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Abstract 

Background:  The dysregulation of RNA methylation has been demonstrated to contribute to tumorigenicity and 
progression in recent years. However, the alteration of N1-methyladenosine (m1A) methylation and its role in hepato-
cellular carcinoma (HCC) remain unclear.

Methods:  We systematically investigated the modification patterns of 10 m1A regulators in HCC samples and evalu-
ated the metabolic characteristics of each pattern. A scoring system named the m1Ascore was developed using 
principal component analysis. The clinical value of the m1Ascore in risk stratification and drug screening was further 
explored.

Results:  Three m1A modification patterns with distinct metabolic characteristics were identified, corresponding to 
the metabolism-high, metabolism-intermediate and metabolism-excluded phenotypes. Patients were divided into 
high- or low-m1Ascore groups, and a significant survival difference was observed. External validation confirmed the 
prognostic value of the m1Ascore. A nomogram incorporating the m1Ascore and other clinicopathological factors 
was constructed and had good performance for predicting survival. Two agents, mitoxantrone and doxorubicin, were 
determined to be potential therapeutic drugs for the high-risk group.

Conclusion:  This study provided novel insights into m1A modification and metabolic heterogeneity in cancer, 
promoted risk stratification in the clinic from the perspective of m1A modification, and further guided individual treat-
ment strategies.
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Background
N1-methyladenosine (m1A), an RNA methylation pat-
tern, is a dynamic RNA modification regulated by meth-
yltransferases, demethylases and binding proteins [1]. 
The formation of m1A, which is catalyzed by methyl-
transferases, including TRMT10C, TRMT61B, TRMT6 
and TRMT61A, is reversible by the ALKBH1 and 
ALKBH3 demethylases. YTHDF1, YTHDF2, YTHDF3 

and YTHDC1 act as binding proteins that specifically 
recognize m1A sites and induce downstream effects 
[2]. The pioneering works by Dan et al. [3] and Li et al. 
[4] provided transcriptome-wide mapping of m1A and 
uncovered that m1A modification is enriched in the 
vicinity of the start codon, highlighting the roles of m1A 
in mRNA stability and translation. Today, it is recognized 
that the dynamic regulation of m1A in response to physi-
ological stress and the dysregulated expression of m1A 
regulators are correlated with tumorigenesis and cancer 
recurrence [5, 6].
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Metabolic reprogramming, as a hallmark of cancer, 
exists in nearly all cancer cells [7]. To support uncon-
trolled cell growth and proliferation, the metabolic man-
ners of cancer cells are distinct from those of normal 
cells [8]. A classic metabolic reprogramming method 
is aerobic glycolysis, and cancer cells secrete lactate 
despite the aerobic environment present [9]. In addition, 
with a diversity of nutrients, including lipids, amid acids 
and nucleotides, found to take part in cancer metabolic 
reprogramming in addition to glucose [10], a consensus 
emerged based on the results from molecular-level clini-
cal trials that showed different metabolic dependencies 
across cancer types [11], such as fatty acid metabolism 
in prostate cancer [12] and serine synthesis in breast 
cancer [13]. This difference, which is also recognized as 
metabolic heterogeneity, is mainly associated with the 
heterogeneity of stomatic alterations among cancer cells 
[14]. Drivers of oncogenesis vary in genomic alterations 
and subsequently affect different downstream path-
ways, finally reflecting heterogeneity in cancer metabo-
lism phenotypes [15]. Studies reported by Haider et  al. 
[16] and Sander et  al. [17] provided sufficient evidence 
in the molecular dimension, which showed widespread 
transcriptional differences in metabolic-related genes 
between normal tissue and tumor tissue. Moreover, the 
identification of cancer metabolism phenotypes contrib-
uted to the reasonable stratification of patients in clini-
cal practice with regard to the application of metabolic 
inhibitors and the individual selection of target therapies 
[18].

Although the effective classification of cancer meta-
bolic characteristics remains a controversial issue to date, 
several pioneering works that focus on the expression 
pattern of metabolic genes have been performed in this 
frontier field and have identified distinct metabolic phe-
notypes with different sensitivities to metabolic inhibi-
tors [19, 20]. Here, we explored m1A modification and 
its relationship with metabolic characteristics in hepa-
tocellular carcinoma (HCC). Three m1A modification 
patterns with distinct metabolic characteristics were 
identified, corresponding to the metabolism-excluded, 
metabolism-high and metabolism-intermediate pheno-
types, respectively. Clinical characteristics and prognosis 
showed significant differences among these phenotypes. 
Further, an m1A-related scoring system was developed 
and showed reliable performance in distinguishing drug 
sensitivities and stratifying risk in the clinic.

Methods
Data collection
Two RNA sequencing (RNA-seq) datasets were used in 
the current study: The Cancer Genome Atlas (TCGA, 
liver hepatocellular carcinoma (LIHC), https://​www.​

cancer.​gov) and International Cancer Genome Consor-
tium (ICGC) (LIRI-JP, www.​icgc.​org). HCC patients with 
RNA-seq data (fragments per kilobase per million reads, 
FPKM) and corresponding clinical information were 
enrolled in March 2021.

Statistical analysis
R 4.0.1 was applied to carry out all statistical tests. All 
tests were two-sided, and a P value < 0.05 was considered 
statistically significant.

Additional detailed protocols are provided in the Sup-
plementary Methods.

Results
Landscape of genetic variations in m1A regulators in HCC
There was a prevalent alteration of the copy number 
variation (CNV) in m1A regulators (Fig. 1a). Four regu-
lators, YTHDF2, TRMT61A, ALKBH1 and YTHDC1, 
showed a majority of loss alterations, and three regula-
tors, YTHDF3, YTHDF1 and TRMT61B, mainly had 
gain alterations. The locations of the CNV alterations 
of each m1A regulator on chromosomes are shown in 
Fig. 1b. Somatic mutations were also investigated in the 
TCGA cohort, and only a few samples showed mutations 
in m1A regulators, with a frequency of 3.33% (Fig.  1c). 
The mRNA expression levels of regulators were com-
pared between normal and HCC samples, and a remark-
able upregulation of each regulator was observed in 
HCC tissues (Fig. 1d, Additional file 1: Fig. S1a). Similar 
results were observed when comparatively estimating the 
expression of regulators in paired HCC and adjacent nor-
mal tissues (Additional file 1: Fig. S1b). The above results 
revealed significant heterogeneity at the genetic and epi-
genetic levels of m1A regulators between normal and 
HCC tissues.

Identification of m1A methylation modification patterns
A network plot was used to visualize the connections 
and prognostic value of the regulators (Fig. 2a). A signifi-
cantly positive correlation in expression was observed, 
and this correlation was prevalent despite the func-
tional category of the m1A regulators. We found that 
TRMT10C, TRMT6, ALKBH1, YTHDF2, and YTHDF1 
were positively correlated with the expression of other 
m1A regulators, and all of them were determined to be 
risk factors in univariate Cox analysis. In addition, none 
of the 10 m1A regulators was identified as a protective 
factor, revealing a similar prognostic effect among them.

Unsupervised cluster analysis was carried out using 
the expression data of m1A regulators, and three distinct 
modification patterns, which were named subtypes 1–3, 
were determined (Additional file  1: Fig. S2a-c). A total 
of 128 patients had subtype 1, 82 patients had subtype 2, 
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and 120 patients had subtype 3. Subtype 2 had the high-
est m1A regulator expression levels compared with the 
other subtypes, while subtype 3 had the lowest expres-
sion levels (Fig.  2b). In accordance with the expression 
levels of m1A regulators in each subtype, a significant dif-
ference in the enrichment scores of mRNA methylation 
levels was observed among the three subtypes (Fig.  2c). 
Survival analysis showed that subtype 2 had a remarkably 
poorer prognosis, while subtype 1 and subtype 3 had bet-
ter prognoses (Fig. 2d). These results revealed the modi-
fication heterogeneity of m1A regulators and distinct 
prognosis of HCC patients.

Metabolic characteristics of the three m1A modification 
subtypes
First, gene set variation analysis (GSVA) was performed 
in terms of the HALLMARK gene sets. As shown in 
Fig.  3a, b, the hallmarks related to metabolism, includ-
ing fatty acid metabolism, xenobiotic metabolism and 
bile acid metabolism, were markedly downregulated in 
subtype 2. These results revealed low metabolic activ-
ity characterizing subtype 2, suggesting metabolic 

heterogeneity among the three subtypes. Thus, we fur-
ther investigated the metabolic characteristics of each 
subtype. By estimating the GSVA enrichment scores of 
49 metabolism-associated pathways, subtype 2 and sub-
type 1 had the lowest and highest enrichment scores, 
respectively, across the four major metabolic categories, 
respectively, while subtype 3 had modest values, strongly 
indicating that different m1A modification patterns were 
characterized by distinct metabolic activities (Fig.  3c–f, 
Additional file 1: Fig. S2d). Hence, subtype 1 was classi-
fied as a metabolism-high phenotype, corresponding to 
the hyperactive state in metabolism; subtype 2 was classi-
fied as a metabolism-excluded phenotype, corresponding 
to the hypoactive state; and subtype 3 was classified as a 
metabolism-intermediate phenotype.

We next explored the correlation between each m1A 
regulator and each metabolic pathway. Tumors with high 
activation of purine metabolism, pyrimidine metabo-
lism, selenoamino acid metabolism, glucose metabolism, 
other glycan degradation and glycosaminoglycan metab-
olism showed a positive correlation with all regulators, 
while those with high activation of arginine and proline 

Fig. 1  Genetic and expression landscapes of m1A regulators in HCC. a CNV frequency of m1A regulators in TCGA cohort. b The location of CNV of 
m1A regulators on chromosomes. c The mutation frequency of m1A regulators in TCGA cohort. Each column represents a patient. The upper barplot 
indicated the tumor mutation burden. The right barplot indicated the proportion of each mutation type. The lower barplot indicated fraction of 
conversions in each patient. d Expression levels of m1A regulators in HCC and normal tissues
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metabolism and linoleic acid metabolism were negatively 
correlated with all regulators. These results revealed that 
whether tumors with high expression of an m1A regula-
tor showed high activation of a metabolic pathway was 
actually determined by the specific m1A regulator and 
metabolic pathway (Fig. 3g).

Development of an m1A scoring system
270 overlapping m1A subtype-related genes were 
extracted from the different expression genes (DEGs) 
(Additional file 1: Fig. S3a). Unsupervised cluster analysis 
was performed again based on these 270 DEGs to classify 
patients into three genomic patterns (m1A gene clusters 
1–3) (Additional file 1: Fig. S3b-c).

The expression level of m1A regulators and mRNA 
methylation in the three gene clusters were estimated, 
and both showed significant differences (Fig. 4a, b). Sur-
vival analysis revealed that patients in gene cluster 1 had 
a better prognosis than patients in the other gene clusters 
(Fig. 4c). The metabolic characteristics of the three gene 
clusters were further explored, and a significant differ-
ence was observed. Gene clusters 1 and 3 had the high-
est and lowest enrichment scores, respectively, across the 
four major metabolic categories, which suggested that 
clusters 1 and 3 could be identified as the metabolic-high 
phenotype and metabolism-excluded phenotype, respec-
tively, and cluster 2 could be identified as the metabolic-
intermediate phenotype. (Fig. 4d).

Fig. 2  The m1A methylation modification patterns in HCC. a Network plot visualizing the interaction between m1A regulators in TCGA cohort. 
Each circle represents a m1A regulator gene and the color of circle represents the functional category. The circle size represents the impact of 
corresponding m1A regulator in survival and the lines between pairs circles indicate that there is an expression correlation between two regulators. 
Red line shows a positive correlation and thickness indicate the correlation strength. b Expression levels of m1A regulators in subtype 1–3. c 
Enrichment scores of mRNA methylation in subtype 1–3. d Overall survival of subtype 1–3 and the survival difference was evaluated by log-rank 
test
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We further established a scoring system termed the 
m1Ascore. The correlation between the known classifica-
tions in this study and the m1Ascore is presented as an 
alluvial diagram (Fig. 5a). Patients with subtype 2 had the 
highest median m1Ascore compared with patients with 
other subtypes (Fig. 5b), indicating that a high m1Ascore 
could be associated with the hypoactive metabolic state. 
Gene cluster 3 had the highest median m1Ascore, while 
cluster 1 had the lowest median score (Fig. 5c). A signifi-
cant correlation between the m1Ascore and metabolic 
pathways was directly observed (Fig. 3g).

Risk stratification of HCC patients
We classified 330 patients in the TCGA cohort into 
high- or low-m1Ascore groups, and Kaplan–Meier (KM) 
curves showed that a high m1Ascore was associated with 
a short survival time (Fig. 6a). These results suggested the 
clinical value of the m1Ascore in risk stratification; thus, 
we named the high- and low-m1Ascore groups the high-
risk group and low-risk group, respectively.

The clinicopathological information and molecular 
characteristics of the high-risk and low-risk groups were 
further assessed. Patients in the high-risk group were 

Fig. 3  Biological characteristics involved in three m1A modification patterns. a, b Heatmap visualizing the activation states of biological pathways 
in subtype 1–3. The pathways achieved from the HALLMARK gene sets. c-f Gene set variation analysis enrichment scores of metabolic-related 
pathways in subtype 1–3. c Amino acid metabolism. d Carbohydrate metabolism. e Fatty acid metabolism. f Others metabolism. g The correlation 
plot
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Fig. 4  The m1A gene clusters in HCC. a Expression levels of m1A regulators in gene cluster 1–3. b Enrichment scores of mRNA methylation in gene 
cluster 1–3. c Overall survival of gene cluster 1–3 and the survival difference was evaluated by log-rank test. d Heatmap visualizing the gene set 
variation analysis enrichment scores of metabolic-related pathways in three gene clusters

Fig. 5  Correlation between the known signatures and m1Ascore. a Alluvial diagram visualizing the connection between m1Ascore, subtype1-3, and 
gene cluster 1–3. b Distribution of m1Ascore in subtype 1–3. c Distribution of m1Ascore in gene cluster 1–3



Page 7 of 14Tong et al. BMC Gastroenterology           (2022) 22:93 	

significantly associated with advanced stage, poor dif-
ferentiation and higher Child–Pugh scores (Fig. 6b). The 
expression level of m1A regulators in the high-risk group 
was significantly higher than that in the low-risk group 
(Additional file 1: Fig. S4a). This result is consistent with 
the difference in mRNA methylation levels between the 
two groups (Additional file  1: Fig. S4b). A positive cor-
relation between mRNA methylation and the m1Ascore 
was also observed (Additional file  1: Fig. S4c). Accord-
ing to GSVA, hallmarks related to cell signaling and pro-
liferation were significantly activated in the high-risk 
group compared with the low-risk group, including G2M 

checkpoint, TGF-β signaling, Wnt-β catenin signaling 
and PI3K-AKT-mTOR signaling (Fig.  6c). The meta-
bolic characteristics were investigated, and the results 
indicated that the low-risk group was associated with a 
hyperactive metabolic state, while the high-risk group 
was associated with a hypoactive metabolic state (Addi-
tional file 1: Fig. S4d-g). The somatic mutation landscapes 
are shown in Fig. 6d. TP53 showed the highest mutation 
frequency in the high-risk group (37%), while CTNNB1 
and TTN both had the highest mutation frequencies 
in the low-risk group (24%). No significant differences 
were detected between the two groups in terms of tumor 

Fig. 6  Characteristics of m1Ascore and drug screening. a Overall survival of high and low m1Ascore groups and the survival difference was 
evaluated by log-rank test. b Clinicopathological characteristics in high and low m1Ascore groups. c Heatmap visualizing the activation states of 
biological pathways in high and low m1Ascore groups. The pathways achieved from the HALLMARK gene sets. d Somatic mutation landscapes in 
high and low m1Ascore groups. e–f Drug response analysis of the potential compounds e derived from PRISM and f CTRP
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mutation burden, microsatellite instability or RNAss 
(Additional file 1: Fig. S4h-j).

Identification of potential therapeutic agents
We successfully identified HCC patients with poor prog-
nosis according to the m1Ascore; thus, this score would 
be valuable in the clinic to select suitable drugs for the 
high-risk group in the context of personalized treatment. 
For this purpose, 1770 compounds were retrieved for 
drug screening in the CTRP and PRISM databases after 
excluding 160 duplicated compounds. We next elimi-
nated compounds lacking information in more than 20% 
of the samples. Finally, 1645 compounds were included in 
the subsequent analysis.

The clinical samples were classified by deciles accord-
ing to the m1Ascore, and the estimated area under 
curve (AUC) value of each compound in each decile was 
obtained. Compounds with lower estimated AUC values 
in the top decile group were identified when compared 
with the bottom decile (log2FC > 0.2). Moreover, com-
pounds that showed a negative correlation between the 
m1Ascore and estimated AUC values by Spearman cor-
relation analysis were recorded (Spearman’s r < -0.40 for 
PRISM and CTRP). We retained 22 candidate agents 
after screening, including 6 agents from CTRP and 16 
agents from PRISM (Fig. 6e–f). These compounds were 
all characterized by lower estimated AUC values and a 
negative correlation with the m1Ascore, representing 
better drug sensitivity in the high-risk HCC group. How-
ever, such features are not reliable to support the thera-
peutic effect of these compounds in the clinic. Hence, we 
subsequently performed CMap analysis, and two com-
pounds with CMap scores < -95 were finally identified: 
mitoxantrone and doxorubicin. In addition, the immu-
notherapeutic response was also evaluated; however, no 
significant response difference was detected between 
the high-risk and low-risk groups (Additional file 1: Fig. 
S5a-b).

External validation and construction of prognostic model
We subsequently performed multivariate Cox regression 
analysis, and the results demonstrated that a high m1As-
core was independently associated with poor survival 
(Fig.  7a). In the external validation LIRI-JP cohort, the 
expression levels of m1A regulators between normal and 
tumor tissues were analyzed, and the results confirmed 
the overexpression of m1A regulators in HCC patients 
(Additional file  1: Fig. S6a). The survival time of high-
m1Ascore patients was significantly shorter than that of 
low-m1Ascore patients (Additional file 1: Fig. S6b). Mul-
tivariate analysis demonstrated that a high m1Ascore 
was an independent risk factor for survival (Additional 
file 1: Fig. S6c). By incorporating the other independent 

clinicopathological factors in the TCGA cohort, we built 
a nomogram for use in clinical practice (Fig.  7b). No 
remarkable deviation of predicted survival from actual 
survival was observed according to the calibration plots 
(Fig. 7c). tROC analysis showed that the accuracy of the 
nomogram in predicting survival was more satisfactory 
at 1, 2, and 3  years than AJCC stage or the m1Ascore 
alone (Fig.  7d). The AUC values of the nomogram for 
predicting 1-, 2-, and 3-year overall survival (OS) were 
0.75, 0.69, and 0.73, respectively. In the internal valida-
tion, the adjusted C-index of the nomogram was 0.698. 
The decision curve analysis (DCA) results indicated that 
compared with the m1Ascore or AJCC stage, the utiliza-
tion of the nomogram in the clinic had greater net bene-
fits and net reduction (Fig. 7e–f). These results suggested 
that the nomogram performed well.

Pan‑cancer analysis
We further chosen data on 18 cancer types that had more 
than 5 normal samples from the TCGA database to com-
prehensively investigate the expression patterns of the 
m1A regulators [21]. The expression distributions of the 
m1A regulators across all cancers are shown in Addi-
tional file 1: Fig. S7a, and the expression landscapes are 
shown in Fig. 8a. The expression level of each regulator 
was significantly upregulated in cholangiocarcinoma 
(CHOL) compared with the control, while downregu-
lation was observed in kidney chromophobe (KICH) 
and thyroid carcinoma (THCA). In kidney renal clear 
cell carcinoma (KIRC), compared with normal tissues, 
we noticed that the expression levels of TRMT10C 
and TRMT6 were significantly higher, while those of 
ALKBH1, ALKBH3 and YTHDF1 were significantly 
lower (Additional file 1: Fig. S7b). The expression correla-
tions among m1A regulators across cancers are shown in 
Fig.  8b, in which ALKBH1 and YTHDC1 had the high-
est association (r = 0.77, P < 0.01). These results indicated 
a prevalent m1A regulator expression difference between 
normal and tumor tissues, and the expression level of 
each regulator showed remarkable intratumor heteroge-
neity. Univariate Cox regression analysis was performed 
on 33 cancer types to explore the impact of m1A regu-
lators on survival, and the results showed that the prog-
nostic value of each regulator varied across cancer types 
(Fig.  8c). For example, overexpression of YTHDF2 and 
ALKBH1 is associated with poor survival in KICH and 
HCC but with better survival in KIRC. Finally, to better 
understanding the influence of m1A regulators in cancer 
biology, we provided a schematic to summarize the cur-
rent knowledge of the roles of m1A regulators in meta-
bolic reprogramming of hepatocellular carcinoma and 
pointed the potential therapeutic targets (Fig. 9).
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Discussion
m1A, which has been reported to play a critical role in 
a variety of functional activities, has drawn increas-
ing interest in recent years. In RNA metabolism, it was 
found that the recruitment of the m1A reader YTHDF2 
induces the degradation of m1A-modified RNAs [22]. In 
translation processes, it was reported that m1A modifi-
cation was enriched in the region near the start codon, 
and these sites tended to form secondary structures with 
higher translation efficiency [3]. However, the impact 
of m1A in cancer biology has been poorly elucidated to 
date.

Here, we first reported three distinct m1A modification 
patterns in HCC patients and found that each pattern had 
distinct metabolic characteristics. Subtype 1 displayed 
the highest metabolic activity across the four major 
metabolic categories, characterized by a metabolism-
high phenotype. Subtype 2 displayed the lowest meta-
bolic activity, characterized by a metabolism-excluded 

phenotype. Subtype 3 displayed moderate metabolic 
activity, characterized by a metabolism-intermedi-
ate phenotype. Survival analysis showed that patients 
with subtype 2 had the worst prognosis compared with 
patients with the other subtypes. Yang C et al. reported 
three HCC subclasses (subclasses 1–3) with distinct 
metabolic characteristics based on the expression pro-
files of 2752 metabolism-related genes [23]. Subclass 
3, which displayed a hypoactive metabolic state, had a 
poorer prognosis than subclass 1. Shen et  al. reported 
three clusters in HCC patients with distinct metabolic 
characteristics using the expression data of m6A regula-
tors [24]. Cluster 3 showed the worst OS and the lowest 
metabolic activity. The findings of these studies are con-
sistent with our results. We also observed that among 
seven major processes of cancer, hallmarks related to 
metabolism, including fatty acid metabolism, xenobiotic 
metabolism and bile acid metabolism, were significantly 
downregulated in subtype 2 compared with the other 

Fig. 7  Construction of nomogram for predicting survival of HCC in TCGA cohort. a Forest plot showing the results of univariate and multivariate 
Cox analyses. b Nomogram. cCalibration plot. d Time-dependent receiver operating characteristic analysis and the areas under the curve at 1, 2, and 
3-years. e, f Decision curve analyses. e Net benefit analyses. f Net reduction analyses
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subtypes. Combined with the metabolic characteristics of 
each subtype, these results demonstrated the hypoactive 
metabolism of subtype 2, favoring the credibility of our 
classification of metabolic phenotypes for different m1A 
modification patterns. We further elucidated the associa-
tion between m1A modification patterns and metabolic 
characteristics by analyzing the m1A subtype-related 
DEGs. The three genomic patterns were also found to be 
related to distinct metabolic states and prognoses, which 

again confirmed the metabolic heterogeneity of each 
m1A modification pattern.

We next developed a scoring system, the m1Ascore, 
and found that subtype 2 and gene cluster 3 had the high-
est median scores among the three subtypes and gene 
clusters. As expected, patients belonging to the high-
m1Ascore group had highly expressed m1A regulators 
with a hypoactive metabolic state. These results suggested 
that the m1Ascore could be used as a tool to estimate the 

Fig. 8  Pan-cancer analyses. a Heatmap showing the expression levels of m1A regulators in tumor tissues compared with normal tissues in 18 
cancer types. b Expression correlation of m1A regulators in 33 cancer types. c Forest plots showing the results of univariate Cox analysis in 33 cancer 
types
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m1A modification pattern in individual patients, further 
reflecting the metabolic state. Further analysis confirmed 
that the m1Ascore was an independent risk factor for 
HCC patient prognosis, and a nomogram incorporating 
the m1Ascore and other clinicopathological factors was 
successfully constructed and showed good discriminatory 
capacity and accuracy. These results showed that m1A 
regulators contribute to the prognosis of patients with 
HCC. The roles of m1A regulators in HCC also had been 
investigated in previous studies. The expression levels of 
readers, including YTHDF1, YTHDF2, and YTHDF3, are 
reported to upregulate in HCC tissues compared with 
adjacent tissues, and a positive correlation was detected 
between immune cell infiltration and the expression lev-
els of YTHDF1, YTHDF2, and YTHDF3, revealing the 
functional roles of m1A regulators in modulating the 
infiltration of immune cells in HCC tissues [25]. As for 
erasers, consistent with our results, Wang et al. reported 
an elevated ALKBH3 expression in HCC compared with 
adjuvant non-tumorous tissues, and found that patients 
with high ALKBH3 expression level displayed poor prog-
nosis and the knockdown of ALKBH3 inhibits tumor 
cells proliferation, indicating the functional role of m1A 
modification in promoting cell cycle [26]. A recent study 

reported that the expression levels of writers TRMT6 and 
TRMT61A in HCC tissues were significantly increased 
and showed that the increased TRMT6 and TRMT61A 
expression levels are negatively associated with patients’ 
prognosis, and found that TRMT6/TRMT61A-medi-
ated m1A methylation can initiate liver tumorigenesis 
by regulating lipid metabolism [27]. The modification 
effect of ALKBH3 on m1A methylation is opposite to 
that of TRMT6 and TRMT61A, however, as revealed by 
the above studies and our results, a poor prognosis was 
consistently observed in HCC patients with an elevated 
TRMT6/ TRMT61A or ALKBH3 expression level, sug-
gesting the crucial role of m1A methylation dysfunc-
tion in HCC. It has been reported that m1A modulates 
the PI3K/AKT/mTOR pathway in gastrointestinal can-
cers [28], and the dysregulation of this pathway has been 
identified as a key factor contributing to poor survival in 
several cancers [29–31]. Thus, the mechanism underly-
ing the impact of m1A on survival is probably associated 
with the dysregulation of the PI3K/AKT/mTOR pathway. 
Moreover, the PI3K/AKT/mTOR pathway is known as an 
important process in regulating glucose intake [32] and is 
deemed a crosstalk center between epigenetics and meta-
bolic heterogeneity for the ability to drive the Warburg 

Fig. 9  A schematic of m1A regulators in liver cancer cells. A methyl residue is added to mRNA by methyltransferases, removed by demethylases, 
and recognized by binding proteins. The modification of m1A methylation finally results in metabolic reprogramming in hepatocellular carcinoma. 
Images used in the current schematic are freely taken from Servier Medical Art (https://​smart.​servi​er.​com/)

https://smart.servier.com/


Page 12 of 14Tong et al. BMC Gastroenterology           (2022) 22:93 

effect [33]. Further research on the PI3K/AKT/mTOR 
pathway is needed to enhance our understanding of the 
metabolic heterogeneity between each m1A modification 
pattern. In addition, consistent with the results reported 
by Shi et  al. that CNV events commonly occurred in 
m1A regulators in HCC [34], our study found a preva-
lence of CNVs in all m1A regulators, indicating that the 
alternations to m1A regulators in HCC are prevalent. It 
had been reported that recessive mutations in TRMT10C 
affect aerobic respiration processing and result in lactic 
acidosis [35]. However, very few studies have focused 
on the effects of the genetic alternations of m1A regula-
tors on HCC biology to date. TP53 mutation, which has 
been demonstrated as an important tumorigenesis pro-
cedure [36] and to enhance aerobic glycolysis of tumor 
cells [37], was found to positively correlate with the 
genetic changes of m1A regulators in HCC, and mutation 
frequency of TP53 in low- and high-m1Ascore groups 
were also found significantly different in our study (22% 
vs. 37%, P = 0.003). These results promoted us that the 
genetic variants of m1A regulators might cooperate with 
the mutations of cancer-causing genes in the oncogenesis 
and metabolic reprogramming of HCC.

Identifying promising treatment strategies based on 
molecular characteristics to maximize the therapeu-
tic effect is also one of the main purposes of this study. 
We subsequently identified two potential agents for the 
treatment of high-risk HCC patients, mitoxantrone and 
doxorubicin. Mitoxantrone is an antineoplastic drug that 
is widely used in treating acute myeloid leukemia (AML) 
[38] and breast cancer [39]. The efficacy of mitoxantrone 
for HCC patients has already been investigated [40, 
41], and the results suggested that patients with smaller 
tumor masses and good liver reserves may benefit from a 
therapeutic regimen consisting of mitoxantrone, 5-fluo-
rouracil and cisplatin. Our study provided new insights 
to identify patients suitable for treatment with mitox-
antrone. Doxorubicin is one of the first-line chemothera-
peutic agents used in the management of hematological 
tumors [42] and has also been approved for the treatment 
of HCC patients [43]. Cardiotoxicity is a common side 
effect in the application of doxorubicin [44]. It has been 
reported that 48% of patients using 700 mg/m2 doxoru-
bicin will develop heart failure [45]. Our study indicated 
that the clinical use of doxorubicin in patients with a high 
m1Ascore might be more reasonable compared with that 
in patients with a low m1Ascore. This result is helpful for 
reducing the risk of cardiotoxicity in patients and avoid-
ing ineffective overtreatment.

There are some limitations in the current study. First, 
we estimated the metabolic characteristics of each 
m1A modification pattern using the GSVA score of 
metabolic pathways rather than directly analyzing the 

metabolite profiling or expression patterns of meta-
bolic genes. Some metabolic pathways related to fatty 
acid metabolism, which shared common metabolic-
related genes, might have similar scores. Thus, we have 
to acknowledge that there might be discrepancies to a 
certain extent between the estimated metabolic state 
and actual metabolic state of each pattern. Second, 
the impacts of each m1A regulator on key metabolic 
enzymes were not discussed here, and the molecular 
mechanism underlying the correlation between m1A 
modification and metabolic heterogeneity remains 
unknown. Finally, the results of the current study are 
all based on bioinformatics analyses. The lack of experi-
mental verification might undermine the persuasive-
ness of our conclusion; hence, further in  vivo studies 
are needed to promote the application of our findings 
in clinical practice.

Conclusion
Our findings highlighted the role of m1A methylation 
modification in the crosstalk between epigenetics and 
metabolic heterogeneity in cancer. The estimation of 
m1A modification in HCC patients will promote our 
understanding of metabolic characteristics and be ben-
eficial for survival stratification, further guiding personal-
ized clinical treatment.
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