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Abstract

Motivation: Structural genomic variants account for much of human variability and are involved in several diseases.
Structural variants are complex and may affect coding regions of multiple genes, or affect the functions of genomic
regions in different ways from single nucleotide variants. Interpreting the phenotypic consequences of structural
variants relies on information about gene functions, haploinsufficiency or triplosensitivity and other genomic fea-
tures. Phenotype-based methods to identifying variants that are involved in genetic diseases combine molecular fea-
tures with prior knowledge about the phenotypic consequences of altering gene functions. While phenotype-based
methods have been applied successfully to single nucleotide variants as well as short insertions and deletions, the
complexity of structural variants makes it more challenging to link them to phenotypes. Furthermore, structural var-
iants can affect a large number of coding regions, and phenotype information may not be available for all of them.
Results: We developed DeepSVP, a computational method to prioritize structural variants involved in genetic dis-
eases by combining genomic and gene functions information. We incorporate phenotypes linked to genes, functions
of gene products, gene expression in individual cell types and anatomical sites of expression, and systematically re-
late them to their phenotypic consequences through ontologies and machine learning. DeepSVP significantly
improves the success rate of finding causative variants in several benchmarks and can identify novel pathogenic
structural variants in consanguineous families.

Availability and implementation: https://github.com/bio-ontology-research-group/DeepSVP.

Contact: robert.hoehndorf@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction several efforts to predict and prioritize pathogenic genomic variants

(Eilbeck et al., 2017), predicting the functional impact of SVs dis-
Structural genomic variants are genomic variants that affect >50 covered through genome sequencing studies remains challenging due
base pairs and include copy number variants, insertions and dele- to the diversity of variant size and type; SVs may cover multiple cod-
tions (Eichler, 2019). Many structural variants (SVs) are implicated ing and non-coding regions, overlap several genes, and are affected

in heritable diseases (Sudmant et al., 2015). While there have been by haploinsufficiency and triplosensitivity (Kidd et al., 2008).
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Methods for predicting the pathogenicity of genomic variants
may be based on their impact on protein structure, measures of se-
quence conservation or function (Eilbeck et al., 2017). However,
due to the complexity of the SVs, including the variant size, type and
overlap with multiple genes, designing methods that determine SV
pathogenicity is more challenging. Several efforts for analyzing the
clinical impact of SVs have focused on well-matched cases and con-
trols. For instance, by evaluating the loci and the respective path-
ways that may be impacted by an SV at these loci, it became
possible to define novel genes involved in complex disorders such as
autism (Pinto et al., 2010) or immune-related disorders (Rossin
et al., 2011). While there are several methods to identify disease-
associated variants in cohorts, it is more challenging to discover
disease-associated variants that exist in a single sample or pedigree,
in particular in rare Mendelian disorders (Sanchis-Juan et al., 2018).

Methods that evaluate the functional consequence of SVs in indi-
vidual genomes use different strategies. Several approaches include
genomic information, such as variant length, haploinsufficiency
measures or GC contents, to separate pathogenic from benign SVs
(Hehir-Kwa et al., 2010; Kleinert and Kircher, 2021; Sharo et al.,
2020; Zhang et al., 2021). Furthermore, the predicted pathogenicity
of deleterious single nucleotide variants within an SV can be used to
estimate pathogenicity of SVs (Ganel et al., 2017). Additionally,
phenotypes associated with a loss of function in single genes has also
been used for prioritizing SVs (Doelken ef al., 2013; Kohler et al.,
2014).

Phenotype-driven variant prioritization methods aim to link var-
iants to the phenotypes observed in individuals using prior know-
ledge (Eilbeck et al., 2017). Commonly, the link is established using
a similarity measure between phenotypes associated with a variant
or gene and the phenotypes observed in a patient (Smedley et al.,
2015). Phenotype-based methods are successful in finding disease-
associated variants (Shefchek et al., 2020) but suffer from the lim-
ited information about variant— or gene—phenotype associations.
One way to overcome this limitation is to utilize phenotypes
observed in model organisms and link them to human phenotypes
(Shefchek et al., 2020; Smedley et al., 2013); however, even when
including phenotypes from model organisms a large portion of
human protein-coding genes remain without associations, thereby
limiting the success of phenotype-based methods to variants or genes
that have previously been studied either in humans or animal mod-
els, or relying on guilt-by-associations approaches in which informa-
tion about phenotypes is propagated through associations such as
interaction networks (Smedley ez al., 2014).

Several deep learning methods are now available that can predict
phenotypes (Kulmanov and Hoehndorf, 2020; Zhou et al., 2019) or
associate phenotypes with different types of information available
for genes, including functions of gene products and site of expres-
sion (Chen et al., 2020; Smaili et al., 2019). These methods use ma-
chine learning to relate information through background knowledge
contained in ontologies, and can accurately identify phenotype-
associated genes without prior knowledge about phenotypes, often
significantly improving over the use of semantic similarity measures
(Kulmanov et al., 2020). A limitation of these methods is that they
are often transductive instead of inductive (Kulmanov et al., 2020),
i.e. the diseases or disorders for which associated genes are predicted
should already be available at the time of training the model. As
these methods require information about disease-associated pheno-
types during training, they will therefore not generalize to entirely
new cases, thereby limiting their application in identifying
phenotype-associated genomic variants.

We developed a machine learning method that predicts whether
a copy number variant (i.e. an SV that is either a duplication or dele-
tion) is pathogenic and involved in the development of specific phe-
notypes. Our method combines genomic information and clinical
phenotypes, and leverages a large amount of background knowledge
from human and animal models. For this purpose, we extend an
ontology-based deep learning method that has previously been
applied to identifying gene—disease associations (Chen et al., 2020)
to allow it to be applied to patient-specific phenotypes. We demon-
strate that our method can improve over the state-of-the-art

methods in detecting pathogenic deletions or duplications where
phenotypes follow a Mendelian inheritance pattern; in particular,
DeepSVP can improve the precision in finding phenotype-associated
variants. We further apply our method to the diagnosis of a family
with congenital disease involving infantile spasms and seizures for
which previous analysis of single nucleotide variants in whole exome
and whole-genome sequencing data found no associated variant. We
make DeepSVP freely available as a Python package at https://
github.com/bio-ontology-research-group/DeepSVP.

2 Materials and methods

2.1 Inputs, outputs and problem statement

DeepSVP is a machine learning model that takes as input a set of
SVs in Variant Call Format (VCF) format together with a set of phe-
notypes encoded using the Human Phenotype Ontology (HPO).
DeepSVP outputs a list of the variants from the input VCF file
ranked by their probability of being associated with (or causative of)
the set of phenotypes provided as input.

2.2 Data sources and ontologies

We use as training and testing dataset the set of pathogenic and be-
nign SVs aligned to the human reference genome GRCh38 obtained
from the database of genomic structural variation (dbVar; Griffith
and Griffith, 2004) downloaded on February 8, 2020. We use func-
tional and phenotypic characteristics for genes in the human gen-
ome, in particular the phenotypes associated with human genes in
the HPO database (Kohler et al., 2019), the phenotypes associated
with mouse orthologs in the Mouse Genome Informatics database
(Bult et al., 2019), the functions of gene products from UniProt
(UniProt Consortium, 2019), gene expression in human cell types
(Tabula Muris Consortium et al., 2018) and the anatomical site of
expression from the GTEx tissue expression database (GTEx
Consortium, 2015). These annotations are characterized using the
HPO (Kohler et al., 2019), Mammalian Phenotype Ontology (MP;
Bult et al., 2019), Gene Ontology (GO; Gene Ontology Consortium,
2019), Cell Ontology (CL; Diehl et al., 2016) and the anatomical
site of expression (UBERON) ontology (Mungall et al., 2012).
Detailed information about the data sources and ontologies is pro-
vided in the Supplementary Section S1.

2.3 Training the DeepSVP model

The DeepSVP model consists of two parts: a phenotype prediction
module that matches genes and the phenotypes observed in the
affected individuals, and a pathogenicity module which determines
whether a variant is disrupting normal gene functions; DeepSVP
combines both modules in a joint model. Figure 1 presents a high-
level summary of training the DeepSVP model, and a more detailed
description of the model and training process is provided in
Supplementary Section S2.

To determine pathogenicity of an SV, we rely on features from
public databases, in particular the features provided by AnnotSV
version 2.3 (Geoffroy et al., 2018). The variant features generated
by AnnotSV either characterize the entire variant (such as the length
of the variant or its GC content) or they are derived from genes over-
lapping the variant (such as the number of genes or length of tran-
scripts). A detailed description of variant-based features is provided
in Supplementary Section S3 and Table S2 summarizes all the fea-
tures used in our predictive model.

The phenotype prediction module uses the DL2Vec (Chen et al.,
2020) method to encode ontology-based annotations associated
with genes in a low-dimensional feature vector. DL2Vec ‘embeds’
ontologies and their annotations in a real-valued vector space. For
this purpose, DL2Vec first generates a graph G = (V, E) from ontol-
ogy axioms in which nodes represent classes and edges represent axi-
oms that hold between these classes (Chen ez al., 2020). Both genes
and diseases are then added to G as additional nodes and are linked
to the ontology classes with which they are annotated. DL2Vec then
explores the graph using random walks, and generates embeddings
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Fig. 1. Overview over the DeepSVP model. (a) First, a graph is generated from the
ontology axioms in which nodes represent classes or entities annotated with ontol-
ogy classes, and edges represent axioms that hold between these classes. (b) The
DL2Vec workflow takes a set of phenotypes as input and predicts whether a gene is
likely associated with these phenotypes using the background knowledge in the
graph generated from the ontology and its associations. (c) The combined model
uses the prediction score of the DL2Vec phenotype model combined with genomic
features derived from SVs. The model outputs a prediction score for each variant
that determines how likely the variant is causative of the phenotypes provided as in-
put. G, genes; D, diseases; F, (genomic) features; P, phenotypic score

from these walks using Word2Vec. We use HPO to represent the
phenotypes associated with diseases, and associate genes with
classes from HPO, GO, MP, CL and UBERON. As these annota-
tions are available for a different number of genes, we generate gene
embeddings using each ontology separately. As parameters for
DL2Vec, we use 100 random walks with a walk length of 25; we
use the Word2Vec (Mikolov et al., 2013) skip-gram model to gener-
ate the embeddings from the walks with 10 window size, 1 as the
minimum count value and an embedding size of 100. We train the
skip-gram model for 20 epochs. As a result, we obtain a real-valued
feature vector for each disease and gene (and ontology class) of size
100. The embeddings representing genes and diseases are used to
train a model that predicts gene—disease associations and outputs a
value between 0 and 1 for each gene-disease pair (see
Supplementary Section S2). We use this value as a feature in the
DeepSVP model. The use of the (HPO-based) disease embedding
allows our model to encode the phenotypes that are caused by a
pathogenic variant.

For training DeepSVP, we considered as positive instances all the
causative variants in our training set with the disease phenotypes for
which they are causative. We separate the positive instances from
two types of negatives instances: the benign variants which are not
implicated in any disease, and pathogenic variants that are not
related to the disease phenotypes observed in a patient (but poten-
tially related to another set of phenotypes).

We trained and evaluated our models using a nested cross-
validation in which we first divide our data into five folds of which
we use one for testing and four for training in each iteration, and
then divide the four folds used for training into another two folds of
which we use one for training and one for validation and tuning
hyperparameters. We stratify all folds by disease, i.e. ensure that
variants in each fold are associated with distinct diseases and there-
fore different phenotypes; this stratification aims to ensure that our
model generalizes to new diseases (with new sets of phenotypes) that
were not seen during training. We use the training folds for fitting
model parameters, the validation fold to tune hyperparameters and
report performance on the testing folds.

The architecture of the prediction models is derived by hyper-
parameter optimization using Scikit-Optimize with Bayesian opti-
mization (skopt) within each training iteration. We provide a
detailed description of the set of hyperparameters we tuned and use
in Supplementary Section S2.3. We build separate models for each
aggregation operation (either maximum or average) and each

ontology dataset. For the final DeepSVP model, we chose the hyper-
parameters that resulted in best testing performance in one of the
folds. We find that our model can separate positive from negative
cases with an Area Under the Receiver Operating Characteristics
Curve (ROCAUC) ranging from 0.8959 using only anatomical site
of gene expression as background knowledge to 0.9700 combining
all background knowledge; Supplementary Table S3 contains the
cross-validation results.

We implemented our models using Keras with a TensorFlow
backend, and training was performed on a single Nvidia Tesla V100
GPU. We evaluated the performances of our model in the testing set
using the ROCAUC, Fl-score, the Area Under the Precision—Recall
Curve (PRAUC) and the Diagnostic Odds Ratio (DOR; Glas et al.,
2003).

2.3.1 Phenotype-based inference in DeepSVP

We use the DeepSVP model to rank SVs depending on their pre-
dicted pathogenicity and the relations between genes affected by the
SV and the phenotype observed in affected individuals. For infer-
ence, DeepSVP takes a VCF file (containing a set of SVs §) and a set
of phenotypes P as input. We use AnnotSV to generate the genomic
features for each SV v € § that the DeepSVP model uses as features.
We then generate a new embedding representing the set of pheno-
types for which the prediction is made. We generate the embedding
by modifying the DL2Vec graph and adding a new node i, and add-
ing an edge between i and all phenotypes p € P.

We then generate a new embedding for the new node i by per-
forming a sequence of random walks starting at 7 and updating the
pretrained skip-gram model used by DL2Vec using these walks. This
approach allows the skip-gram model to generate an embedding for
a new set of phenotypes while considering the full DL2Vec graph
generated from the ontology. Using the trained phenotype prediction
model (for each ontology), we then predict the phenotype-based
scores used as features by DeepSVP.

2.4 Evaluation and comparison of DeepSVP

We evaluate DeepSVP on disease-associated variants added to the
dbVar database between February 8, 2020 and July 2, 2020. Our
training dataset and that of StrVCTVRE (Sharo ef al., 2020) and
AnnotSV (Geoffroy et al., 2018) are limited to the set of variants
that have been added to dbVar prior to that date; CADD-SV
(Kleinert and Kircher, 2021) has been trained with data that may
overlap with our test data. In total, 1503 disease-associated variants
were added between February 8, 2020 and July 2, 2020, covering
579 distinct diseases; 175 of these diseases are not linked with any
variant in our training set. We created synthetic patient samples by
inserting a single causative variant into a whole-genome sequence
from the 1000 Genomes Project for SV (1000 Genomes Project
Consortium, 2012). The set of SVs in 1000 Genomes contains a
total of 68697 variants for 2504 individuals from 26 populations.
Using the 1000 Genomes frequencies for all populations, we exclude
all variants with Minor Allele Frequency of >1% which results in
2391 variants remaining. Each variant in dbVar is linked to an
Online Mendelian Inheritance in Man (OMIM; Amberger et al.,
2011) disease; we obtain the phenotypes of the disease from the
HPO database (the file phenotype_annotation.tab) and assign these
phenotypes to the synthetic genome. We consider the combination
of the synthetic genome and HPO phenotypes as a synthetic patient
sample. We repeat this for all 1503 causative variants. Evaluation
measures consist of determining in how many of the 1503 synthetic
patients the correct (inserted) variant was retrieved at rank 1, 10
and 30, as well as the area under the ROC and the precision-recall
curves.

We compared the performance of DeepSVP to three related
methods that can rank or classify SVs, CADD-SV (Kleinert and
Kircher, 2021), StrVCTVRE (Sharo et al., 2020) and AnnotSV ver-
sion 2.3 (Geoffroy et al., 2018). CADD-SV and StrVCTVRE are SV
impact predictors that use a set of genomic features for SVs relating
to the conservation, gene importance, coding region, expression and
exon structure, trained using a random forest classifier. CADD-SV
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uses a larger set of variant annotations compared to StrVCTVRE.
AnnotSV provides a classification for each SV based on recommen-
dations for the interpretation of copy number variants (Riggs et al.,
2020) and classifies variants into pathogenic, likely pathogenic, of
uncertain significance, likely benign and benign. AnnotSV can use
the phenotype-based method Exomiser (Smedley et al., 2015) to de-
termine whether phenotypes are consistent with previously reported
cases, and incorporate the phenotype-based score in the variant clas-
sification process. We rank variants based on the class assigned by
AnnotSV, descending from pathogenic to benign.

2.5 Whole-genome sequencing and SV calling

We collected blood samples for a cohort of individuals which
included a Saudi family consisting of five individuals, two unaffected
parents, two affected children and one unaffected child (Alfares
et al., 2020). We performed whole-genome shotgun sequencing on
all individuals. Details on alignment and SV calling are provided in
Supplementary Section S4.

2.6 Ethical approvals

This study was approved by the Institutional Research Board of the
King Abdullah International Medical Research Center (RC16/113
and RC16/211/R2), and the Institutional Bioethics Committee at
King Abdullah  University of Science and Technology
(17IBEC08_Gojobori). All patients have been consented to be
enrolled in this study, a written consent form was obtained from all
subjects or their parents or legal guardians in the case of minors
who are aged 16 years old or younger.

3 Results

3.1 DeepSVP predicts phenotype-associated SVs

We developed DeepSVP as a method to identify phenotype-
associated SVs (deletions and duplications) for patients based on
personal genomic data and the phenotypes observed in a patient.
The aim of the DeepSVP model is not only to detect potentially
pathogenic SVs, but identify the variants that are ‘causative’ for a
set of phenotypes observed in a patient. We consider a variant as
cause of a set of phenotypes when it is both pathogenic (i.e. disrupts
the normal functioning of one or more genes) and contributes to the
development of the phenotypes. This approach is motivated by the
observation that even healthy individuals may have pathogenic or
potentially pathogenic variants that do not result in abnormal phe-
notypes. Therefore, detecting pathogenicity of a variant alone is typ-
ically not sufficient to establish causality (MacArthur et al., 2014).

DeepSVP uses the phenotypes arising from a loss of function in
mouse, phenotypes associated with human genes, the anatomical
site of gene expression, gene functions and cell types in which genes
are expressed, as background knowledge, and links these to the ab-
normal phenotypes observed in the individual in which the struc-
tural was detected. To make predictions based on these different
features types, we embed them into a shared representation space
using a feature learning method applied to ontologies (Chen ez al.,
2020). We then combine the resulting embeddings with sequence-
derived features that can be used to predict the pathogenicity of a
variant, and use a neural network model to predict whether a vari-
ant is associated with patient phenotypes. While we evaluated the
DeepSVP model using cross-validation (see Section 2.3), an evalu-
ation on a testing dataset that resembles the training data will not be
indicative of the performance of the model in a realistic setting
where the aim is to identify a disease-associated variant among po-
tentially hundreds or thousands of candidates within a genome.

As a more realistic evaluation of our model, we generate synthet-
ic patient data in which we combine the variants from the genome
sequences in the 1000 Genomes Project, insert a single disease-
causing pathogenic variant and associate this synthetic genome with
the phenotypes of the variant. We then apply our model to all SVs in

this synthetic patient, rank the resulting variants based on the
DeepSVP prediction score, and evaluate the results (i.e. the rank at
which we predict the inserted disease-associated variant). For this
evaluation, we select an independent dataset of disease-associated
SVs, i.e. a set of variant-disease pairs added to dbVar after we
obtained training data for our model. Our evaluation set contains
1503 variants associated with 579 distinct diseases in OMIM and
overlapping with 1926 unique genes. There are 175 diseases (associ-
ated with 640 variants) that were not present in our training data.
We create synthetic patient samples for all variant-phenotype pairs
in this evaluation set. We also compare the results of our model with
another method for identifying disease-associated variants,
StrVCTVRE, CADD-SV and AnnotSV. Table 1 shows the amount
of disease-associated variants we identify at different ranks. We
evaluate the performance separately for variants that are associated
with a disease already present in our training data and variants that
were not.

The performance using different DeepSVP models varies depend-
ing on the availability of the features as well as the gene annotations
that are available for each type of feature. The benchmark dataset (i.e.
the list of variants we inserted) covers 1920 unique genes, with the
largest variant containing 129 genes and the smallest variant contain-
ing one gene. There are 635, 963, 1214, 1360 and 493 missing anno-
tations from these genes for features represented using GO, MP, HP,
CL and UBERON, respectively. However, the models are still able to
predict causative variants using the annotations of the remaining
genes (1285, 957, 706, 560 and 1427 for GO, MP, HP, CL and
UBERON) which have an annotation and a corresponding representa-
tion. The evaluation demonstrates that DeepSVP can identify the var-
iants in novel (i.e. unseen during training) disease-associated variants
with one, or more than one, gene. Generally, phenotype-based predic-
tions (using the HP ontology) perform well across most evaluations;
predictions based on anatomical site of expression and gene function,
for which most data are available and the least number of genes are
missing a representation, also perform well across the experiments.
We find that DeepSVP using the union with average score significantly
improves ranking of disease-associated variants over StrVCTVRE and
CADD-SV  (p < 6.6x1071% and p < 1.2x 1072, Mann—
Whitney U test), methods that use similar features as DeepSVP to de-
termine pathogenicity of variants but do not rely on information
about phenotypic or functional consequences. We further evaluated
the classifications provided by AnnotSV. AnnotSV classifies variants
into five classes (pathogenic, likely pathogenic, unknown significance,
likely benign, benign) which we rank by sorting variants based on this
classification (from pathogenic variants as highest to benign variants
as lowest); and then break the ties randomly. To better compare
DeepSVP with AnnotSV’s classification of variants, we perform a
reranking experiment in which we apply DeepSVP to all variants in
our benchmark set that AnnotSV classifies as either pathogenic or
likely pathogenic, i.e. sets of variants that are not further distinguish-
able using the variant classifications generated by AnnotSV. DeepSVP
ranks variants based on their associated phenotypes and pathogen-
icity, and ranking among pathogenic or likely pathogenic variants
demonstrates the improvement provided by DeepSVP over the
AnnotSV classifications. Table 2 shows the ROCAUC values for this
reranking experiment and demonstrates that DeepSVP’s phenotype-
based prioritization can improve over AnnotSV’s ranking.

While we are able to identify disease-associated SVs using pheno-
type information, the phenotypes reported with a patient-derived
sample will not always be complete or as comprehensive as in our
evaluation. To determine the effect of different phenotype associa-
tions, we further evaluated the performance of DeepSVP when only
partial phenotype data is available. We repeat our experiment using
synthetic patient samples while randomly removing between 10%
and 50% of the phenotypes associated with the sample
(Supplementary Tables S4-S7). We find that even when reducing the
number of associated phenotypes to 50%, the performance of our
model remains comparable; however, when removing phenotype in-
formation entirely using the combined model, the predictive
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Table 2. Summary of the ROCAUC performance for reranking causative variants from the benchmark dataset with DeepSVP that are
assigned the same classification by AnnotSV (930 variants classified as pathogenic, 563 variants as likely pathogenic)

GO MP HP CL UBERON Union

Maximum score Pathogenic variants 0.9032 0.9032 0.9018 0.9018 0.9034 0.9028
Likely pathogenic variants 0.9710 0.9711 0.9713 0.9739 0.9704 0.9720
Average score Pathogenic variants 0.9032 0.9028 0.9029 0.9020 0.9028 0.9016
Likely pathogenic variants 0.9703 0.9695 0.9704 0.9707 0.9702 0.9694

performance drops compared to a model that includes information
about phenotypes and results in 27 (1.8%) of causative variants
ranked first and 575 (38.3%) in the top 10.

3.2 DeepSVP identifies a disease-associated variantin a

consanguineous family

We applied DeepSVP to investigate whole-genome sequencing data
in nine consanguineous families from Saudi Arabia (Alfares et al.,
2020) where the clinical presentation is suggestive of genetics under-
lying etiology with two or more affected individuals, and all previ-
ous genetic analyses based on clinical and whole exome analysis
were negative. First, we investigated single nucleotide variants and
small insertions and deletions as possible explanation of the underly-
ing genetics etiology. However, we were unable to identify a pos-
sible disease-associated variant in all nine families using this
approach (Alfares et al., 2020).

We applied DeepSVP to rank SVs for possible explanation of the
phenotype. In one family, the affected individuals showed hypotonia
(HP: 0001290), developmental delay (HP: 0001263), infantile spasms
(HP: 0012469), strabismus (HP: 0000486) and seizures (HP: 0001250);
after removing all common variations, we ended up with 47 SVs requir-
ing further investigation. DeepSVP ranked one duplication in chromo-
some 2q24.3(NC000002.12 : g.164062341166264282dup) as top
rank using the combined model based on the maximum score (see
Supplementary Table S8 for other DeepSVP models); this duplication
contains 16 genes (COBLL1, CSRNP3, GALNT3, GRBI14,
LOC100506124, LOC101929633, LOC102724058, SCNIA,
SCN1A-AS1, SCN2A, SCN3A, SCN9A, SLC38A11, SNORA7OF,
TTC21B, TTC21B-AS1). Duplication of 2q24.3, including the cluster
of voltage-gated sodium channel genes, is linked with hypotonia, seiz-
ures and neonatal epilepsy in several unrelated cases (Firth et al., 2009;
Okumura et al., 2011; Simonetti et al., 2012). We further confirmed the
variant with length 2201941 using Array Comparative Genomic
Hybridization in a clinical laboratory. DeepSVP outputs the gene based
on which phenotypic similarity was established (using the maximum
phenotype score), and among the 16 genes, the SCN1A gene has the
maximum phenotype score using MP model. The heterozygote loss of
function of SCNIA in mouse is a model of Dravet syndrome (Kim
et al., 2018; Miller ez al., 2014) and resembles many of the phenotypes
observed in the family we analyzed. Our results shows that DeepSVP
can not only identify disease-associated SVs but further yield interpret-
able results that can provide actionable clinical information. We com-
pared the results with predictions of AnnotSV and StrVCRTRE.
AnnotSV classified 11 variants out of 47 as pathogenic, including the
variant we identified. StrVCRTRE scored only 6 variants out of 47 (the
remaining variants are either <50 bp in length or not exonic, and there-
by out of the scope of StrVCRTRE), and the variants we identified
ranked 4 out of 6.

4 Discussion

4.1 Related work

A seminal study investigated the application of phenotype-similarity
in CNVs (Doelken et al., 2013) and the results let to the
PhenoGramViz method and tool (Kohler et al, 2014).
PhenoGramViz, as well as AnnotSV, use phenotypes to rank and
prioritize SVs using phenotype information. To overcome the

limitation of missing information about phenotypes, PhenoGramViz
and AnnotSV rely on mouse phenotypes. While mouse phenotypes
increase the coverage of genes with phenotype associations, there
are nevertheless a large number of genes for which no phenotype
associations are available. DeepSVP overcomes the limitation of
missing phenotypes by incorporating information related to genes
through ontologies, mainly the functions of gene products, gene ex-
pression in individual cell types and anatomical sites of expression
and systematically relating them to their phenotypic consequences
through ontologies. The phenotype-based prediction model in
DeepSVP is modular and can be utilized as part of other methods
such as AnnotSV.

PhenoGramViz is not a method that directly prioritizes SVs but
relies on visualizing ranking results and exploration by users. While
this is useful in targeted studies, DeepSVP can be applied as a com-
ponent of computational workflows while still enabling interpret-
ation of results. AnnotSV provides a classification rank for each SV
using five classes based on their overlap with known variants from
different data sources, and aims to implement clinical classification
guidelines for variants. DeepSVP, on the other hand, provides
pathogenicity prediction for each variant rather than categorize
them and includes phenotype prediction models not only to identify
relatedness to known phenotypes but also to predict new ones; it
may therefore be more suitable for generating hypotheses about
phenotype associations of SVs that do not overlap with known dis-
ease genes. StrVCRTRE is a method that also directly predicts
pathogenicity of SVs and uses similar features related to the gene im-
portance, coding sequence and expression, which allows us to com-
pare directly. A key difference between DeepSVP and StrVCRTRE is
DeepSVP’s use of phenotype information while StrVCRTRE does
not rely on phenotype information which improves prediction
results significantly. Furthermore, StrVCRTRE ranks only the
exonic variants, while DeepSVP ranks both exonic and intronic
based on the availability of the genomics features. We evaluated and
compared DeepSVP with AnnotSV and find that DeepSVP does not
improve over AnnotSV with respect to recall but it improves the pre-
cision of finding phenotype-associated variants; AnnotSV is not a
method to rank variants but rather to classify variants in categories,
which may lead to multiple variants being classified as ‘pathogenic’
and therefore decrease precision. DeepSVP ranks variants without
ties and shows generally higher precision in our evaluation; it may
also allow DeepSVP to more easily be applied in computational
workflows where high precision is desirable. Since version 3.0,
AnnotSV also provides a more fine-grained ranking of variants from
which the variant classification is derived; we did not compare
DeepSVP with this version of AnnotSV as it was released after our
synthetic, time-based dataset was created. In the future, we intend to
provide additional comparisons of DeepSVP with the different out-
puts of AnnotSV.

4.2 Machine learning with semantic background

knowledge for variant prioritization

DeepSVP relies on machine learning for predicting pathogenic and
phenotype-associated variants. For this purpose, it relies on advan-
ces in machine learning with ontologies that incorporate the back-
ground knowledge contained in ontologies in the form of axioms
and annotations to ontology classes (Kulmanov et al., 2020). Many
such approaches convert ontologies into a graph-based form based
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on syntactic patterns within the ontology axioms and then apply a
graph embedding on the resulting graph (Kulmanov ez al., 2020). In
DeepSVP, we use DL2Vec which includes a large variety of ontology
axioms and can significantly improve the phenotype-based predic-
tion of disease genes. While these ontology-based methods rank
genes, DeepSVP directly ranks SVs based on the genomic and pheno-
typic features collected from public databases, and the phenotypes
observed in a patient. We precomputed the embeddings for genes
based on different features (function, phenotype and expression in
cell types and anatomical parts).

Furthermore, we extended the ontology-based machine learning
methods to an inductive setting where we can predict associations
between genes and individuals that are defined by their phenotypes
which are not known at the time of training DeepSVP. We also
applied a rank-based normalization, similar to the method applied
by PhenoRank (Cornish ez al., 2018), and use the resulting score in-
stead of prediction scores of the neural network model; this trans-
formation is useful when predicting relations where one argument
remains fixed as it projects prediction scores into the same
distribution.

While we implemented a two-step approach in which we first
predict associations between genes and patient phenotypes, and se-
cond the pathogenicity and phenotypic relatedness of the variant to
the patient phenotypes, it may also be possible to design a model
that is trained in an end-to-end fashion in the future. The challenge
is the potentially open-ended number of genes to consider.

4.3 Clinical application and utility

We evaluated the performance of DeepSVP on a series of real
genomes from Saudi individuals where the clinical presentation is
suggestive of genetic diseases to assess how well we could recover
potentially pathological variants in genes already associated with
the disease. We used the whole-genome sequencing data from all
family members, and we apply family filtering according to the suit-
able inheritance pattern. We applied DeepSVP to rank SVs for a pos-
sible explanation of the phenotype. In one family, our model was
able to find the causative variants associated with the patient pheno-
types using the combined prediction model that integrates all the
phenotypes information, and also to highlight a candidate gene
underlying the main phenotypic manifestations. AnnotSV also clas-
sified this variant as pathogenic, together with 10 other variants.

We implemented two models for aggregating phenotypic related-
ness between genes and patient phenotypes, one using the maximum
and another using the average of scores of all genes. These corres-
pond to two different mechanisms through which an SV elicits ab-
normal phenotypes: the maximum model is applicable when a single
gene within the variant is (primarily) causative for the phenotypes,
whereas the average model is applicable in the oligogenic case when
multiple genes affected by an SV are causative and may contribute
different pathologies.

We make DeepSVP freely available to use as a free software
command-line tool, including all the steps to train the model.
DeepSVP uses as input an annotated VCF file of an individual and
clinical phenotypes encoded using HPO. DeepSVP can be used as a
part of interpretation workflows in a clinical setting, or incorpo-
rated in interactive variant exploration methods.
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