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Abstract 

Background:  Biochemical recurrence (BCR) after initial treatment, such as radical prostatectomy, is the most fre-
quently adopted prognostic factor for patients who suffer from prostate cancer (PCa). In this study, we aimed to 
construct a prognostic model consisting of gene expression profiles to predict BCR-free survival.

Methods:  We analyzed 70 metabolic pathways in 152 normal prostate samples and 494 PCa samples from the UCSC 
Xena dataset (training set) via gene set enrichment analysis (GSEA) to select BCR-related genes and constructed 
a BCR-related gene risk score (RS) model. We tested the power of our model using Kaplan–Meier (K–M) plots and 
receiver operator characteristic (ROC) curves. We performed univariate and multivariate analyses of RS using other 
clinicopathological features and established a nomogram model, which has stronger prediction ability. We used 
GSE70770 and DFKZ 2018 datasets to validate the results. Finally, we performed differential expression and quantita-
tive real-time polymerase chain reaction analyses of the UCSC data for further verification of the findings.

Results:  A total of 194 core enriched genes were obtained through GSEA, among which 16 BCR-related genes were 
selected and a three-gene RS model based on the expression levels of CA14, LRAT, and MGAT5B was constructed. The 
outcomes of the K–M plots and ROC curves verified the accuracy of the RS model. We identified the Gleason score, 
pathologic T stage, and RS model as independent predictors through univariate and multivariate Cox analyses and 
constructed a nomogram model that presented better predictability than the RS model. The outcomes of the valida-
tion set were consistent with those of the training set. Finally, the results of differential expression analyses support 
the effectiveness of our model.

Conclusion:  We constructed an RS model based on metabolic genes that could predict the prognosis of PCa 
patients. The model can be easily used in clinical applications and provide important insights into future research on 
the underlying mechanism of PCa.
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Introduction
In the past five years, the incidence and mortality rates 
of prostate cancer (PCa) in most regions worldwide have 
stabilized or decreased [1]; however, it is still the most 

common cancer in men worldwide [2]. Although a vari-
ety of curative treatments are available for PCa patients, 
such as radical prostatectomy (RP) or radiotherapy 
(RT) [3–8], patients showed approximately 20–40% and 
30–50% biochemical recurrence (BCR) rates within 
approximately 10 years after receiving RP and RT, respec-
tively [9–11]. BCR, which is defined as an increase in the 
blood level of prostate-specific antigen, indicates that the 
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cancer has come back. Absence of specific guidelines for 
doctors to treat BCR [12] necessitates the identification 
of novel indicators of BCR to develop prognostic and 
therapeutic strategies for patients with PCa.

Bioinformatics methods are currently widely adopted 
in cancer research, and it is common for researchers to 
use a myriad of genes to screen differentially expressed 
genes at both ends (dramatically upregulated and down-
regulated genes) from an elaborately chosen gene list 
[13–16]. However, a drastic elevation in the expres-
sion of a single gene may exert less impact on the flux 
through the metabolic pathway than a small increase in 
the expression of all genes participating in the pathway. 
To address this limitation, a gene set enrichment analysis 
(GSEA) tool was developed to directly assess microarray 
data at the gene set level [17].

Gene sets usually originate from biochemical path-
ways that are frequently correlated with multiple can-
cers [16, 18–20]. PCa is also associated with metabolic 
pathways [21–27]; e.g., amplification of the Rac pathway 
and nicotinamide adenine dinucleotide metabolites has 
been identified as a boost for tumorigenesis in PCa [10]. 
Abnormalities in citrate and choline metabolism that 
occur in PCa samples were previously studied, and four 
component genes (ACLY, ACON, PLA2G7, and CHKA) 
of this metabolic pathway were identified as potential 
therapeutic strategies [9]. PCa has also been studied 
using metabolic genes in the past few years. For instance, 
CYP3A4 and CYP17 were found to be associated with 
PCa in African-American patients [28, 29], and androgen 
receptor and other androgen metabolic genes were found 
to be related to the progression of PCa; however, few 
researchers have constructed metabolic gene models for 
predicting the progression and prognosis of PCa patients.

This study aims to construct a metabolic gene risk 
score (RS) model to predict PCa progression based on 
the expression levels of metabolic genes from The Can-
cer Genome Atlas (TCGA) database (including 494 PCa 
samples and 52 benign prostate samples) and the Gen-
otype-Tissue Expression (GTEx) project (consisting of 
100 benign prostate samples). The tools developed in 
this study will provide novel insights into the underlying 
mechanism of PCa at the molecular level. The workflow 
of this study is illustrated in Fig. 1.

Materials and Methods
Data Preparation
Gene expression information (the data type was RNA-
Seq by expectation–maximization transcripts per 
kilobase million [RSEM TPM], including 152 normal 
samples and 494 tumor samples), and high-throughput 
sequencing fragments per kilobase million (HTSeq-
FPKM), of 551 samples were collected from datasets 

“TCGA TARGET GTEx” and “GDC TCGA Prostate 
Cancer (TCGA-PRAD),” respectively, which are available 
at the University of California Santa Cruz (UCSC) Xena 
database (http://​xena.​ucsc.​edu/). In addition, the clinical 
data of PCa patients were downloaded from the TCGA 
(https://​portal.​gdc.​cancer.​gov/). Patients with missing 
biochemical recurrence (BCR) data (including time to 
BCR and BCR state data) were excluded in this study. A 
total of 458 PCa patients who had both unabridged BCR 
data and gene expression data were incorporated for sur-
vival analysis. Moreover, among these 458 patients, 451 
with complete clinicopathological data (gleason score, 
age and pathologic T stage) were utilized for the con-
struction of risk score model in further analyses.

We obtained 70 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) metabolism pathways as the source 
of metabolic genes [16, 30–32]. Two validation cohorts, 
GSE70770 (n = 203) and DFKZ 2018 (n = 82), were 
obtained from the Gene Expression Omnibus (GEO) 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) and cBioPortal 
(https://​www.​cbiop​ortal.​org/), respectively. The clini-
cal information of the training and validation cohorts is 
shown in Additional files 1 and 2, and 70 pathways and 
related genes are shown in Additional file 3.

Metabolic genes related to biochemical recurrence
We analyzed the gene expression profiles (transformed 
from FPKM to TPM using R software, version 4.0.3) of 
the 70 KEGG pathways using GSEA (version 4.1.0). We 
extracted core enrichment genes (CEGs) from path-
ways with nominal p value < 0.05 and false discovery rate 
(FDR) < 0.25 and used them for univariate Cox regression 
analysis of the data from 458 patients with BCR informa-
tion. Genes with p < 0.05 were regarded as BCR-related 
genes.

RS model establishment
The RS model was constructed using the least absolute 
shrinkage and selection operator (LASSO) method.

RS = ∑n i = 1 each gene’s expression level*relevant 
coefficient.

A Kaplan–Meier plot (K–M plot) was mapped to com-
pare the BFS rates. Furthermore, three- and five-year 
time-dependent receiver operating characteristic (ROC) 
curves of the RS were employed to assess predictability.

Nomogram model construction and validation
We applied univariate and multivariate Cox regression 
analyses for independent predictors, and established a 
nomogram model using independent predictors for bet-
ter prediction. We mapped ROC and calibration curves 
to assess the predictive efficiency of the model and estab-
lished three- and five-year decision curve analyses of the 
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nomogram model. These analyses can assist PCa patients’ 
decision-making on whether or not to receive further 
treatments [33].

Validation of the RS model
We used two datasets (DFKZ 2018 and GSE70770), as 
described in the “Data preparation” section, to validate 
the RS model. We transformed the data into the TPM 
format to ensure consistency with the training data-
set. We applied the RS model to the validation datasets 

and divided them into two groups according to their 
respective medians. We then performed correspond-
ing survival and ROC analyses for comparison with the 
results of the training cohort.

We also constructed a violin plot to visualize the 
expression of the RS component genes in normal pros-
tate/PCa tissues from the UCSC data. We detected 
the expression of these genes in 15 pairs of PCa and 
matched adjacent normal prostate tissues by perform-
ing quantitative real-time polymerase chain reaction 
(qRT–PCR) analysis (Additional file 4).

Fig. 1  Overall work flow of this study. GTEx: Genotype-Tissue Expression project; TCGA: The Cancer Genome Atlas; GEO: Gene Expression Omnibus; 
PCa: prostate cancer; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene Sets Enrichment Analysis; LASSO: Least absolute shrinkage and 
selection operator; qRT–PCR: quantitative real-time PCR
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According to the product protocol, total RNA was 
extracted using TRIzol (Invitrogen, Waltham, MA, USA), 
and cDNA was synthesized via reverse transcription using 
the Transcript First‐Strand cDNA Synthesis Supermix Kit 
(Transgen Biotech, Beijing, China). SYBR premix Ex Taq 
II (Takara, Dalian, China) was used to detect the relative 
expression of the genes included in the model using qRT–
PCR, and GAPDH was used as the internal reference. All 
reactions were repeated three times. Relative expression 
levels of these genes were calculated using the 2−ΔΔCT 
method.

Statistical Analysis
All statistical analyses were performed using R soft-
ware (version 4.0.3). We used t-test to analyze PCR 
data. The objective, method, and package name of all R 
packages used in this study are presented in Additional 
file 5.

Results
Acquiring CEGs
With the cutoff criteria mentioned in the “Metabolic 
genes related to biochemical recurrence” section, among 
70 KEGG pathways, we detected 11 pathways signifi-
cantly enriched in normal tissues, as well as 2 pathways 
enriched in PCa tissues (Additional file 6). We extracted 
194 CEGs that functioned in these pathways. The path-
ways and corresponding CEGs are presented in Addi-
tional file 7.

Selection of BCR‑related genes
Among 194 CEGs, 55 genes had a p-value < 0.05, as deter-
mined by univariate Cox regression analysis. Among 
these 55 genes, only 16 genes demonstrated the same 
trend as the GSEA results and univariate Cox regression 
results (e.g., retinol acyltransferase (LRAT) was found to 
be enriched in the normal group, indicating that it should 
be a protective gene rather than an oncogene, and its 

Fig. 2  Evaluation of the RS model using Kaplan–Meier plot of the training set (divided into high- and low-risk groups based on the median of the 
risk score) (A), three-year BFS ROC curve (B), and five-year BFS ROC curve (C) predicted using the risk score model (p < 0.05 and AUC > 0.7). K–M plot, 
Kaplan–Meier plot; TCGA, The Cancer Genome Atlas; AUC, area under the curve; BFS, biochemical recurrence-free survival; ROC, receiver operating 
characteristic; RS, risk score

Fig. 3  Univariate Cox analysis predicting prognostic factors (A) and multivariate Cox regression analysis identifying independent prognostic factors 
(B) among the RS model and other clinicopathological factors. In the “risk score” row, p value < 0.05 and hazard ratio > 1, indicating that the risk score 
model is a prognostic factor for PCa patients. AUC, area under the curve; RS, risk score; PCa, prostate cancer
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hazard ratio was < 1; therefore, it was selected as a BCR-
related gene). Therefore, these 16 genes were included in 
the subsequent analyses (Additional file 8).

Building and verifying the RS model
Of the 16 genes identified, 3 were screened via LASSO anal-
ysis, and using the expression level of these 3 genes, the RS 
model was formulated as (-0.0282084945656616)*(CA14 
expression) + (-0.0475765886437412)*(LRAT expression) +  

0.0419407402502097*(MGAT5B expression), where CA14 is 
carbonic anhydrase and MGAT5B is alpha-1,6-mannosylgly-
coprotein 6-beta-N acetylglucosaminyltransferase B. Patients 
were divided into two groups depending on the median 
RS, and then a K–M plot was constructed to compare the 
BCR of these two groups (p < 0.05) (Fig.  2A). The AUCs 
(areas under the curve) of three- and five-year ROC curves 
were 0.739 and 0.729 (Fig. 2B, C), respectively; both values 
being > 0.7 validates the accuracy of the RS model.

Fig. 4  Establishment of the nomogram model using independent prognostic factors as a new prognostic model (A), three-year ROC curve and 
calibration curve of the model (B, D), and five-year ROC curve and calibration curve of the model (C, E). The results of the calibration and AUC 
were > 0.7, and the calibration curves showed good linearity for the three- and five-year BFS, revealing the predictive efficiency of the nomogram 
model. ROC, receiver operator characteristic; AUC, area under the curve; BFS, biochemical recurrence-free survival

Fig. 5  Three-year ROC curves of Gleason score and pathologic T stage (A, C) and five-year ROC curves of Gleason score and pathologic T stage for 
predicting the biochemical recurrence-free survival of PCa patients. The AUCs of T stage and Gleason score were lower than those of the nomogram 
model. AUC, area under the curve; ROC, receiver operating characteristic; PCa, prostate cancer
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Establishment of nomogram model
The Gleason score, pathologic T stage, and RS can 
be regarded as independent predictors according to 
the results of univariate and multivariate Cox regres-
sion analyses (based on the cutoff standard of p < 0.05) 
(Fig. 3A,B). A nomogram composed of the Gleason score, 
pathological T stage, and RS is shown in Fig.  4A. The 

corresponding AUCs were 0.816 and 0.806, respectively, 
which were larger than 0.7 (Fig.  4B, C), revealing the 
strong predictive capability of the nomogram model. The 
correlated calibration curves verified the capability of our 
model to predict BFS (Fig. 4D,E). We also calculated the 
AUCs of three- and five-year ROC curves for the Gleason 
score and pathologic T stage (Fig. 5A–D). The nomogram 

Fig. 6  Decision curve analysis (DCA) of the nomogram model. The model has a high net benefit and a wide range of threshold probabilities in 
predicting the risk of biochemical recurrence within five (A) and three years (B). “None” means that no individual receives treatment or intervention. 
“All” means that all patients are treated or intervened clinically. The DCA presents a reference for patients who make decisions according to their 
respective anticipations
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model was superior to all three independent predictors. 
We constructed a nomogram model with only T stage 
and Gleason score, calculated the AUCs of three- and 
five-year ROCs (Additional file 9), and observed that the 
AUCs (0.782 and 0.771, respectively) were lower than 
those of the nomogram model with RS (0.816 and 0.806, 
respectively). Moreover, we performed decision curve 
analysis based on the three- and five-year BFS of the 
nomogram model to support patient decision-making 
(Fig. 6A, B).

Validation of the RS
Two validation cohorts from cBioPortal (DFKZ 2018) 
and GEO (GSE70770) were analyzed to further evalu-
ate our risk score model. The corresponding K–M plots 
were constructed, and similar to the TCGA cohort, the 
p values of the K–M plots of both datasets were < 0.05 
(Fig. 7A,D). The respective AUCs of three- and five-year 
DFKZ 2018 cohorts were 0.800 and 0.766 (Fig.  7B,C), 
while those of GSE70770 were 0.686 and 0.655 (Fig. 7E, 
F). We compared the differences in the expressions of RS 
component genes between normal prostate tissue and 
PCa tissues based on the TCGA data using the violin plot 
(Fig. 8A, p < 0.05 indicates statistical significance), which 

displays that expression levels of CA14 and LRAT were 
higher in normal tissues and that of MGAT5B was higher 
in tumor tissues. The corresponding qRT–PCR results of 
these three genes showed the same trend (Fig. 8B–D).

Discussion
BCR can occur in > 65% of high-risk PCa patients after 
surgery [34–36]. Once BCR occurs, individuals are often 
recommended to receive subsequent treatment, even 
though BCR may not be a surrogate for progression or 
metastasis [12, 37]. Therefore, it is important to under-
stand the molecular mechanisms of BCR.

In the present study, we filtered 194 metabolic genes 
via GSEA, selected 55 BFS-related genes from the TCGA 
(training set), and eventually established a 3-gene risk 
score. We then combined the risk score with other clini-
cal features to generate a new model that could better 
predict BFS. Next, we validated the risk scores obtained 
from GSE70770 and DFKZ 2018 datasets (two valida-
tion sets). Finally, we used the PCR method to verify the 
results. All the results indicate that the risk score has 
strong predictive ability.

This is not the first study of BCR, which uses gene 
expression signatures [38–43]. In a previous study, a risk 

Fig. 7  Kaplan–Meier curves of validation datasets DFKZ 2018 (A) and GSE70770 (D). The areas under the three- and five-year ROC curves of DFKZ 
2018 (B, C) and GSE70770 (E, F) presented the same trend as the training set. K–M plot: Kaplan–Meier plot; AUC: area under curve
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score model was constructed for a ferroptosis-related 
gene signature; the AUCs of three- and five-year ROC 
curves of the model in the TCGA cohort were 0.738 and 
0.752 (close to the values obtained in our study, 0.739 
and 0.729); however, most of these signatures contain 
too many genes that are not applicable to clinical tests. 
Those studies established a risk score composed of nine 
genes, which is three times the number of components 

in our signature, and evaluation using that risk score may 
cost more to patients/researchers for further treatment/
research; therefore, it is less likely to be used in clinical 
applications. In addition, all genes selected in those stud-
ies were differentially expressed genes (DEGs). In the 
current study, we used GSEA to select candidate genes 
rather than DEGs, which focused more on the func-
tion of gene sets than on the expression level of a single 

Fig. 8  Comparison of the expression levels of CA14, LRAT, and MGAT5B in normal and malignant prostate tissues (A) using data from UCSC and 
using PCR (B–D). These three genes were differentially expressed in prostate cancer tissues. ‘*: p < 0.05; **: p < 0.01
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gene so that genes functioning in tumors can be studied. 
Although our RS model is not excellent at the statisti-
cal level, it should still be further studied as a biomarker 
because it is based on biochemical metabolic pathways.

Our RS model consists of lecithin, LRAT, CA14, and 
MGAT5B. LRAT is a crucial component of retinol 
metabolism. According to data from cell lines provided 
by Guo et  al. [44], the expression level of LRAT in PCa 
lines is significantly low. CA14, which was found to 
be expressed at higher levels in normal tissue than in 
tumor tissue, participates in nitrogen metabolism and is 
included in a gene signature designed to predict disease-
free survival [45]. MGAT5B, which is involved in N-gly-
can biosynthesis, has been reported to be involved in 
metastasis competence in mice and is highly expressed in 
human PCa tissues [46]. Studies on PCa and metabolic 
pathways in which three constituent genes are involved 
have reported that gene expressions and gene variants in 
retinol metabolism are related to PCa prognosis [47–49]. 
Additionally, nitrogen metabolism has been found to cor-
relate with PCa [50]. Serum N-glycan profiling has been 
identified as a potential biomarker for predicting prostate 
cancer prognosis [51, 52]. These past results are in line 
with those of our study and thus verify our results.

This study has some limitations. First, the cutoff val-
ues in the training and validation sets were selected 
based on the median value of the RS. Although we nor-
malized the expression to TPM, the values still differed 
from each other. In addition, the data used in this study 
were from public datasets; therefore, further in  vitro 
and in  vivo experiments are necessary to support our 
findings. Furthermore, the training set was based on 
the PCa data of patients who live in the United States; 
therefore, the results and equations may not represent 
patients in other countries.

Conclusions
We developed a risk score model to improve the pre-
diction of biochemical recurrence in prostate cancer 
patients using metabolic genes and metabolic path-
ways. The results are highly consistent with the results 
of previous studies. The model can help explore the 
underlying mechanism of biochemical recurrence and 
provide new perspectives for the treatment or preven-
tion of prostate cancer progression.
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