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Abstract

We present a collection of geodatabase functions which expedite utilizing differential privacy 

for privacy-aware geospatial analysis of healthcare data. The healthcare domain has a long 

history of standardization and research communities have developed open-source common data 

models to support the larger goals of interoperability, reproducibility, and data sharing; these 

models also standardize geospatial patient data. However, patient privacy laws and institutional 

regulations complicate geospatial analyses and dissemination of research findings due to 

protective restrictions in how data and results are shared. This results in infrastructures with 

great abilities to organize and store healthcare data, yet which lack the innate ability to produce 

shareable results that preserve privacy and conform to regulatory requirements. Differential 

privacy is a model for performing privacy-preserving analytics. We detail our process and findings 

in inserting an open-source library for differential privacy into a workflow for leveraging a 

geodatabase for geocoding and analyzing geospatial data stored as part of the Observational 

Medical Outcomes Partnership (OMOP) common data model. We pilot this process using an open 

big data repository of addresses.

Index Terms—

geographic information systems; data privacy; big data applications

I. Introduction

Geospatial analyses involving population health and healthcare data play an important 

role in public health and environmental health research, which includes supporting 

epidemiological pursuits of analyzing, visualizing, and tracking population health conditions 

and understanding environmental factors related to health [1]–[3]. The volume and diversity 

of healthcare data being generated and stored in clinical data warehouses is rapidly 

increasing and creates practical challenges in secondary use for research purposes [4]. Data 

standardization plays a pivotal role in current strategies for dealing with the volume and 

variety of healthcare data [4]. Common data models such as the Observational Medical 

Outcomes Partnership (OMOP) common data model and the United States Patient Centered 

daniel.harris@uky.edu . 

HHS Public Access
Author manuscript
Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2022 March 04.

Published in final edited form as:
Proc IEEE Int Conf Big Data. 2020 December ; 2020: 3119–3122. doi:10.1109/
bigdata50022.2020.9378390.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Outcomes Research Network (PCORNet) common data model were designed to support 

interoperability, expedite research, and enable easier data sharing [5]–[7].

Privacy is a key consideration when working with data in the healthcare domain; regulations 

protecting patient confidentially span from institutional requirements to government-

mandated legal requirements. In the US, the Health Insurance Portability and Accountability 

Act (HIPAA) outlines privacy expectations and identifies data elements which include 

geospatial patient information. HIPAA outlines the minimum guidelines for protecting 

patient privacy and in practice, additional efforts outside of routine censoring should be 

done to truly protect patient privacy and to avoid unintended information leakage [8]–[10]. 

Specifically, releasing exact patient counts and other aggregations may be unsafe in certain 

circumstances and may accidentally reveal private health data [10]–[12]. Techniques exist 

for computationally controlling privacy in the geospatial domain [10] but require significant 

effort to integrate with healthcare standards.

Differential privacy is a conceptual model for privacy-preserving data analysis that attempts 

to minimize the analytic impact of adding or removing a single record so that in theory there 

is little risk to patients when their information is included into the data set [13], [14]. The 

formal definition is given in Definition 1 where the probability is determined by coin tosses 

of K and ϵ.

Definition 1: A randomized function K gives ϵ-differential privacy if for all data sets D1 and 

D2 differing on at most one element, and all S ⊆ Range K ,

Pr K D1 ∈ S ≤ exp(ϵ) × Pr K D2 ∈ S

A review of differential privacy in the healthcare domain gave a primary example of 

counting patient cohorts for feasibility estimates in clinical trials [15]; other work includes 

supporting ranged queries [16]. Our work differs in that we focus on privacy concerns during 

the geospatial analyses of standardized healthcare data.

We will demonstrate that differential privacy can be inserted into workflows for geospatial 

analyses of standardized healthcare data. In particular, we leverage differential privacy to 

produce anonymized aggregated data from patient data stored in the OMOP common data 

model. It is worth noting that Definition 1 does not guarantee complete privacy but rather 

minimizes risk by limiting the significance of any particular record so that any analytical 

output would not substantially change. Risk within geospatial analyses can be subjective 

depending on the context of the data and the aggregated analytical data being produced; we 

also provide functions to benchmark the trade off between privacy and noise.

II. Methods

We depend on several open-source libraries and in turn, we make our demonstration code 

available as open-source [17]. In particular, we depend upon a common data model popular 

in healthcare informatics, a geodatabase we leverage for geocoding and analysis of patient 
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data, and an open-source implementation of differential privacy. Figure 1 gives a high-level 

overview of the different components of which we will discuss in turn.

A. Common Data Models in Healthcare

The Observational Medical Outcomes Partnership (OMOP) common data model was 

designed to facilitate universal analysis of individual healthcare databases, where data 

from their original systems could be extracted, transformed, and loaded into a common 

representation [6]. With this common representation, the promise of a common analytical 

library and open-source community of contributors is enabled. The model itself is divided 

into three large parts: standardized clinical data tables, tables needed to support standardized 

vocabularies, and other ancillary tables. The key healthcare entities are patients, visits, and 

conditions. The patient table is linked to the location table which includes fine grain address 

details that are captured by most electronic health record systems (address lines, city, state, 

zip code, country) and some derived fields (latitude and longitude) which can be externally 

computed if not supplied.

B. Geospatial Workflow

Our electronic health record system did not supply geospatial coordinates; to maintain 

compliance with institutional policy, we calculated these using geocoding functions from 

an “in-house” HIPAA-compliant geodatabase, PostGIS [18]. PostGIS is an open-source 

extension adding geospatial objects and analytic functionality to the PostgreSQL database 

[19].

As part of our solution, we package a PostgreSQL procedure omop_geocode() designed to 

update OMOP’s location tables with calculated geospatial coordinates in the event they are 

missing. Specifically, this utilizes the TIGER geocoder of PostGIS extension which uses 

reference data from the US Census Bureau [18].

Additionally, we provide a PostgreSQL procedure omop_census_link that maps locations to 

census geographies (blocks, block-groups, and tracts). This is achieved by doing a spatial 

join to census block data on a polygon point intersection using the patient’s address. 

Neighborhood-level groupings are incredibly important for public health research; they 

also have complicated privacy concerns. If a patient’s location becomes another facet of 

their medical history, researchers and care providers may also utilize knowledge of their 

geographical neighborhood, including social-determinants of health [20]. Because both 

medical conditions and social determinants of health are potentially sensitive, the reportable 

overlap between the two must be treated in a way as which to protect patient privacy, 

motivating the inclusion of differential privacy in our workflow.

C. Differential Privacy

Our workflow uses Google’s open-source library for differential privacy [21]. We 

deployed this to the same Post-greSQL/PostGIS server housing the OMOP geospatial data 

and compiled the PostgreSQL extension; this extension supports anonymized aggregate 

functions parameterized by ϵ to control the noise-to-privacy ratio. Smaller values of ϵ result 

in more noise and thus more privacy; the ideal value for ϵ is context sensitive according to 
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the geospatial query being developed. A less common condition that carries social stigma, 

such as HIV, requires more neighborhood-level privacy than a very common condition, such 

as high blood pressure, that carries very little social stigma. We include this benchmarking 

of noise-to-privacy ratio as a database function in our demonstration code; this is helpful for 

evaluating ϵ in different contexts. We discuss our findings on tuning differential privacy in 

greater detail in the next section. Figure 1 shows how our solution is organized: Postgresql 

hosts OMOP formatted data originally from clinical source systems; PostgreSQL extensions 

for PostGIS and differential privacy help analyze and interact with the data. To summarize, 

we expedite the following workflow: geocoding patient data stored in the OMOP common 

data model, mapping patients to different geographic boundaries, generating derived data 

using differential privacy, and benchmarking how the choice of epsilon impacts results.

III. Discussion

We piloted our procedures on a publicly available and “open” big data set before deploying 

our code on data from our clinical data warehouse. This helped us prototype functions to 

help tune ϵ and test our workflows on a data set that is not truly sensitive or regulated by 

privacy policies and laws.

A. Open Big Data

OpenAddresses is an online repository containing over half a billion geocoded addresses, 

which are annotated with longitude and latitude coordinates [22]. OpenAddresses has been 

used to benchmark geocoding solutions when privacy concerns prevent external validation 

of results due to data sharing limitations [23]. Approximately 200 million of these addresses 

are from the US, which is divided into 4 regions; we selected a random subset of one million 

addresses from our region to test our procedures. We populated a minimum set of OMOP 

tables by assigning a random address from OpenAddresses to a simulated patient record. We 

deployed our procedure to geocode the simulated patient addresses in order to prepare the 

data for privacy-preserving querying.

Table I shows a sample run performing an anonymized count aggregated by patient state. 

The ideal ϵ is sensitive to the context of the data being analyzed. Our random sample from 

OpenAddresses was not evenly distributed by state. It is plausible that scenarios exist where 

state-level data is not particularly sensitive due to the state’s large geographic coverage; it 

is also plausible that scenarios exist where state-level data is incredibly sensitive, such as 

reporting frequency of rare medical conditions. This heavy bias toward one location is not 

unlike hospital data, where the majority of patients live in the same neighboring service area.

B. Tuning Privacy

Tuning differential privacy for the correct trade off between privacy and noise is not an exact 

science [24]. Because context is important with geospatial healthcare data, we developed 

a procedure to help understand the impact of selecting different values for ϵ with three 

parameters for shifting ϵ dp_benchmark(start, stop, step); this will run differential privacy 

on a data set multiple times by using the step value to gradually increase ϵ from start to 

stop. We present the results of benchmarking with dp_benchmark in Figure 2. As expected, 
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low values of ϵ produce noisy data sets that are great for preserving privacy and conversely 

higher values of ϵ produce data sets that accurately reflect the original values. Because the 

ideal ϵ is context-sensitive for geospatial analysis with healthcare data, shifts in totals as 

large as 200 may be acceptable in some situations and inappropriate in others.

This function should help the analyst understand the impact of ϵ in their application. As 

future work, we wish to include functions providing statistical guidance on what threshold 

the slope of the projected data is significantly different and suggests noisy decay.

C. Census-level Reporting

The examples above selected state from the patient’s location upon which to aggregate. 

There are far fewer unique states than other smaller geographies, such as US Census-

designated blocks, block-groups, and census tracts. The US Census Bureau distributes 

neighborhood-level demographic data with hundreds of levels of minutia such as age, race, 

poverty status, and so on; the US Census Bureau also distributes frequencies of how these 

demographics overlap, such as the number of people in this geography reported below the 

poverty level in the past 12 months who are of a certain age and race group. This vast 

amount of demographic data also carries major privacy concerns; the US Census Bureau has 

deployed differential privacy as a technique for preserving citizen privacy without harming 

data utility [25]

We extend our example outlined in Figure 2 by drilling down into a specific state (Florida) 

and producing anonymized aggregates for census tracts. There are too many census tracts to 

present as a table; we display how benchmarking this level of geography performs in Figure 

3. It is important to note two major differences: there are far more census tracts than states, 

and census tracts are intentionally designed to not exceed more than approximately 4,000 

people. This means our random sample from OpenAddresses has an approximate ceiling 

which is reflected in our population totals. With respect to reporting aggregated healthcare 

data, the intersection of census tract data with disease data will greatly reduce the frequency 

within these bins and may even be subject to regional biases.

IV. Conclusion and Future Work

We presented our work on integrating differential privacy into geospatial analyses involving 

standardized healthcare data. In particular, we show that patient location data stored in the 

OMOP common data model can be queried using privacy preserving aggregate functions. 

We further demonstrated the need for differential privacy benchmarking to find a suitable 

value for ϵ due to the context-sensitive nature of geospatial healthcare applications. Smaller 

geographic boundaries may be leveraged securely and we provide functions for mapping 

addresses to census-level geographies including blocks, block-groups, and tracts. As future 

work, we are formalizing our various workflows with the intent that anyone wishing to do 

privacy-preserving geospatial analysis of healthcare data may benefit from our work. The 

overhead cost would be greatly reduced for those already working with location data in the 

OMOP common data model format.
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Fig. 1. 
End users interact with an OMOP data source derived from a clinical source system and 

augmented with PostgreSQL extensions.
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Fig. 2. 
A plot of dp_benchmark(start = 0.1, stop = 2.0, step = 0.1) showing the quick decay into 

noise for low values of ϵ.
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Fig. 3. 
A plot of dp_benchmark(start = 0.1, stop = 2.0, step = 0.1) with census tract data shows 

slightly different behavior than state-level data due to distribution differences.
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TABLE I

Anonymized counts aggregated at the state level

State ϵ Actual Count Anon. Count Diff.

MA ln(3)/2 1 0 −1

OK ln(3)/2 1 1 0

MI ln(3)/2 2 0 −2

DE ln(3)/2 3 2 −1

NY ln(3)/2 3 3 0

OH ln(3)/2 4 4 0

IL ln(3)/2 5 3 −2

CA ln(3)/2 12 20 8

PA ln(3)/2 13 9 −4

MO ln(3)/2 15 12 −3

AR ln(3)/2 87 87 0

AL ln(3)/2 826 822 −4

LA ln(3)/2 7,521 7,512 −9

TN ln(3)/2 1,1355 11,358 3

MD ln(3)/2 11,610 11,611 1

SC ln(3)/2 35,469 35,475 6

GA ln(3)/2 40,866 40,865 −1

NC ln(3)/2 57,898 57897 −1

WV ln(3)/2 60,743 60,743 0

FL ln(3)/2 135,147 135,146 −1

TX ln(3)/2 247,239 247,230 −9

VA ln(3)/2 391,180 391,182 2
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