

vector. Due to the global nature of the DIFFRAC score, it tends to be somewhat less 

sensitive to proteins which have significant abundance changes within only a single fraction. 

(Fig 2a). To this end, we developed a second method for scoring each fraction. In short, 

this approach estimates a differential abundance for each fraction in the protein elution 

between the control and phosphatase-treated sample, normalizing the extent of differential 

abundances as a Z-score as in ref.37, then combining the per-fraction Z-scores to generate a 

per-protein score (equations 3–5). Fig. 2b illustrates this scoring method by plotting the fold 

change for each fraction in relation to the protein abundance in each fraction. In accordance 
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with expectation, fractions with large fold-changes tend to have more extreme Z-scores, in a 

manner that scales as a function of protein abundance.

With this orthogonal scoring method in hand, we then compared it with the original 

DIFFRAC score, and observed strong concordance between the two methods in their 

ranking of hits (Fig 2c). To find an ideal cutoff for our top-ranking proteins we did a 

precision-recall analysis of the two scoring methods and indicated the scores that fall at 

the 90th, 95th, and 99th percentile (Fig S3a). The 99th percentile scores have the highest 

precision and represent a high level of accuracy of scores in our top-ranked proteins, but the 

trade-off is fewer hits. While the 95th percentile scores do have a somewhat lower precision 

they do allow for us to have a larger recall and still retain a relatively high accuracy. The 

precision losses continue when we observe the 90th percentile threshold. The 95th percentile 

threshold represented a nice balance of recall and precision. We thus applied a 95 percentile 

threshold to obtain the top-ranked proteins from each scoring approach and we noted that 

the top proteins from each scoring method were largely in agreement with each other (Fig 

2c). 316 proteins were in the 95th percentile for both scoring methods which, for simplicity, 

we will henceforward refer to as our phospho-DIFFRAC hits (Fig 2d), i.e. the set of proteins 

exhibiting the strongest phosphorylation-dependent changes to protein assembly status. To 

get a better understanding of how our method performed in identifying protein interactions 

regulated by functional protein phosphorylation, we utilized a previous study that used a 

classifier to predict the probability of a phosphosite being functional17. We collapsed the 

functional phosphosite scores for each protein by taking the max score and plotted the 

distribution of the scores for our combined hits as well as the non-intersecting top-ranked 

proteins from each scoring method (Fig 2e). In relation to the underlying distribution of 

functional scores for all proteins, our phospho-DIFFRAC hits are markedly enriched for 

proteins with high-scoring functional phosphorylation sites. An analysis of the measured 

abundance of the phospho-DIFFRAC hits (Fig S3b) reveals a bias towards high abundance 

proteins, with all the hits being observed with at least 50 PSMs across the replicates. If we 

use this threshold of 50 PSMs as the criteria for consideration of a protein to be put into 

consideration as a phospho-DIFFRAC hit we note that 7,736 proteins meet this criterion.

Global analysis of phosphorylation-dependent interactions

To better understand the role of functional protein phosphorylation in the cell we 

analyzed the frequencies of gene ontology (GO) annotations among the identified 316 

phospho-DIFFRAC hits38. This revealed the striking enrichment of nucleic acid-, and 

in particular, RNA-binding proteins in our hits (Fig 3a). Phosphorylation is known to 

regulate transcription factor binding4 central RNA processes such as splicing11, but we 

were nonetheless surprised by RNA-binding dominating the GO annotations in our study, 

as opposed, for example, to metabolic enzymes, also known to be extensively regulated by 

phosphorylation39. To gain more insight into this phenomenon, we searched for enriched 

protein domains (Pfam) in our identified hits40. Consistent with the GO annotation 

analysis, the most enriched protein domains were RNA-recognition motifs (RRMs) (Fig 

3b). The role of phosphorylation in regulating the RNA binding of RRMs has been 

identified and analyzed in the context of different proteins that each show a different 

role that phosphorylation plays in RNA-binding35. For example, in the case of SRSF1, 
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hyperphosphorylation of the protein results in its loss of affinity for RNA. With this in 

mind, we looked into whether the number of phosphosites on a protein had any impact 

on it being involved in phosphorylation-mediated interactions. By looking at the total 

number of annotated phosphosites for each protein in our hits and comparing that to the 

number of phosphosites in all other proteins identified in our experiments we noticed 

a significant elevation in the number of total phosphosites for proteins in our hits (Fig 

3c). Hyper-phosphorylation is known to affect spliceosome assembly, as well as seen in 

neurodegenerative diseases such as Tau in Alzheimer’s patients, but this could suggest 

a more ubiquitous role of hyper-phosphorylation in regulating protein interactions than 

previously expected41,42. We additionally searched for enriched classical phospho-binding 

domains in our hits and made a database of proteins listed on Interpro containing 14-3-3, 

Polo-box, FHA, FF, BRCT, WW, WD40, and MH2 domains and looked for their appearance 

or enrichment in our phospho-DIFFRAC hits. Each of the domains were present in our 

hits except the POLO-box domain and the MH2 domain. Only the 14-3-3 domain and 

WD40 domains were enriched in our hits determined with a separate Fisher’s exact test. 

We note that we do not necessarily expect a strong enrichment in classical phospho binding 

domains, as our approach measures intact multiprotein complexes, i.e. also containing all of 

the binding partners of the phosphorylated or phospho binding domain, which should serve 

to reduce the statistical enrichment for such domains.

Phospho-DIFFRAC identified known and novel phosphorylation-dependent interactions

Using phospho-DIFFRAC, we were able to both recapitulate known phosphorylation-

mediated interactions as well as identify novel ones. One novel interaction was identified in 

the homo-oligomeric protein complex of Tripeptidyl peptidase II (TPP2). TPP2 is a serine-

protease associated with the proteasome that forms a homo-oligomeric megastructure with 

helices containing up to 36 subunits43. When comparing our phosphatase-treated sample to 

our control we consistently observed two distinct peaks in protein abundance; one of a high 

molecular weight between 669 and 2000 kDa consistent with the molecular weight of the 

homo-oligomeric form of the protein, and a smaller molecular weight peak eluting between 

29 and 200 kDa consistent with the molecular weight of the monomeric form TPP2 around 

138 kDa (Fig 4a). The peak corresponding to the monomeric molecular weight was either 

only observed in the phosphatase-treated sample or was observed in a higher abundance 

in the phosphatase-treated sample in each of the replicates. These data suggest a possible 

model in which dephosphorylation of the oligomerized complex results in disassembly of 

the complex down to the monomeric state (Fig 4b). To the best of our knowledge, this is 

the first evidence of a role for phosphorylation in the assembly of the megadalton TPP2 

complex.

Another example of a novel phosphorylation-mediated interaction we identified is that of 

Hepatoma derived growth factor-related protein 2 (HDGFL2) and histone H3. HDGFL2 

is a nucleosome binding protein that facilitates RNA polymerase II transcription by 

binding to H3K36me3 or, with less affinity, to H3K79me344. HDGFL2 is a known 

phosphoprotein45–47, but there are no reports of phosphorylation affecting its interaction 

state. We identified two elution peaks for HDGFL2, one of a high molecular weight 

between 669 and 2000 kDa only observed in our phosphatase-treated sample and another 
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at a lower molecular weight between 66 and 200 kDa that was observed in both samples 

(Fig 4c). This led us to the conclusion that the dephosphorylated form of HDGFL2 is 

capable of maintaining an interaction which the phosphorylated form is unable to keep. 

This interaction is likely with its known interaction partner H3C1. Our coverage of 

H3C1 was low, but the few spectral counts that were observed corresponded with the 

position of the higher molecular weight elution of HDGFL2 leading us to hypothesize 

that the interaction of the two proteins is phosphorylation-regulated (Fig 4d, Supp Fig 

1a). The sensitivity of HDGFL2 to phosphatase-treatment indicates a functional role of 

phosphorylation in HDGFL2-regulated transcription and potentially in the cell proliferation 

observed in hepatocellular carcinoma samples48.

Additionally a regulatory role of phosphorylation in apoptosis was identified. The apoptosis- 

and splicing-associated protein (ASAP) complex is a RNA-binding complex, which is 

involved in mRNA processing and apoptosis regulation49. One of the subunits, RNPS1, 

is known to have it’s activity regulated by phosphorylation50, but is not reported to have 

interactions regulated by the modification. We observed RNPS1 and the rest of the ASAP 

complex to be phosphorylation-sensitive (Fig 4e, Supp Fig 1b and 1c). Interestingly, 

we observed a composition change in the complex between the phosphorylated and 

dephosphorylated samples. A slightly lower molecular weight complex between 200 and 

669 kDa, consisting of at least ACIN1 and RNPS1 with the exclusion of the small SAP18 

subunit was observed only in our control sample. The phosphatase-treated sample contained 

a higher molecular weight complex between 669 and 2000 kDa that contained all three 

complex members. (Fig 4f). While the full composition of the smaller complex is not 

currently known, it does indicate a role for phosphorylation in the assembly of this complex 

critical for cell apoptosis.

Finally, the spliceosome is known to assemble in a manner that is dependent on a 

complicated system of phosphorylation51,52. A high molecular weight form of the complex, 

between 669 and 2000 kDa, was only observed in the phosphatase-treated spliceosome (Fig 

4g). This high molecular weight form closely corresponds to the intact spliceosome and 

indicates a role of phosphorylation in the maintenance of this complex. The spliceosome 

provides a clear example of the role that phosphorylation plays on macromolecules where 

the removal or addition can result in disassembly of the complexes. Additionally, it provides 

complex level support that the phospho-DIFFRAC method is working as expected.

Identifying regulatory phosphosites in phospho-DIFFRAC data

We next sought to determine the specific phosphorylation sites regulating the interactions 

of some of our phospho-DIFFRAC hits. To do this we reanalyzed over 300 of our mass 

spectrometry experiments from this study using the proteomics software MSFragger to 

search for phosphorylated amino acid residues53. This resulted in the identification of a 

total of 5,051 phosphopeptides in all, with 1,090 of these phosphopeptides observed in our 

316 phospho-DIFFRAC hits. Hits thus accounted for 1,090/5,051 (22%) of phosphopeptides 

but only 316/12,712 (2%) of proteins identified. We then focused on peptides in our hits 

that were observed in both phosphorylated and dephosphorylated forms in the control 

and phosphatase-treated samples. Following this we were able to search for modified and 
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unmodified peptides that showed differential elution (Fig 5a). Using this approach we 

identified phosphopeptides associated with elution peaks specific for either the control or the 

phosphatase-treated sample.

One of these peptides came from Structure-Specific Recognition Protein 1 (SSRP1), a 

subunit of the heterodimeric FACT complex54. SSRP1 is known to non-specifically bind 

to DNA when dephosphorylated36. We identified two phosphorylated serine residues, at 

S437 and S444, that were associated with a distinct peak in the elution trace of SSRP1 

(Fig 5b). To get a better idea of which site is more likely to be functional we examined 

the site-specific functional scores for all annotated phosphosites on SSRP1 (Fig 5c)17. 

Specifically, phosphorylated S444 is well observed in mass spectra in over 40 biological 

samples, is quantified in the top 5% of differentially regulated sites in 18 conditions, and 

is conserved throughout bilateria. Taken together, these data strongly suggest S444 is a 

functional phosphosite. Additionally, a previous study revealed that Casein Kinase 2 (CK2) 

is responsible for the phosphorylation that inhibits the DNA-binding ability of SSRP136. As 

the site at S444 has a CK2 motif (SDXD), the combination of evidence suggests that this site 

plays a role in DNA-binding of the FACT complex55.

Additionally, we identified a potential regulatory site on Zinc finger Ran-Binding domain-

containing protein 2 (ZRANB2). ZRANB2 is a component of the supraspliceosome 

containing a SR-like domain56. We identified a peptide on ZRANB2 that shows differential 

phosphorylation at S120 between the phosphatase-treated and control samples (Fig 5d). 

This phosphosite at S120 has not been previously indicated for regulating interactions with 

ZRANB2 and the spliceosome, but is observed as phosphorylated in mass spectra from over 

50 biological samples and is conserved throughout Euteleostomi, all of which resulted in 

S120 having the highest functional score of all phosphosites on ZRANB2 (Fig 5e)17. This 

site thus seems responsible for the interaction between ZRANB2 and the spliceosome and 

serves as a foundation for future inquiry.

Estimating the change in phosphorylation after phosphatase treatment.

With the reanalyzed mass spectrometry data in hand, we were also able to make a 

larger survey of overall phosphorylation abundance changes between our two samples 

as compared to changes in other modifications (Fig 5f). Across all three replicates, we 

observed a decrease in Serine and Threonine phosphorylation, and a slightly less remarkable 

decrease in Tyrosine phosphorylation. This corresponds to the expected biases of Lambda 

Protein Phosphatase57. Interestingly, while N-terminal acetylation largely did not vary 

between the two samples, methionine sulfoxidation was observed to be more prevalent in 

our phosphatase-treated sample. The connection between phosphorylation and methionine 

sulfoxidation has been noted before with proteins that are phosphorylated tending to be 

proteins that undergo methionine sulfoxidation58.

Comparison of experimental functional phosphorylation studies.

Finally, we were able to evaluate the hits from our study in comparison to two previous 

thermal protein profiling (TPP) studies performed in human cells19,20. When looking at the 

functional score distributions, all three studies were observed to be enriched for functional 
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phosphoproteins (Supp Fig 2a). Phospho-DIFFRAC was slightly lower in enrichment, likely 

because it identifies the interaction partners of functional phosphoproteins, which need not 

be functionally phosphorylated as well. Interestingly, the overlap in the significant hits 

identified in each study was reasonably large (e.g. as compared to interaction screens59), 

with the greatest intersection coming between phospho-DIFFRAC and the study of Huang 

et al.19 with nearly a third of the phospho-DIFFRAC hits being represented among the 

significant Huang proteins (Supp Fig 2b). We note that the extent of shared hits between 

this study and Huang is larger than that shared between the two TPP studies and remarkable 

considering the different methods used. Some of the disparity in shared phospho-DIFFRAC 

proteins with the two TPP studies might simply be a consequence of differing cell types 

(Huang et al.: HEK-293. Potel et al.: HeLa).

CONCLUSIONS

In developing a new method for identifying phosphorylation-mediated interactions we 

have pushed forward the understanding of functional protein phosphorylation. The striking 

finding that many of the top proteins identified are RNA-binding proteins points to a 

more prominent role of phosphorylation in the assembly-dependent regulation of processes 

such as alternative splicing, transcription, and RNA transport than previously thought. 

Interestingly, our data suggest that phosphorylation is likely specifically regulating the 

interactions between proteins and RNA in addition to whatever other roles it may play in 

regulating protein activity. We expect that the data from this study will provide a source of 

future annotation of a new compendium of phosphosites. Finally, as the method is adaptable 

to assaying functional modifications in other cell types and species, it offers an opportunity 

to help in better defining cross-species functional phosphosites.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow for phospho-DIFFRAC. A) Lysate from HEK-293T cells is separated into 

a control and phosphatase-treated sample. Proteins forming phosphorylation-dependent 

interactions will have elution shifts between the two samples. B) Venn diagram of protein 

observations for each biological replicate. C) Elution trace for serine/arginine-rich splicing 

factor 1 (positive control). Dashed vertical lines are molecular weight standards of 2000, 

669, 443, 200, 150, 66, and 29 kDa. D) Elution trace for Structure-specific recognition 

protein 1 (positive control). E) Elution trace for coatomer subunit gamma-1 (negative 

control).
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Figure 2. 
Scoring phosphorylation-dependent elution shifts. A) Two different approaches for scoring 

elution shifts. DIFFRAC scores changes by estimating an L1-norm for the entire elution 

trace as one vector, DA scores changes by estimating differences in each fraction between 

the two samples for each protein. B) Differential abundance (DA) Z-score per fraction 

compared to fold change for each fraction (mean of 3 replicates). C) Relationship between 

DIFFRAC and DA scores. The 95th percentiles of each scoring method are highlighted as 

well as the intersection of the two. D) Intersection between the 95th percentile of the DA 

and DIFFRAC scores. Same counts as in C. E) Protein functional score distribution for all 

proteins with functional scores (grey), phospho-DIFFRAC hits (blue), and for top-ranked 

proteins that were either only in the 95th percentile based on the DA score (orange) or the 

DIFFRAC score (green).
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Figure 3. 
Global analysis of phosphorylation-dependent interactions. A) GO term enrichment for the 

phospho-DIFFRAC hits identified in this study. B) Enriched Pfam protein domains for 

the phospho-DIFFRAC hits. C) Boxplot of annotated phosphosite counts on proteins from 

PhosphoSitePlus (PSP) in all identified proteins (dark purple) and in phospho-DIFFRAC hits 

>(light purple). Two-sided t-test t=−48.19, p value=6.44e-15.
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Figure 4. 
Phospho-DIFFRAC identified known and novel phosphorylation-dependent interactions. 

A) Elution trace of Tripeptidyl peptidase II. Black line is the control and the blue line 

is the phosphatase-treated sample. Inset i and ii are biological replicates. B) Model 

for TPP2 phosphorylation-dependent assembly. TPP2 dimer is boxed in the dotted line. 

C) Elution trace for Hepatoma derived growth factor-related protein 2 (HDGFL2). D) 

Model for HDGFL2 phosphorylation-dependent histone 3 nucleosome binding. E) Elution 

traces for subunits of the ASAP complex. From top to bottom: Apoptotic chromatin 

condensation inducer in the nucleus (ACIN1), RNA-binding protein with serine-rich domain 

1 (RNPS1), Histone deacetylase complex subunit SAP18 (SAP18). F) Model for ASAP 

comlex phosphorylation-dependent composition. G) Elution traces for components of the 

spliceosome.
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Figure 5. 
Differential phosphorylation analysis of phospho-DIFFRAC data. A) Workflow of 

differential phosphorylation analysis. Phosphopeptides were identified using MSFragger and 

peptides observed in both phosphorylated and dephosphorylated forms were analyzed to 

determine if the different modiforms eluted differently. B) Elution traces of SSRP1 with 

fractions that the differentially phosphorylated peptide was identified in shaded based on 

the phosphorylated form. Green shading indicates the dephosphorylated form and orange 

shading indicates the phosphorylated form. C) Functional scores for all phosphosites on 

SSRP1 overlayed on its domains. POB3 N: POB3-like N-terminal PH domain, SSRP1: 

Structure-specific recognition protein, Rtt106: Histone chaperone Rttp106-like, HMG box: 

High mobility group box. D) Elution traces of ZRANB2 with fractions that the differentially 

phosphorylated peptide was identified in shaded based on the phosphorylated form. Shading 

colors are the same as in B. E) Functional scores for all phosphosites on ZRANB2 
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overlaid on its domains. zf-RanBP: Zinc-finger in Ran binding protein. F) Difference in 

protein modification abundance between control and phosphatase-treated samples. MetO: 

Methionine sulfoxidation, n-Ac: N-terminal acetylation, pS: Serine phosphorylation, pT: 

Threonine phosphorylation, pY: Tyrosine phosphorylation.
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