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Abstract
Predicting and understanding plant responses to perturbations require integrating the interactions between nutritional
sources, genes, cell metabolism, and physiology in the same model. This can be achieved using metabolic modeling cali-
brated by experimental data. In this study, we developed a multi-organ metabolic model of a tomato (Solanum lycopersi-
cum) plant during vegetative growth, named Virtual Young TOmato Plant (VYTOP) that combines genome-scale meta-
bolic models of leaf, stem and root and integrates experimental data acquired from metabolomics and high-throughput
phenotyping of tomato plants. It is composed of 6,689 reactions and 6,326 metabolites. We validated VYTOP predictions
on five independent use cases. The model correctly predicted that glutamine is the main organic nutrient of xylem sap.
The model estimated quantitatively how stem photosynthetic contribution impacts exchanges between the different
organs. The model was also able to predict how nitrogen limitation affects vegetative growth and the metabolic behavior
of transgenic tomato lines with altered expression of core metabolic enzymes. The integration of different components,
such as a metabolic model, physiological constraints, and experimental data, generates a powerful predictive tool to study
plant behavior, which will be useful for several other applications, such as plant metabolic engineering or plant nutrition.

Introduction
Systems biology can predict and explain how a whole
organism responds to a stimulus or a perturbation and how
different components of the organism are connected. In
particular, one way to unravel physiological mechanisms is
the use of constraint-based metabolic modeling. Constraint-
based metabolic modeling relies on genome-scale metabolic

networks, which gather all the identified metabolic reactions
of an organism according to its genomic sequences and
current metabolic knowledge summarized in databases
(Gu et al., 2019). It predicts and quantifies the metabolic
pathways used, thanks to mathematical constraints that
encompass physiological states, such as the uptake rate of
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nutrients present in the environment. Initially developed for
unicellular organisms, constraint-based metabolic modeling
has been extended to diverse plant species such as
Arabidopsis thaliana (Mintz-Oron et al., 2012; Gomes de
Oliveira Dal’Molin et al., 2015; Shaw and Cheung, 2018),
Medicago truncatula (Pfau et al., 2018), barley (Hordeum vul-
gare; Grafahrend-Belau et al., 2013), Steraria viridis (Shaw
and Cheung, 2019), and soybean (Glycine max; Moreira
et al., 2019). These studies analyzed mechanisms such as the
effect of the nitrogen (N) source (Arnold and Nikoloski,
2014; Arnold et al., 2015; Gomes de Oliveira Dal’Molin et al.,
2015; Seaver et al., 2018), the N fixation by symbiotic bacte-
ria (Pfau et al., 2018), the effect of diurnal cycles (Gomes de
Oliveira Dal’Molin et al., 2015; Shaw and Cheung, 2018), or
the genetic modifications to perform in order to enhance a
product of interest such as vitamin E (Mintz-Oron et al.,
2012; Saha et al., 2011). Some of these studies were sup-
ported with labeling data, such as Robaina-Estévez et al.
(2017), which studied the metabolic differences between
guard cells and mesophyll cells. For a full review of all mod-
els of plants developed so far, refer to Gerlin et al. (2021)
and Shaw and Cheung (2020).

The representation of the multi-organ structure of plants
through modeling is challenging (Clark et al., 2020), but is
required to better understand plant metabolism. To model
exchanges between organs, a global exchange pool is usually
used (Gomes de Oliveira Dal’Molin et al., 2015; Shaw and
Cheung, 2018), but the veracity of the exchanged fluxes has
not been studied. Another major limitation is the lack of ex-
perimental calibrations since most of the methodologies
gather heterogeneous data from literature, issued from mul-
tiple species and different growth scenarios, which could im-
ply bias and inaccuracies. In addition, tomato (Solanum
lycopersicum), a major agricultural crop, has not benefited
from the advances in multi-organ metabolic models, as only
a genome-scale metabolic model of leaf cell has been pub-
lished (Yuan et al., 2016), as well as a metabolic model of
the fruit (Colombié et al., 2017, 2015; Li et al., 2020).

In this study, we developed a multi-organ metabolic
model of tomato during vegetative growth, in order to pro-
vide to the plant research community a comprehensive tool
adapted for many biological questions such as the impact of
environmental factors on the early development of the to-
mato plant, the exchange fluxes of matter between organs,
or the prediction of the reactions to be modified to obtain
a desired phenotype. This model, named Virtual Young
TOmato Plant (VYTOP), includes leaf, stem, root and, con-
trary to existing multi-organ models, dissociated xylem and
phloem compartments. It is able to simulate all the major
metabolic reactions used in the plant and the sink/source
relationships between organs. The model was calibrated
with homogeneous data from experiments we performed,
using an automated phenotyping platform, gathering both
physiological data (growth and transpiration) and metabolo-
mics (xylem sap chemistry and organ biomass composition).
We chose five independent use cases to validate the

usefulness of our model for a broad range of biological ques-
tions: (1) prediction of core metabolic fluxes in each tomato
organ; (2) contribution of stem to photosynthesis; (3) or-
ganic xylem composition; (4) impact of N limitation on
growth; and (5) predictions of metabolic changes in trans-
genic lines. Beyond its use to model the fluxes between to-
mato organs, this model could serve as a template for
modeling other plants of interest as well as predicting and
understanding the impact of diverse perturbations.

Results and Discussion

VYTOP, a multi-organ metabolic model
The multi-organ metabolic model, named VYTOP
(Figure 1) was built by aggregating genome-scale meta-
bolic models of each organ. The published tomato leaf
genome-scale metabolic model iHY3410 (Yuan et al.,
2016) was used as a starting point. We curated the model
to integrate missing pathways such as the catabolism of
different metabolites (lysine, ethanol [ETOH], isoleucine,
beta-alanine, leucine, and cysteine). As the iHY3410 meta-
bolic model identifiers (IDs) mostly followed the MetaCyc
IDs nomenclature (Caspi et al., 2016), we converted them
into the Biochemical Genetic and Genomic format (BiGG)
(King et al., 2016) using a semi-automatic conversion
framework. BiGG is widely used for genome-scale meta-
bolic models from bacteria to microalgae and humans
(Norsigian et al., 2020). The converted model was also
manually curated to achieve mass balance for carbon (C),
N, oxygen (O2), phosphate, and sulfur for each reaction.
We name this tomato metabolic model Sl2183; it includes
2,183 reactions, 2,097 metabolites and 3,433 genes. It is
available in different formats: table format (Supplemental
File S1), Systems Biology Markup Language (SBML) format
(Supplemental File S2), in the database BioModels (Glont
et al., 2018) under the ID MODEL2111120001, and in the
MetExplore database to enable pathway visualization and
omics mapping (Cottret et al., 2018) https://metexplore.
toulouse.inrae.fr/metexplore2/?idBioSource=6353.

To transpose this genome-scale metabolic model into a
multi-organ model, we considered the whole plant as three
main organs (Figure 1). Each organ was modeled with a rep-
licate of the Sl2183 genome-scale metabolic model with an
organ-specific biomass equation. In addition, each organ has
specific physiological roles: photosynthesis/organic matter
production in leaf, partial photosynthesis in stem, and min-
erals/water uptake in root represented by accurate physio-
logical constraints. The transport tissues xylem and phloem
were defined as exchange compartments: xylem represents
exchanges from root to leaf and phloem represents
exchanges from leaf to root. Stem can exchange with both
compartments in the two directions: uptake or contribution
to xylem and phloem. Leaf and stem assimilate photons (i.e.
light) while root assimilates water and minerals. An ATP
cost was set up for transport reactions between organs and
xylem/phloem to include the transfer costs. The final
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VYTOP model includes 6,689 reactions and 6,326
metabolites.

VYTOP calibration with physiological and metabolic
data
To calibrate VYTOP, we performed physiological and bio-
chemical measurements (Figure 2) on 90 tomato plants. The
growth of 90 plants was monitored on an automatic pheno-
typing facility, which allowed automatic monitoring of plant
transpiration rates. Sampling of six plants per day was per-
formed during 9 d, starting at 28 d after seeding. Xylem or-
ganic metabolite concentrations and organ weights were
determined on sampled plants. The biomass composition of
each organ was measured in another experiment performed
in the same environmental conditions, with the same to-
mato variety and a similar plant age.

A weight dataset of sampled plants was used to measure
the growth rate for each organ, the organ dry weight ratios
(leaf:root and stem:root) (Figure 2, A and B), and the fresh:-
dry weight ratio for each organ (Supplemental Figure S1).

The growth was considered as exponential between Days 31
and 37 after sowing (Supplemental Figure S1) and regres-
sions of fresh/dry, leaf/root, stem/root weights showed high
correlation coefficients (Supplemental Figure S1). Growth
rates were used in VYTOP to constrain biomass fluxes; organ
ratios were implemented in exchange reactions to appropri-
ately represent the difference of weight between the three
organs (Figure 1). Transpiration was constant per mass unit,
and was converted into a transpiration rate (Figure 2B). The
transpiration rate was further used to compute organic xy-
lem metabolite fluxes (see “Materials and methods”).

We measured organ biomass composition on fresh sam-
ples of growing tomato (Figure 2D). As expected, the leaf
accumulates the highest proportion of starch and has the
highest chlorophyll content. The data obtained was com-
pleted with data for lipids, minerals, (hemi)cellulose, and lig-
nin from the literature to generate accurate organ-specific
biomass equations (Supplemental File S1). For each organ,
the biomass equation yields 1 g of dry weight biomass
(Supplementary File S1).

Figure 1 Generation and calibration of VYTOP based on a tomato genome-scale metabolic model. Top left panel: role of each organ as modeled
in VYTOP. Top right: Schematic view of the different organs and exchange compartments as modeled in VYTOP. Bottom: legend, numerical con-
straints, and objective functions used in VYTOP.
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In comparison with the Yuan et al. model iHY3410 (2016),
our updated biomass equation for leaf had a C:N ratio closer
to the one observed from experimental data (6.5) in a high
CO2 level and high N provided as a nitrate
(NO3

–):ammonium (NHþ4 ) mixture (Royer et al., 2013): 5.48
in VYTOP versus 18.52 in iHY3410.

Quantification of organic metabolites concentration in xy-
lem sap (Figure 2C) was performed using Nuclear Magnetic
Resonance (NMR). Glutamine was the major metabolite in
xylem sap (4.019± 1.419 mM). Fifteen other organic mole-
cules were detected: 11 amino acids, 2 sugars, ETOH, and fu-
marate (FUM), whose concentrations were much lower
than that of glutamine (50.250 mM). Organic metabolic
fluxes in xylem were computed using these concentration
data and the transpiration rate of plants (see “Materials and
methods”).

We also gathered data from literature to choose which
compounds are present in the phloem compartment (Hijaz
and Killiny, 2014) and to estimate photosynthetic activity in

the stem. Former experimental results indicated that photo-
synthesis in the stem is limited due to less exposed surface
to light (Hetherington et al., 1998). According to this study,
the leaf:stem ratio of contribution to photosynthesis is
around 7.7 (considering here the petioles as stems), and this
value was added in the model as a constraint. The
NHþ4 :NO�3 uptake ratio can be optionally constrained in the
model to take into account different fertilizer conditions.
Since the fertilizer used for the experiments contained both
NHþ4 and NO�3 and we did not measure the uptake rate of
each N source, the ratio was unconstrained for our simula-
tions except for Use Case 4.

Model framework of VYTOP validated by
experimental data
We used FBA (Orth et al., 2010), a constraint-based model-
ing approach to compute the metabolic fluxes in VYTOP.
FBA requires a quasi-steady-state approximation (QSSA) in
the whole system. This approximation is commonly

Figure 2 Measurement of physiological and biochemical parameters on 4-week-old tomato plants for calibration of VYTOP. A, Organ dry weight
evolution between Days 31 and 37. The weight (mean ± standard deviation) of six plants was measured by day. B, Growth rate of each organ
(from Days 31 to 37), dry weight ratios between organs (from Days 29 to 37), and transpiration rate (from Days 31 to 37). Values (mean ± standard
deviation) are based on three replicates for growth rate, 54 plants for dry weights ratios and on 42 plants for transpiration rate. C, Average organic
xylem sap composition. Concentrations (mean ± standard deviation) are based on 33 samples analyzed using 1H NMR. d, Organ composition.
Measurements are based on at least 19 samples per organ. Mean weights are plotted and bars indicate standard deviation.
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accepted for bacterial growth modeling, but to extend the
approach to plant vegetative growth, we checked if QSSA
was still reasonable. We examined:

i. the daily weight ratios between organs and observed no
substantial discrepancies between days (Supplemental
Figure S1),

ii. the organic chemical composition of xylem, and also ob-
served no important daily variation (Supplemental
Figure S2),

iii. the three organ growths, which followed, as expected, an
exponential growth (Supplemental Figure S1),

iv. the biomass composition of each organ, and found that
it had no substantial daily variation (Supplemental
Figure S3).

These experimental observations performed over a 10-d
period proved that we could reasonably extend QSSA to a
tomato plant at the vegetative growth stage. We did not
take into account the day/night variation as we measured
plant growth on the scale of a day and not of the hour,
considering that our simulation results represented an over-
all average of the metabolic fluxes over a 24-h period
(Bénard et al., 2015).

Simulation of metabolic fluxes using FBA implies defining
a linear optimization problem: the formulation of linear
mathematical constraints (equalities or inequalities) and a
linear objective function (maximization or minimization of
one or several fluxes). The choice of this objective function
is still debated for plants (Sweetlove and George Ratcliffe,
2011; Collakova et al., 2012). We assumed that plant metab-
olism is regulated to favor the most efficient use of light up-
take and C fixation to grow, which was translated into
minimization of the photon uptake flux, while growth was
constrained via the biomass flux value. In addition, we as-
sumed that plant metabolism was also efficient in the use of
enzymes and solved a second optimization problem with
objective function minimization of the sum of all the mod-
el’s fluxes (absolute value). This second simulation was also
performed to avoid stoichiometric balanced cycles. The
resulting fluxes of this double optimization problem were
analyzed in the following sections.

Use Case 1: VYTOP predicts metabolic fluxes in the
whole plant
Figure 3 depicts the central metabolic fluxes obtained
through modeling (Supplemental File S3). We used flux vari-
ability analysis (FVA) on the central metabolic fluxes to esti-
mate how much they were constrained and if many
alternative pathways existed. FVA provides for each reaction
the minimum and maximum flux values that still sustain
the optimal solution found in FBA (Mahadevan and
Schilling, 2003). We found no variation on the fluxes
obtained, except for some reactions of glycolysis (pyruvate
[PYR] kinase and phosphofructokinase) that can either be
performed in the chloroplast or in the cytosol
(Supplemental File S3).

The analyses established that core metabolic fluxes are
consistent with the current knowledge on plant physiology:

i. Metabolic activity is more intense in leaves than in stems
and roots. This makes sense since leaves generate the
major part of organic matter necessary for whole plant
growth. In particular, there is intense photosynthetic ac-
tivity and organic matter production in leaves with ma-
jor fluxes in the Calvin cycle, while this pathway is not
used in the root and is poorly used in the stem.

ii. The generated organic matter is primarily converted into
sugars (sucrose [SUCR], glucose [GLC], and fructose), ei-
ther transformed into starch or transferred to the stem
and root through the phloem flux. Most of the organic
matter (450% of leaf assimilated C) is used directly by
the leaf, as it is the organ with the highest weight
(Figure 2).

iii. Stems need a lower SUCR uptake flux compared to
roots (40% per gram of stem versus 60% per gram of
root), because it has some photosynthetic activity allow-
ing the production of part of the needed C and energy
(as ATP and NADPH). Yet, the stem is still dependent
on leaf C production.

iv. Glycolysis and the TCA cycle have high fluxes in the
stem and root, allowing the generation of energy and
biomass precursors from phloem SUCR and citrate.

Previous multi-organ metabolic models of plants were de-
veloped (Shaw and Cheung, 2020). The term multi-organ
model refers here to models that represent several plant
organs with different roles for each organ and with metabo-
lite exchanges between each organ and not to tissue-specific
models which simulate one type of organ at a time. For the
multi-organ metabolic models developed so far, the calibra-
tion of constraints (organ ratio, growth rate, and authorized
fluxes) to accurately predict the behavior of a plant organ
remains rudimentary and does not rely on extensive bio-
chemical and physiological data. A question that also arises
for these models is how to represent accurately metabolism
differences between each organ. To this end, several frame-
works were developed and rely on different strategies. Some
of these frameworks such as the model of Arabidopsis devel-
oped by Mintz-Oron et al. (2012) used -omics data
(RNAseq, proteomics, and metabolomics) to take into ac-
count organ/tissue specificities. The initial methodology con-
sisted of pruning inappropriate reactions using an
expression threshold on RNAseq data to decide whether or
not the reaction takes place in the organ/tissue, and there-
fore should give a closer biological relevance. However, it is
limited by the fact that the transcription does not include
subsequent regulation layers (translation, posttranslational
modifications, and enzyme activation), which can be partic-
ularly important for central C metabolism (de Groot et al.,
2007). Also, choosing this expression threshold can be some-
times arbitrary, particularly for nonmodel plants. Other
frameworks were developed since, which minimize these
drawbacks, such as GIMME-like, iMAT-like, and MBA-like
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methods and the RegrEx method (Robaina Estévez and
Nikoloski, 2014; Scheunemann et al., 2018). Even if thresh-
olds can still be used in some of these methods, pruning is
not as strict as the initial method since only a minimization
of the discrepancy between the model and -omics data is
performed. Finally, another multi-organ plant model relies
on defined constraints with a global source–sink macro-
scopic model representing the allocation of C between
organs (Grafahrend-Belau et al., 2013).

In our approach, we chose not to constrain each organ
using -omics data, to allow all the possible chemical reac-
tions a priori. To constrain VYTOP, we chose instead to use
an important set of external physiological constraints
(growth rates, ratios, well-calibrated biomass, and photosyn-
thetic contributions) to impose organ-specific and sink/
source metabolic behaviors in the different organs, which is
closer to the methodology developed for barley. The C
fluxes distribution in central metabolism obtained in VYTOP

Figure 3 Core C metabolic fluxes of a tomato plant at the vegetative growth stage predicted by VYTOP, with xylem fluxes constrained from ex-
perimental data. Each pathway flux was estimated based on a reaction flux value representative of the pathway (listed in Supplemental File S3).
OAA, oxaloacetate; GAP, glyceraldehyde 3-phosphate; G6P, glucose-6-phosphate; Ru5P, ribulose-5-phosphate. Other abbreviations follow standard
abbreviations for amino acids.
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demonstrated that this approach, relying only on physiologi-
cal constraints, allows an overall good prediction of meta-
bolic fluxes between the different organs of a whole plant,
despite the omission of -omics data. Its disadvantage is that
it relies on the acquisition of physiological (and ideally meta-
bolic) data that are not always available (whereas numerous
sets of RNAseq data are available). However, it advanta-
geously removes some of the methodological questions re-
quired to build -omics-based metabolic models (Richelle
et al., 2019). In the future, it would be interesting to com-
pare the predictions of VYTOP with models exploiting -
omics data in order to reveal more precisely the advantages
and drawbacks of each methodology.

Use Case 2: VYTOP assesses the impact of
physiological changes on the plant
We used VYTOP to assess the influence of the stem on
plant metabolism, namely its contribution to photosynthesis
(Figure 4) and the effect of the stem/whole plant ratio
(Figure 5).

The contribution of the stem to photosynthesis represents
the ability to perform photosynthesis comparatively to the
leaf and depends on the surface of the stem (Hetherington
et al., 1998). The model shows that this contribution
strongly affects photon demand since the latter decreases
rapidly while the stem photosynthesis capacity increases
(Figure 4). In agreement with this observation, photosystem
I metabolic flux strongly decreases in the leaf while it
increases in the stem, as it becomes more advantageous to
perform photosynthesis in the stem (also true for photosys-
tem II, see Supplemental Figure S4). We also observed a pro-
portional decrease of leaf export to phloem and stem
uptake from phloem. However, there is no C contribution
of the stem to phloem, because the range of values shown
here did not allow sufficient photosynthetic activity of the
stem to support both stem and root growth. Yet, a SUCR
flux from stem to phloem appeared when stem contribution
to photosynthesis exceeds 40% (Supplemental Text).
Simulations also showed that increasing the stem weight
proportion in the plant impacted progressively the photon
demand (Figure 5). In this case, the plant stem plays a role
of sink for C sources, which progressively becomes a burden
affecting the photon demand (i.e. synthesis of C sources).

VYTOP does not integrate the architectural role of the
stem in plant growth, enabling a better access to light that
counterbalances its cost as sink of matter. A model integrat-
ing both plant geometry and metabolic fluxes would there-
fore be of great interest to study the tradeoff between the
architectural role and the C sink, but remains a challenging
issue.

Use Case 3: VYTOP infers the relative composition
of organic metabolites of tomato xylem sap by
applying physiological constraints
To evaluate the relevance of VYTOP on exchange fluxes be-
tween organs, we simulated plant metabolic fluxes with the

experimentally measured organic xylem fluxes on the root
to xylem export reactions as additional constraints in the
model. We analyzed how these additional constraints im-
pacted the global photon demand (Figure 6A). We observed
a very low effect on photon demand since photon demand
increased by 0.63% if a constraint is set on glutamine, the
major organic molecule in concentration. Photon demand
increased by 0.92% if a constraint was set for each metabo-
lite measured experimentally. Therefore, experimental values
do not disturb much the photon demand. This emphasized
that VYTOP is a consistent model of matter exchange be-
tween plant organs.

In a second analysis, we compared the VYTOP composi-
tion of organic xylem fluxes to the experimental data

Figure 4 Effect of different leaf:stem photosynthetic capabilities on
photon uptake, SUCR exchange, and photosystem I. Results are pre-
sented in percentage of stem contribution to photosynthesis. A, Effect
of stem contribution to photosynthesis on plant photon uptake and
SUCR breakdown fluxes. B, Effect of stem contribution to photosyn-
thesis on SUCR exchange reactions between organs. C, Effect of stem
contribution to photosynthesis on the photosystem I flux. The yellow
area represents the range of experimentally observed values: mean-
± standard deviation.
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(Figure 6B) with, this time, no constraints on root to xylem
exports. The global features of xylem organic chemistry are
well predicted by VYTOP: predominance (around 80%) of
glutamine, a central metabolite found in xylem sap from di-
verse plant species is inferred by VYTOP. VYTOP also pre-
dicts the presence of other amino acids, in accordance with
reported experimental data (Andersen and Brodbeck, 1989;
Zuluaga et al., 2013; Anguita-Maeso et al., 2021). FVA results
(Supplemental File S3) showed no variability for the different
organic fluxes predicted, as represented in Figure 6B by the
absence of error bars. FVA thus confirmed that VYTOP pre-
dicts the importance of glutamine in xylem sap, as observed
by metabolomics experiments.

With only global physiological constraints, specific biomass
equation, and resource use optimization (photon minimiza-
tion and sum of flux minimization; Figures 1 and 2), VYTOP
efficiently predicts transport of metabolites to aerial parts.
This result shows that the organic composition of xylem sap
is probably driven by plant physiology and resource optimi-
zation. The predominance of glutamine in both the model
and experiments is remarkable. Glutamine is, with gluta-
mate, the precursor of other amino acids and can be di-
rectly used as a C source since it is directly connected to
the TCA cycle. Transporting a central metabolite, branched
with both central metabolism and amino acid biosynthesis,
thus appears more advantageous and robust. The predomi-
nance of glutamine over glutamate in xylem sap may be
due to the acidic property of the latter, which could be del-
eterious at high concentrations. The presence of other

amino acids is also a conserved property of xylem sap. We
hypothesize that this redundancy of N sources could bring
robustness to plant metabolism.

Several other organic molecules (organic acids, sugars, and
ETOH) were observed experimentally but not predicted by
the presented flux distribution (Figure 6B). This must be
due to a certain level of exchange and porosity between
compartments that exists in nature and is not taken into
account in the model, such as possible exchange fluxes be-
tween xylem and phloem via stem cells. Furthermore, an as-
cending phloem is observed in tomato (Bonnemain, 1980),
contributing to the observation of sugars in xylem sap. The
presence of ETOH may reflect an O2 limitation in certain to-
mato cells, a local phenomenon not depicted in the model.
Organic molecules can also act as shuttles for some ions,
such as citrate for iron (Rellán-Álvarez et al., 2010). VYTOP
does not represent these complex behaviors and provides a
simplified and more schematized view of matter fluxes, nev-
ertheless consistent for around 95% of the organic xylem
sap content.

Use Case 4: VYTOP predicts the impact of
nutritional limitation on the tomato growth rate
We used VYTOP to predict how a whole tomato plant
responds to changes in a nutrient resource. De Groot et al.
(2002) analyzed how the tomato growth rate was affected
by N limitation. They monitored growth rates associated
with different N supplies (Supplemental File S3), which
revealed a progressive decrease of plant growth rate
(Figure 7). To simulate the impact of N limitation in
VYTOP, we used the N uptake flux and photon uptake
computed in optimal conditions as constraints and progres-
sively decreased the N uptake flux as in De Groot et al.
(2002), upon the same photon availability. The simulation
was performed with only NO�3 as the N source, as in the ex-
perimental study. We assumed as a new objective function
the maximization of leaf biomass growth, with a constant
root/leaf and stem/leaf ratio, obtained from our experimen-
tal results in N replete conditions. The simulation predicted
a linear decrease of growth rate, which followed the same
pattern as for the experiment, with very close values. For ex-
ample, both VYTOP and the experimental data showed a
reduction of the plant growth rate from 0.24 to around
0.13/day when the N content is reduced by 50%. Thus,
VYTOP agrees with the experimentally observed impact of
N limitation on tomato plant growth.

Use Case 5: VYTOP predicts and helps to
understand the physiology and metabolism of
transgenic tomato lines
We assessed how efficiently VYTOP can predict the effect of
a genetic perturbation on plant physiology (i.e. mutant be-
havior). We selected four studies presenting transgenic to-
mato lines. Three lines express a fragment of a TCA cycle
gene in the antisense orientation, resulting in a reduced en-
zymatic activity of, respectively, mitochondrial citrate

Figure 5 Effect of stem weight on photon uptake, the stem SUCR up-
take flux, and the stem photosynthesis. A, Effect of stem weight on
global plant photon uptake. B, Effect of the stem weight on the stem
SUCR uptake flux and the stem photosystems I and II fluxes. The yel-
low area represents the range of experimentally observed values:
mean ± standard deviation.
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synthase (mCS; Sienkiewicz-Porzucek et al., 2008), mitochon-
drial succinyl-CoA ligase (SCoAL; Studart-Guimar~aes et al.,
2007) and mitochondrial alpha-ketoglutarate (AKG) dehy-
drogrenase (AKGDH; Araújo et al., 2012). The fourth line is

a SUCR phosphate synthase (SPS) gene knockout (C.M Rick
TGRC https://tgrc.ucdavis.edu/Data/Acc/GenRepeater.aspx?
Gene=Sus). We modeled these transgenic lines with VYTOP
by forcing the matter flux to zero for the knockout line or
performing simulation at 50% of the optimal flux for attenu-
ated lines, in agreement with the activity reduction pre-
sented in the three studies. We then analyzed the impact of
these changes on metabolic fluxes (Table 1).

One major experimental result on the three lines with at-
tenuated activity of the TCA cycle is that the impact on
vegetative growth and young tomato physiology appears to
be weak, with slightly reduced growth and photosynthetic
activity similar to the wild-type line (Studart-Guimar~aes
et al., 2007; Sienkiewicz-Porzucek et al., 2008; Araújo et al.,
2012). Similarly, using VYTOP, we found that plant growth
was the same. We also analyzed photosynthesis flux pre-
dicted in the model and found only a very limited impact
(51.5% of flux increase) compared to the wild-type model.

In the different experimental studies, authors suggested
that there was a bypass to compensate the enzyme deficien-
cies in the transgenic plants. In line with this hypothesis,
VYTOP predicted an activation of peroxisomal citrate syn-
thase (pCS) flux for the line attenuated in mCS. The experi-
mental study on the same line confirms this prediction
since an enhanced activity of pCS is observed. Similarly, for

Figure 6 Prediction of the relative composition of organic metabolites in tomato xylem fluxes by VYTOP. A, Impact of the addition of constraints
on organic xylem fluxes (set from experimental data) on plant photon demand. B, Comparison of predicted fluxes by VYTOP and experimental
fluxes of organic matter in xylem sap. Modeling results were obtained from a simulation without organic xylem flux constraint. Error bars indicate
FVA range for the modeled distribution and mean ± standard deviation range for the experimental distribution (sample size: 33 plants).

Figure 7 Impact of N limitation on plant growth. Experimental data
were taken from De Groot et al. (2002) and are represented as mean-
± standard deviation (sample size: 6). Growth rates were predicted us-
ing VYTOP model with a limited N uptake flux.
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the lines attenuated in mSCoAL and mAKGDH activities,
VYTOP predicts the activation of three reactions: gamma-
amino-butyric acid (GABA)-Transaminase, Succinic
Semialdehyde Dehydrogenase, and Glutamate Decarboxylase,
constituting the GABA shunt. This pathway can generate
succinate from AKG without the use of AKGDH and SCoAL.
Interestingly, metabolomics samplings and 14CO2 in the ex-
perimental studies also point toward the use of this
pathway.

Conversely, no bypass exists after SPS gene knockout, as
its silencing led to no growth in the resulting homozygous
line. VYTOP also predicts this dependence as no growth can
be obtained with silenced SPS flux. Thus, VYTOP seems to
be an adequate tool to predict the alternative pathways
that could be used to bypass a bottleneck in a transgenic
line, or to predict the essentiality of some other reactions
and the absence of alternative pathways.

VYTOP could thus be both a predictive tool to anticipate
the effect of genetic engineering before generating a trans-
genic line, or a way to understand and analyze a phenotype
observed in the transgenic line. However, it is worth noting
that metabolism is often tightly linked with regulation, and
that some effects are not predictable by VYTOP yet. As an
example, the model could not predict the reduction of
NO�3 metabolism observed in plants with attenuated mCS
activity, and the authors suggested that it was due to post-
translational regulation. The development of hybrid
metabolic-regulation models is challenging, particularly be-
cause regulation is difficult to predict and reconstruct at a
genome-scale level.

Conclusion
Modeling the complex interactions between nutritional
sources, genes, energetic requirements, and exchange of
matter is an ongoing challenge in plant systems biology. In
this study, we developed a modeling framework that inte-
grates all these components, based on a genome-scale meta-
bolic model and physiological characterizations. The
resulting tomato model VYTOP predicts consistent flux dis-
tribution and global behavior for each organ without con-
straining the internal fluxes, highlighting that the

methodology used is relevant to build organ-specific models.
We demonstrated that VYTOP gave consistent results in
five different use cases: prediction of core metabolic fluxes
and exchanges, role of the stem in the plant, analysis of the
organic xylem sap composition, estimation of nutrient limi-
tation impact on growth, and impact of genetic modifica-
tions on metabolism and physiology. This tool should be
useful to guide genetic/metabolic engineering of plants as
well as to understand at a system level how plants respond
to nutritional variations. Other modeling approaches con-
ducted on tomato linked plant architecture and physiology
to environmental variations such as temperature (Cieslak
et al., 2016; Pradal et al., 2008, 2015). It will be interesting to
combine these macroscopic models with VYTOP. In addi-
tion, VYTOP could be extended to other tomato plant life-
cycle stages, by adding metabolic models for flower and/or
fruit. Adding other metabolic models for organisms interact-
ing with the plant, such as fungi or bacteria (Peyraud et al.,
2017), is also a promising perspective to explore plant inter-
actions with other organisms.

Materials and methods

Experimental procedures
Plant cultures and automatic phenotyping

Tomato seeds (S. lycopersicum M82) were grown in soil
(SB2, Proveen, The Netherlands) supplemented with
Osmocote coated fertilizer at a rate of 4 g L–1. Osmocote
coated fertilizer contained nitric N (5.3% w/v), ammoniacal
N (6.7% w/v), 7% of phosphorus pentoxide (w/v), and 19%
of potassium oxide (w/v).

Seeds were germinated in a growth chamber (26�C, 67%
Relative Humidity, 12-h LED light per day). Around 100
plantlets were transplanted in individual plastic pots
(8 � 8 cm) 8 d after sowing. Sixteen days after, 90 young
plants were chosen and repotted in 3-L pots until the end
of the experiment. Foam cover discs were placed on each
pot to limit physical evaporation. The plants were loaded
on the Phenoserre robot facility of the Toulouse Plant
Microbe Phenotyping infrastructure. Twelve-hour-light per
day at 28�C and 50% humidity were programmed.

Table 1 Effects of transgenic tomato lines on plant physiology and metabolism and comparison between experimentally observed effects and
VYTOP predictions

Enzyme Activity Effect VYTOP prediction Consistency

mCS Attenuated Minor effect on growth Optimal growth achieved +
mCS Attenuated Unaltered leaf photosynthesis 51.5% increase +
mCS Attenuated Enhanced CSp activity CSp activation +
mCS Attenuated Reduction of NO�3 metabolism No change –
SCoAL Attenuated Minor effect on growth Optimal growth achieved +
SCoAL Attenuated Unaltered leaf photosynthesis 51.5% increase +
SCoAL Attenuated Evidences of GABA shunt use GABA shunt activation +
AKGDH Attenuated Unaltered leaf photosynthesis 51.5% flux increase +
AKGDH Attenuated Evidences of GABA shunt use GABA shunt activation +
AKGDH Attenuated Minor effect on growth Optimal growth achieved +
SPS Suppressed Lethal Growth infeasible +

Experimental results for mCS, SCoAL, AKGDH, and SPS are, respectively, from Sienkiewicz-Porzucek et al. (2008), Studart-Guimar~aes et al. (2007), Araújo et al. (2012), and C.M
Rick TGRC (https://tgrc.ucdavis.edu/Data/Acc/GenRepeater.aspx?Gene=Sus).
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All the plants were watered with 100 mL 3 times on the
loading day and weighed, in order to define a well-watered
target weight. The daily transpiration was determined as the
weight differences between two consecutive days, at the
time of watering. Transpiration rate was deduced as follow-
ing: transpiration rate at Day i (mL�g[dry weight]–1�day–1) =
transpiration at Day i (mL�day–1)/plant dry weight at Day i
(g[dry weight]). Temperature, hygrometry, and light intensity
were recorded during the whole experiment.

Collection and preparation of plant samples

Six plants were removed each day from the conveyor belt
for samplings during nine consecutive days, starting 4 d after
the loading on the robot. For these plants, stems were cut
just above the cotyledons node, rinsed with �1 mL of water
and the upcoming xylem sap was harvested by repeated
pipetting and collection into Eppendorf tubes placed on ice.
The tubes were placed at –80�C for further quantitative
NMR analyses.

Quantitative NMR analyses

The xylem saps were analyzed by 1D 1H NMR on MetaToul
analytics platform (UMR5504, UMR792, CNRS, INRAE, INSA
135 Avenue de Rangueil 31077 Toulouse Cedex 04, France),
using the Bruker Avance 800 MHz equipped with an ATMA
5-mm cryoprobe. Each xylem sap sample was centrifuged to
remove the residues (5 min, 13520 RCF, Hettich Mikro 200
centrifuge), then placed in 3-mm NMR tubes. TSP-d4 stan-
dard (Sodium 3-(trimethylsilyl)(1-13C,2H4)propanoate) was
used as a reference. The pH 6.0 phosphate buffer was used
to standardize the chemical shifts among samples.
Acquisition conditions were as follows: 30� pulse angle,
20.0287 ppm spectral width, 64 scans per acquisition for a
total scan time of �8 min per sample, and zgpr30 water
presaturation sequence. The samples were kept at a temper-
ature of 280 K (6.85�C) all along the analysis. Resonances of
metabolites were manually integrated and the concentra-
tions were calculated based on the number of equivalent
protons for each integrated signal and on the TSP final
concentration.

Xylem sampling and NMR analyses only give the concen-
tration of a metabolite (in mmol�mL–1) at a given time.
However, xylem sap is a continuous flow. Using the transpi-
ration of the plant, and assuming a constant concentration
of the metabolite in the xylem on a 24-h basis (validated
throughout our experiment, see “Model framework of
VYTOP is validated by experimental data”), the flow of me-
tabolite per day can be estimated using the following
formulae:

Metabolite flux (in mmol�g dry weight–1�day–1) = Metabolite
concentration (in mmol�mL–1)� transpiration rate (mL�g dry
weight–1.day–1).

Biochemical analyses of metabolites

The different organs of each plant were collected separately
(stems, leaves, and roots) on another experiment performed

on the same platform and plant variety and close plant age
(4-week old). Approximately 300 mg fresh weight for each
collected organ was frozen in liquid N and stored at –20�C
for further biochemical analyses.

Quantifications of metabolites were performed at the
High-Throughput Metabolic phenotyping (HiTMe) platform
(INRAE-IBVM-71 avenue E. Bourlaux-CS 20032-33882
Villenave d’Ornon Cedex, France). The plants samples, previ-
ously frozen in liquid N, were ground to a powder using liq-
uid N to avoid thawing. A quantity of 20± 10 mg of each
was weighted in previously frozen Micronic tubes. Free
amino acids, GLC, fructose, malate, proteins, starch, SUCR,
and chlorophylls in leaves, stems, and roots were quantified
as described in (Biais et al., 2014). Briefly, ethanolic extracts
from every sample were obtained using three consecutive
incubations of the frozen ground powder aliquots. ETOH 80%
v/v with HEPES/KOH 10 mM pH 6 buffer was used for the
first two incubations, and ETOH 50% v/v with HEPES/KOH
10 mM pH 6 buffer was used for the third. Supernatants were
pooled and used for the quantification of chlorophylls, GLC,
fructose, SUCR, malate, and free amino acids. Pellets were
used for the determination of protein and starch contents.
The extracts and pellets were stored at –20�C between each
quantification. For each sample, chlorophylls were quantified
by measuring optical densities at 645 and 665 nm on a mix
of 50mL of extract supplemented with 150mL of analytics
grade ETOH. Amino acids were quantified using the fluoresc-
amine method. Excitation wavelength was 405 nm and emis-
sion was measured at 485 nm. The proteins were quantified
using Bradford reagent. Starch was quantified in GLC equiva-
lent after full pellet digestion in an oven at 37�C for 18 h. For
the other analytes cited above, the NADH/NADPH appear-
ance was measured, and the analytes were quantified using a
1:1 stoichiometric coefficient.

In silico procedures
Tomato metabolic network curation and conversion

The tomato metabolic model iHY3410 published by Yuan
et al. (2016) was used as a starting point. The authors pro-
vided the tomato metabolic network in two formats: table
(.xlsx) and SBML (Hucka et al., 2003). Some reaction direc-
tions were different in the SBML and table files, and some
metabolites (proton and water) were missing in the table
file. Thus, we performed a first curation step to merge the
files and select the appropriate reaction directions.

Then, we converted the metabolic network IDs (metabo-
lites and reactions) to BiGG nomenclature. The advantage
of BiGG nomenclature is that it is usually more explicit for
the analysis as the IDs are usually an abbreviation of the me-
tabolite/reaction names, while in MetaCyc ID it is often a
generic acronym (CPD for metabolites, RXN for reactions)
and a number. The web tool Semi Automatic Metabolic
Identifier Reconciliation (Peyraud et al., 2016) was used to
find the appropriate BiGG IDs for metabolites and reactions.
The correspondences between MetaCyc and BiGG IDs are
provided in the final metabolic network in table format
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(Supplemental File S1). For some metabolites and reactions,
no BiGG ID was found even after manual searches in the
BiGG database, probably because they are specific to plants.
New BiGG IDs following the usual nomenclature were cre-
ated for 1,094 reactions and 758 metabolites (see
Supplemental File S1). The SBML file (Hucka et al., 2003)
was generated using Met4j (https://forgemia.inra.fr/metex
plore/met4j) and ModelPolisher (Römer et al., 2016).

The resulting metabolic model was tested on autotrophic
growth and heterotrophic growth (using FBA, see
“Computational Simulations”) on different organic substrates
before generating a multi-organ metabolic model. Growth
was achievable with CO2 + light, starch, SUCR, GLC, fruc-
tose, glycerol, glutamate, glutamine, AKG, FUM, asparagine,
alanine, and isocitrate as C sources. Other organic (gluta-
mine, glutamate, aspartate, asparagine, alanine, proline, histi-
dine, leucine, methionine, lysine, and cysteine) and inorganic
(NO�3 and NHþ4 ) elements can be used as N sources. No
catabolic reactions were found for the assimilation of lysine,
ETOH, isoleucine, beta-alanine, leucine, and cysteine as C
sources whereas they were experimentally observed in the
xylem in amount superior to biomass assimilation, suggest-
ing that they could be catabolized. Thus, we searched the
catabolic pathways of these amino acids in plants and incor-
porated them in the network, using BLAST to find the
orthologous proteins in tomato. Twenty-one reactions,
linked to 34 genes were added to the model iHY3410.
Fifteen reactions had a Gene-Protein-Reaction (GPR) com-
plete with an e-value superior to 5e-131 (Supplemental File
S1), 6 had none. After this second curation step, we com-
puted the mass balance (on C, N, phosphate, sulfur, and O2)
and manually curated the reactions with an incorrect C, N,
phosphate, sulfur, and O2 balance. We generated a final to-
mato metabolic network Sl2183. The model is available in
MetExplore (Cottret et al., 2018) https://metexplore.tou
louse.inrae.fr/metexplore2/?idBioSource=6353, in the data-
base BioModels under the ID MODEL2111120001 (Glont et
al., 2018) and in a github repository https://github.com/lger
lin/slyc-metabolic-model/.

VYTOP construction

To generate VYTOP (see flow chart in Supplemental Figure
S5), we built organ-specific metabolic models for leaf, stem,
and root. To this end, organ growth rates and organ-specific
biomass equations were determined from our experiments
and implemented as constraints in the simulations. We gen-
erated an in-house script to parse the metabolic network
Sl2183 (SBML file) and triplicated it to represent three
organs. In the generated model, each organ is represented as
a “metacompartment”: metabolite and reaction IDs have a
final letter (l, s and r for leaf, stem and root, respectively) to
indicate their organ location (e.g. R_NAD2 reaction becomes
R_NAD2_l, R_NAD2_s, R_NAD2_r and M_gln_L_c becomes
M_gln_L_c_l, M_gln_L_c_s, M_gln_L_c_r).

Our in-house script also generates exchange reactions to
represent transfers between organs and exchange

compartments (represented with the letters xyl for xylem and
phl for phloem), such as 1 M_gln_L_c_r ! n M_gln_L_xyl
and 1 M_gln_L_xyl ! m M_gln_L_c_l. The list of metabo-
lites authorized to be exchanged in xylem and phloem respec-
tively is available in Supplemental File S1. n and m represent
the mass ratios between the organs and the whole plant, in
order to take into account the different weights of organs
and have quantitative predictions at the whole plant
level. For example, for transfer from the root to the xylem,
1 mmol.g–1 root dry weight per day will generate n = 1/
(1 + 1.52 + 3.37) = 0.1697 mmol.g–1 plant dry weight per
day in xylem, and then 1 mmol.g–1 plant dry weight per
day in xylem will generate m = (1 + 1.52 + 3.37)/
3.37 = 1.74 mmol.g–1 leaf dry weight per day. Finally, a
transport cost (ATP cost) of 0.5 was added in the model:
transporting k mmol.g–1 organ dry weight per day would
consume k�(transport cost) mmol.g–1 organ dry weigh per
day of ATP. Performing several simulations of Use Case 3
with different values of ATP transport cost, we found that
a transport cost between 0.02 and 1.0 mol of ATP per mol
of exchanged molecule, which appears reasonable, pro-
vided the most consistent predictions in agreement with
experimental data, while use Case 4 is not impacted by
the different sets of values tested (Supplemental Text).

Physiological constraints were added to impose different
physiological roles in organs.

i. Uptake of minerals and water is not allowed in leaf and
stem, while it is allowed with no limitation in roots
(assuming they are not limiting factors for well-watered
plants and adequate nutritional supply in the soil).

ii. Photon uptake was allowed in leaf and stem but not in
root.

iii. The NHþ4 :NO�3 uptake ratio can be constrained. Few
data are available to predict the balance between NHþ4
and NO�3 in root uptake. We analyzed the impact of
varying the parameter in Supplemental Text. The ratio
was not constrained in our simulations, excepted use
Case 4, to agree with the experimental data.

iv. Photosynthesis is limited in stems by its reduced ex-
change surface compared to leaves (Hetherington et al.,
1998). We then introduced a ratio (leaf/stem) of contri-
bution to photosynthesis, to limit the ability of the stem
to perform photosynthesis: photosynthesis in stems is
constrained to be inferior or equal to photosynthesis in
leaves/surface ratio.

v. Photorespiration was modeled by imposing a ratio be-
tween rubisco carboxylase and oxygenase fluxes. The ra-
tio was set to 85, which represents the mean ratio of
enzymatic specificity for CO2 versus O2 for C3 plants,
according to experimental data gathered by Tcherkez
et al. (2006).

Finally, ATP maintenance, which represents the global
cost in a cell for nonmetabolic processes (such as house-
keeping functions), was kept at the value used by Yuan
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et al. (2016) as no organ-specific ATP maintenance values
are available.

Computational simulations

Modeling of whole tomato plant metabolism was performed
using constrained-based modeling, with the FBA methodol-
ogy (Orth et al., 2010). Briefly, FBA relies on (1) the QSSA in
the biological system modeled, (2) the formulation of a bio-
logically relevant objective: flux(es) to minimize/maximize,
and (3) eventually additional physiological constraints. The
solution of FBA will be the optimal matter fluxes (regarding
the objective) in a metabolic network assuming QSSA and
respecting the constraints. Use of QSSA in a whole tomato
plant is justified by our experimental results (see part
“Model framework of VYTOP is validated by experimental
data” of the “Results and Discussion”). We decided to define
the minimization of total photon uptake as our objective.
The photon uptake flux obtained from this simulation was
then integrated as a new constraint in the model, and FBA
was run a second time with the objective of minimizing the
sum of absolute fluxes. The use of these two objectives is
discussed in part “Model framework of VYTOP is validated
by experimental data” of “Results and Discussion”.

FBA was run with or without the integration of experi-
mentally measured organic xylem fluxes, and with varying
stem proportions, surface ratios, and transport costs.

FVA (Mahadevan and Schilling, 2003) was also performed.
This extension of the FBA aims at finding alternative solu-
tions of the one generated by FBA, as its flux distribution is
usually not unique. It consists of imposing the optimal ob-
jective values found in FBA (here both photon uptake and
sum of absolute fluxes) as additional constraints, and deter-
mining the minimum and maximum flux that can carry
each reaction in these conditions.

Simulations were performed with Python version 3.5
scripts, the open access libraries lxml, pandas and the linear
programming solver CPLEX Python API, developed by IBM
and free for academic institutions. Scripts are available at
https://github.com/lgerlin/slyc-metabolic-model.

Accession numbers
The tomato genome used in this article is ITAG version
4.0 and can be found on the Sol Genomic Networks web-
site (ftp://ftp.solgenomics.net/tomato_genome/annota
tion/ITAG4.0_release/).

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Additional physiological data.
Supplemental Figure S2. Additional xylem metabolomics

data.
Supplemental Figure S3. Additional organ metabolomics

data.
Supplemental Figure S4. Additional representation of

model responses to plant physical variations.

Supplemental Figure S5. Flow chart of the multi-organ
modeling pipeline.

Supplemental Text. Additional analyses (effects of ATP
cost variation, Impact of physiological changes on the plant
at high percentages, Impact of the uptake ratio between
nitrates and ammonium, Stoichiometric Balance Cycles).

Supplemental File S1. Table of tomato plant genome-
scale metabolic network Sl2183.

Supplemental File S2. SBML file of tomato plant
genome-scale metabolic network Sl2183, SBML Level 3 ver-
sion 1.

Supplemental File S3. Table with modeling results.
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Ménard G, Bernillon S, Gehl B, Gautier H, Ballias P, et al.
(2014) Remarkable reproducibility of enzyme activity profiles in to-
mato fruits grown under contrasting environments provides a
roadmap for studies of fruit metabolism. Plant Physiol 164:
1204–21

Bonnemain JL (1980) Microautoradiography as a tool for the recog-
nition of phloem transport. Bericht Deutsch Bot Gesellsch 93:
99–107

Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler
IM, Kothari A, Krummenacker M, Latendresse M, Karp PD et
al. (2016) The MetaCyc database of metabolic pathways and
enzymes and the BioCyc collection of pathway/genome databases.
Nucleic Acids Res 44: D471–D480

Cieslak M, Cheddadi I, Boudon F, Baldazzi V, Génard M, Godin C,
Bertin N (2016) Integrating physiology and architecture in models
of fruit expansion. Front Plant Sci 7: 1739

Clark TJ, Guo L, Morgan J, Schwender J (2020) Modeling plant me-
tabolism: from network reconstruction to mechanistic models.
Ann Rev Plant Biol 71: 303–326

Collakova E, Yen JY, Senger RS (2012) Are we ready for
genome-scale modeling in plants? Plant Sci 191–192: 53–70

Colombié S, Beauvoit B, Nazaret C, Bénard C, Vercambre G, Le
Gall S, Biais B, Cabasson C, Maucourt M, Gibon Y, et al. (2017)
Respiration climacteric in tomato fruits elucidated by
constraint-based modelling. New Phytologist 213: 1726–1739
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