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Abstract

Time-kill experiments can discern the pharmacodynamics of infectious bacteria exposed to 

antibiotics in vitro, and thus help guide the design of effective therapies for challenging clinical 

infections. This task is resource-limited, therefore typically bypassed in favor of empirical 

shortcuts. The resource limitation could be addressed by continuously assessing the size of a 

bacterial population under antibiotic exposure using optical density measurements. However, 

such measurements count both live and dead cells and are therefore unsuitable for declining 

populations of live cells. To fill this void, we develop here a model-based method that infers the 

count of live cells in a bacterial population exposed to antibiotics from continuous optical-density 

measurements of both live and dead cells combined. The method makes no assumptions about 

the underlying mechanisms that confer resistance and is widely applicable. Use of the method is 

demonstrated by an experimental study on Acinetobacter baumannii exposed to levofloxacin.
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1. Introduction

Bacterial resistance to antibiotics has grown to pose a serious threat to human health (Neu 

1992, Davies 1994, Levy and Marshall 2004, Morens, Folkers et al. 2004, Fischbach and 

Walsh 2009, Blair, Webber et al. 2015, Blaser 2016), Development of new antibiotics or 

other antimicrobials and effective use of existing ones are essential for combating antibiotic 

resistance (Wang and Lipsitch 2006, Fischbach and Walsh 2009, Huh and Kwon 2011, 

Lewis 2013, O’Connell, Hodgkinson et al. 2013, Czaplewski, Bax et al. 2016, Crofts, 

Gasparrini et al. 2017, Blanquart, Lehtinen et al. 2018). For both development and clinical 

use of antibiotics, aids in guiding the selection of effective antibiotics and corresponding 

dosing regimens are essential both for direct therapeutic purposes and for mitigating the 

emergence of resistant bacterial strains (Tam and Nikolaou, 2011a). A standard such aid 

is experiments in which a bacterial population is exposed to an antibiotic at different time-

invariant concentrations, over a period of time. In the simplest case of such an experiment, 
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an observation is made at the end of the experiment and the minimal concentration of 

an antibiotic capable of inhibiting growth of the studied bacterial population (minimum 

inhibitory concentration, MIC) at that point is assessed. While simple and universally used, 

MIC captures only a small fraction of the information that could be gleaned from such an 

experiment (see Tam and Nikolaou (2011) and references therein). For example, as such 

an experiment progresses over time, the size of the bacterial population can be assessed 

at distinct points in time, typically by quantitative culture (plating) methods (Sanders 

2012). Processing of the (time-kill) experimental data thus collected can better help guide 

the design of effective antibiotic dosing regimens. Such data processing can be heuristic, 

e.g. through estimation of MIC and/or other pharmacodynamic indicators (Andrews 2001, 

Mouton, Dudley et al. 2005, Wiegand, Hilpert et al. 2008), or by building more detailed 

mathematical models, particularly when a bacterial population comprises subpopulations of 

varying degrees of resistance (Lipsitch and Levin 1997, Giraldo, Vivas et al. 2002, Nikolaou 

and Tam, 2006; Tam and Nikolaou, 2011b, Bhagunde, Nikolaou et al. 2015).

While plating used with time-kill experiments to assess the size of a surviving bacterial 

population exposed to antibiotics is a standard tool, it is time-consuming, labor-intensive, 

and produces a limited number of data points, needed for reliable predictions. These 

shortcomings make plating difficult to use in situations where time or resources are limited 

yet reliable results are needed for quick decision making, e.g. in a clinical setting.

Alternatives to traditional plating can be considered for measurement of a bacterial 

population size, each with its distinct advantages but also limitations for the intended use: 

Quantitative polymerase chain reaction (PCR) (Kralik and Ricchi 2017, Ricchi, Bertasio 

et al. 2017), fluorescence microscopy (Wang, Hammes et al. 2010, Hasan, Alam et al. 

2016), and enzyme-linked immunosorbent assay (ELISA) (Gracias and McKillip 2004) have 

bearable set up cost but can take prohibitively long (from hours to days); fluorescence-based 

microplate reader (Alakomi, Mättö et al. 2005, Pascaud, Amellal et al. 2009, Feng, Wang 

et al. 2014) and flow cytometry (FCM) (Imade, Badung et al. 2005, Wang, Hammes et al. 

2010, Ou, McGoverin et al. 2017) take minutes for bacteria detection and have low cost 

per test but they have again high set up costs: and fiber-based fluorescence spectroscopy 

(Guo, McGoverin et al. 2017) allows detection in minutes with a relatively low error, low 

setup cost, and cost per test, but a sample taken must be first taken and stained for each 

measurement.

Finally, yet another alternative to plating for essentially continuous assessment of the 

size of a bacterial population relies on optical density (OD) measurements of a bacterial 

population in suspension (spectrophotometry) (McMeekin, Olley et al. 1993, López, Prieto 

et al. 2004, (Mytilinaios et al., 2012)). OD measurements rely on well known principles and 

can easily and inexpensively provide a continuous stream of data in real time. While these 

features are appealing, OD measurements also have an important limitation: They count 

both live and dead cells in a bacterial population, as both kinds of cells produce an optical 

signal by blocking/absorbing light. Therefore, OD measurements are typically suitable for 

monitoring a growing bacterial population, but cannot keep track of a declining population 

that exhibits patterns such as those shown in Fig. 1. Indeed, when a bacterial population is 

in decline (in response to antibiotic exposure) OD measurements produce a continuous non-
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decreasing signal, because the sum of live and dead cells is non-decreasing. In particular, 

OD measurements are of little value in the important case of time-kill experiments with 

bacterial populations comprising subpopulations of varying degrees of antibiotic resistance. 

This is because, at certain concentrations of the antibiotic, regrowth of the population 

could occur, due to early decline of susceptible subpopulations and simultaneous growth of 

subpopulations resistant to the antibiotic, as shown in Fig. 1. In that figure, the thick curves 

corresponding to both live and dead cell counts of a growing bacterial population (at low 

antibiotic concentrations) provide enough qualitative information on live cell counts (thin 

dashed lines) by inspection. However, for populations in regrowth, in retarded regrowth, 

or in decline (Fig. 1), mere inspection of the thick lines offers no indication about the 

trend of live cell counts (thin dashed lines) and offers hardly any clues towards the design 

of an effective therapeutic treatment. It is for these situations, which are essential from 

a therapeutic view-point, that we propose here a mathematical model-based method to 

circumvent the serious limitations of OD methods while retaining their advantages.

The approach taken to build the proposed mathematical model structure starts with equations 

that capture the effect of an antibiotic on a heterogeneous bacterial population comprising 

subpopulations of varying degrees of resistance, as shown qualitatively in Fig. 1 (Nikolaou 

and Tam 2006, Bhagunde, Nikolaou et al. 2015). That model structure makes minimal 

assumptions about the underlying mechanisms that confer resistance, and can be used with 

one or more antibiotics in combination. The model structure is extended here to describe the 

antibiotic effect on the entire cell count in a bacterial population, namely on both live and 

dead cells, as illustrated in Fig. 1. As detailed below, the proposed general model structure 

relies on minimal assumptions and includes a small number of parameters that can be easily 

estimated based on experimental data.

In the rest of the paper, we first provide the basic equations that constitute the starting 

point for the Results. These results are developed in the Mathematical modeling section 

and illustrated through an experimental study presented in the Experimental section. Finally, 

conclusions and recommendations for further study are presented.

2. Materials and methods

2.1. Background on mathematical modeling

When a bacterial population is exposed to an antibiotic, the population experiences 

kill rates r ≥ 0 (Wagner 1968, Jusko 1971, Giraldo, Vivas et al. 2002) which vary 

over subpopulations of the overall population, as these subpopulations have different 

susceptibilities to the antibiotic at a given concentration (Lipsitch and Levin 1997, Giraldo, 

Vivas et al. 2002). If such a heterogeneous bacterial population is exposed to an antibiotic at 

a time-invariant concentration, the distribution of kill rates changes over time, as susceptible 

bacteria are killed faster than less susceptible (more resistant) bacteria, thus changing 

the pharmacodynamics of the antibiotic/bacteria interaction. The least susceptible (most 

resistant) subpopulation eventually becomes dominant and experiences either eradication or 

regrowth, depending on whether the natural growth rate of that most resistant subpopulation 

is lower or higher, respectively, than the kill rate induced on that subpopulation by the 

antibiotic at that concentration (Hill 1910, Wagner 1968, Jusko 1971, Giraldo, Vivas et al. 
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2002). Under non-demanding assumptions, the related dynamics is captured well by general 

equations developed by Nikolaou and Tam (2006) and Bhagunde, Nikolaou et al. (2015), 

according to which the size of a heterogeneous bacterial population exposed to one or more 

antibiotics at constant concentration over time is well approximated by the equation

ln Nlive(t)
N0

= (Kg − rmin)t + λ e−at − 1 − ln

1 + Kg
Nlive(0)
Nmax ∫

0

t

exp (Kg − rmin)τ + λ e−aτ − 1 dτ
(1)

and the kill rate average and variance over time are well approximated by the equations

μ(t) = rmin + (μ(0) − rmin)exp − μ(0) − rmin
λ t = rmin + λae−at (2)

σ(t)2 = (μ(0) − rmin)2

λ exp − μ(0) − rmin
λ t

= λa2e−at
(3)

where

Nlive(t) is the live bacterial population size with initial value N0

Kg is the physiological net growth rate of the entire bacterial population, common for all 

subpopulations

rmin is the kill rate induced by the antibiotic on the most resistant (least susceptible) 

subpopulation

Nmax is the maximum size of a bacterial population reaching saturation under growth 

conditions

μ(t) is the kill rate average over the bacterial population at time t

σ(t)2 is the kill rate variance over the bacterial population at time t

λ > 0, a > 0 are constants associated with the initial decline of the average kill rate of the 

population, and correspond to the Poisson distributed variable 
r − rmin

a  with average and 

variance equal to λ.

Note that the above two equations for Nlive(t) and μ(t) have been derived with essentially no 

assumptions about the mechanisms that may confer bacterial resistance. The parameters Kg, 

rmin, λ, a, Nmax that appear in the above expressions for Nlive(t) and μ(t) can be estimated 

from time-kill experiments that produce measurements of Nlive(t) over time at various set 

concentrations of the antibiotic.
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Estimates of parameters such as Kg and rmin are essential for guiding the design of 

effective dosing regimens. For example, it has been shown (Nikolaou, Schilling et al. 

2007) that an antibiotic injected periodically and following pharmacokinetics of exponential 

decay during each period, T, will eradicate a heterogeneous bacterial population when 
1
T ∫0

T rmin(C(t))dt > Kg where rmin(C(t)) is the kill rate of the most resistant subpopulation 

as a function of antibiotic concentration C(t), typically an expression of the type 

rmin(C) = Kk
CH

CH + C50
H  (Wagner 1968, Jusko 1971, Giraldo, Vivas et al. 2002) where Kk is 

the maximal kill rate achieved as C ∞; C50 is a constant equal to the antimicrobial agent 

concentration at which 50% of the maximal kill rate is achieved; and H is the Hill exponent 

(Hill 1910), corresponding to how inflected r is as a function of C.

To estimate model parameters, measurements of Nlive(t) can be typically obtained by 

drawing small samples from the bacterial population at distinct points in time and 

using standard plating methods (Sanders 2012). As already mentioned, this measurement 

approach is well established but is laborious, time-consuming, and can reasonably produce 

measurements at only a few distinct points in time. By contrast, simple optical methods 

produce an essentially continuous signal for the bacterial population size over time. The 

Achilles heel of these methods is that while they produce a signal for a bacterial population 

in growth that is easy to interpret by inspection. when the bacterial population of live cells is 

in decline (because of antibiotic exposure) the OD signal produced is practically impossible 

to interpret by inspection as it appears to contain little or no information (Fig. 1).

Therefore, there is an incentive to develop equations that capture the pharmacodynamics of 

the combined population of both live and dead cells exposed to an antibiotic, as counterparts 

of Eqs. (1) and (2). The utility of such equations would be in inferring profiles over time for 

live cell counts from measurements of total (both live and dead) cell counts in a population. 

That information would guide decisions about effective use of antibiotics, particularly to 

eradicate bacterial populations that exhibit varying degrees of resistance to one or multiple 

antibiotics. The development of such equations is discussed in the next section.

2.2. Antibiotic agent

Levofloxacin (LVX) powder was a gift from Achaogen (South San Francisco, CA). A stock 

solution at 1024 μg/mL in sterile water has been prepared ahead of time and stored in 

−70°C. For each experimental study, the drug was diluted to the optimum concentration 

through standard lab techniques.

2.3. Microorganism

A laboratory reference wild type Acinetobacter baumannii (AB), ATCC BAA747, was 

utilized in the study. The bacteria were stored at −70°C in Protect® vials. Before the 

experiment, the bacteria were subcultured at least twice on 5% blood agar plates for 

24 hours at 35°C and fresh colonies were used. The susceptibility (MIC) to LVX was 

previously found to be 0.25 μg/mL.
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2.4. OD measurements

Real time measurements of the bacterial population size are provided by an optical 

instrument (model 216Dx), provided by BacterioScan® (St. Louis, MO). The instrument 

is currently functional with additional development for various improvements underway. The 

instrument uses laser light scattering coupled with traditional OD measurements to provide 

a quantitative measure of particle (e.g. bacterial) density in liquid samples. Prepared samples 

were loaded into custom, sterilized cartridges and inserted into instruments for automated 

optical profiling. The instrument utilizes a 650 nm wavelength laser that is passed through 

the liquid sample (with a 2.5 cm pathlength) and collects both the scattered light as well 

as the unscattered light (no particle interaction) signals. Using a proprietary algorithm, 

these signals are converted to numeric values and scaled to bacterial colony forming units 

per milliliter (CFU/ml) based on average size and density standards for typical bacterial 

cells. In its current version, the instrument allows for simultaneous measurements of 16 

individual combinations of antibiotic and bacterial population in suspension maintained at 

35°C. Full computer connectivity allows continuous monitoring, storage, and transfer of all 

measurements.

2.5. Bacterial susceptibility studies

Bacteria were initially grown in a temperature regulated shaker bath to log phase growth and 

diluted to a concentration of 105 − 105.5CFU
mL . The initial target concentration was estimated 

by absorbance values at 630 nm. Samples of the bacterial population at the desired initial 

concentration were transferred to six temperature regulated flasks with cation adjusted 

Mueller Hinton broth and LVX concentrations of {0, 0.5, 2, 8, 16, 32} × MIC. Serial 

samples were taken in duplicate from each flask at 0, 2,4, 8 and 24 hours. Each sample 

containing antibiotic was first centrifuged to remove the supernatant antibiotic solution, 

replace it with an equal volume of sterile saline to minimize drug carryover effect, and 

was subsequently plated quantitatively to determine viable bacterial burden. The preceding 

procedure was repeated three times on different days.

2.6. Optical instrument susceptibility studies

Bacteria were initially grown in a temperature regulated shaker bath to log phase growth 

and diluted to a concentration of 105 − 105.5CFU
mL . The initial target concentration was 

estimated by absorbance values at 630 nm. Samples of the bacterial population at the desired 

initial concentration were transferred to 4 temperature regulated covets inside the optical 

instrument with cation adjusted Mueller Hinton broth and LVX concentrations of {0, 0.5, 2, 

8} × MIC. The instrument took serial samples automatically from each flask approximately 

every 1 minute for 48 hours. The preceding procedure was repeated three times on different 

days.

2.7. Data fit

Nonlinear regression was used for parameter estimation. Parameters were estimated in 

two platforms: Matlab® (function “fitnlm” of the Optimization Toolbox) and MS Excel® 

(Generalized Reduced Gradient in the Solver Add-in). Multiple starting points were used to 
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avoid convergence to local optima. Eq. (1) was used to fit data from the viability plating 

experiments described above. Similarly Eq. (17) (developed below in Results) was used to 

fit data from OD instruments.

3. Results

3.1. Mathematical modeling

We proceed to the step-by-step derivation of the dynamics and analytical expression for 

the entire size (both live and dead cells) of a heterogeneous bacterial population exposed 

to an antibiotic at a time-invariant concentration. This is a typical setting in time-kill 

experiments, as the data it produces, particularly if successfully modeled, can be well used 

to analyze the effect of antibiotics at time-varying concentrations corresponding to realistic 

pharmacokinetics of clinical significance (Nikolaou, Schilling et al. 2007).

It can be shown (Bhagunde, Nikolaou et al. 2015) that when a heterogeneous bacterial 

population is exposed to an antibiotic, the dynamics of the population of live bacterial cells 

becomes

dNlive
dt = Kg 1 − Nlive(t)

Nmax
Nlive(t)

Net physiological growth

− μ(t)Nlive(t)
Kill rate induced

by antibiotic

(4)

with μ(t) as in Eq. (2).

Similarly, the dynamics of the population of dead cells becomes

dNdead
dt = KdNlive(t)

physiological
death

+ μ(t)Nlive(t)
Killing induced

by antibiotic

= (Kd + μ(t))Nlive(t)
(5)

Adding Eqs. (4) and (5) yields the following equation for the entire population

Ntotal = Nlive + Ndead (6)

of live and dead cells:

dNtotal
dt = d(Nlive + Ndead)

dt
= Kg 1 − Nlive(t)

Nmax
Nlive(t)

Net physiological growth

− μ(t)Nlive(t)
Kill rate induced

by antibiotic

+ KdNlive(t)
Death

+ μ(t)Nlive(t)
Kill rate induced

by antibiotic

= Kd + Kg 1 − Nlive(t)
Nmax

Nlive(t)

= Kb − Kg
Nlive(t)
Nmax

Nlive(t)

(7)

where the connection between the constants Kg, Kb, and Kb is discussed in APPENDIX A
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Combination of Eqs. (2), (4), and (7) immediately implies

dNlive
dt = −Kg

Nlive(t)
Nmax

+ Kg − rmin − λae−at Nlive(t) (8)

dNtotal
dt = Kg 1 − Nlive(t)

Nmax
+ Kd Nlive(t)

= −Kg
Nlive(t)
Nmax

+ Kb Nlive(t)
(9)

Note that from the above Eq. (8) it is clear that the bacterial population can be eventually 

eradicated if and only if

rmin > Kg (10)

The above Eqs. (8) and (9) can be solved analytically to provide closed form expressions for 

Ntotal(t), as discussed next.

3.1.1. Ntotal(t) for growing bacterial population (no antibiotic)—In the absence 

of antibiotic, Eq. (8) yields 
dNlive

dt = Kg[1 −
Nlive(t)
Nmax

]Nlive(t) which, in turn, yields

Nlive(t) = N0
1

N0
Nmax

+ e−Kgt 1 − N0
Nmax

(11)

(Incidentally, Eq. (11) is the counterpart of Eq. (1) for rmin = λ = 0.) Substituting the above 

Nlive(t) into Eq. (9) and integrating yields

Ntotal(t)
N0

= 1
N0

Nmax
+ e−Kgt 1 − N0

Nmax

+ Nmax
N0

Kd
Kg

ln (eKgt − 1) N0
Nmax

+ 1
(12)

Note the asymptotic behavior of the above Eq. (12):

• For t ≈ 0 with an initial bacterial population size well below its saturation point, 

we have 
N0

Nmax
≈ 0 which implies

Ntotal(t)
N0

≈ 1 + Kd
Kg

eKgt − Kd
Kg

(13)

Typical profiles for each of Eq. (11), (12), and (13) are shown in Fig. 2.
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• For t ∞ we get

Ntotal(t)
N0

≈ Nmax
N0

Kdt (14)

3.1.2. General bacterial population exposed to antibiotic—In the presence of an 

antibiotic, Eq. (8) eventually yields (APPENDIX B)

Ntotal(t)
N0

= eλ(e−at − 1) + (Kg − rmin)t

1 + Kg
N0

Nmax
e−λ

a λ
Kg − rmin

a ∫λe−atλ z−1 +
rmin − Kg

a ezdz

+ ∫
0

t
(Kd + rmin + λae−aτ)eλ(e−aτ − 1) + (Kg − rmin)τ

1 + Kg
N0

Nmax
e−λ

a λ
Kg − rmin

a ∫λe−aτλ z−1 +
rmin − Kg

a ezdz
dτ

(15)

Note that when the initial population is far from its saturation point, i.e. 
N0

Nmax
≈ 0, then Eq. 

(8) yields

Nlive(t)
N0

= eλ(e−at − 1) + (Kg − rmin)t (16)

which implies that Eq. (15) can be simplified as

Ntotal(t)
N0

= eλ(e−at − 1) + (Kg − rmin)t

+ e−λλ
Kg − rmin

a
Kd + rmin

a ∫
λe−at

λ

z−1 +
rmin − Kg

a ezdz

+ ∫
λe−at

λ

z
rmin − Kg

a ezdz

(17)

3.2. Experimental data collection and processing

To illustrate the applicability of the mathematical modeling framework presented above, we 

present the following results. The central ideas behind these results are as follows:

• For each time-invariant antibiotic concentration, experimental data from OD 
measurements of Ntotal(t) were used with the modeling equations developed 

above to fit parameters, using Eq. (17), and then use these parameter estimates to 

infer the live cell population count over time, Nlive(t), using Eq. (1). The outcome 

is shown in Fig. 3 with parameter values shown in Table 1. Note that Eqs. (2) and 

(3) were used to express the parameters rmin and λ in Eqs. (1) and (17) as
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rmin = μ(0) − σ(0)2

a (18)

λ = σ(0)2

a2 (19)

to improve the convergence properties of numerical parameter estimation 

algorithms.

• For the same time-invariant antibiotic concentrations (0-8 MIC), samples from 

corresponding cultures were collected at selected times (1, 2, 4, 8, and 24 hours) 

and plated, to have direct (viability plating) measurements of Nlive at these select 

times. The viability plating data were fit by Eq. (1) to produce direct estimates 

of Nlive(t) for all times t. The outcome for Nlive(t) is shown in Fig. 4 and can be 

directly compared to the Nlive(t) shown in Fig. 3.

• To further compare OD data and plating data, parameter estimates from fitting 

the plating data of Nlive(t) using Eq. (1) were used in Eq. (17) (with the addition 

of an average value for Kd, Table 1) to infer Ntotal(t) for plating data. The 

outcome is shown in Fig. 5.

• Finally, to test the predictive ability of the proposed model when data are 

available over shorter periods of time, we used Eq. (17) to estimate Nlive 

by selecting part of the data produced by OD for Ntotal over increasingly 

shorter periods of time, namely 24, 12, 9, and 6 hours. The outcome, which 

is counterpart of Fig. 3 for data of the shorter time spans indicated above, is 

shown in Fig. 6 through Fig. 9, with corresponding parameter estimates shown in 

Table 1.

4. Discussion

The main focus of the work presented was to address a basic question, which, in the context 

discussed, can be summarized as follows:

“Given that bacterial cell counts assessed over time by OD measurements never 
decline, as the counts include both live and dead cells, is it feasible to glean the 

trend of live cell counts from OD measurements alone over time? In particular, can 

regrowth of live cells following initial decline be gleaned from OD data alone?”

Comparison of the results in Fig. 3 through Fig. 5 indicates that this is feasible (Figs. 7 and 

8). Specifically, it can be observed that the regrowth of the resistant bacterial subpopulation, 

robustly identified by plating experiments at all antibiotic concentrations (0.5, 2, 8 × MIC) 

is also identified from OD data alone by application of the proposed mathematical modeling 

method of section 2 in almost all cases, except only for OD data collected over 24h at 8 × 

MIC and, quite expectedly, for OD data collected over 6h at (2, 8) × MIC. In fact, analysis 

of that last set was performed with the intent to explore how short a time interval can be 

successfully handled by the proposed method for inferring Nlive(t) from Ntotal(t).
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Note that R2 values are reported with the intent to offer a quantitative sense of completeness, 

but they should be interpreted with caution when fitting OD measurements, because these 

measurements contain systematic errors. For example, in the few cases where R2 becomes 

very low, the culprit is a slightly declining part of relatively flat line, an artifact of the 

instrument used, which our mathematical model cannot fit well, as it has been built to only 

represent increasing or flat lines, for the fundamental reasons already explained.

Also note that because estimates of Kd could not be obtained directly from plating data, 

they were obtained from fitting Eq. (17) to data produced by the OD instrument, with all 

remaining parameters set at their values estimated from plating data.

It is worth deciphering in a narrative how the equations of the proposed mathematical 

method manage to identify a declining bacterial population when there is never any such 

indication in the original data by inspection. The key is that the bacterial population is not 

homogeneous, and subpopulations respond differently to antibiotic exposure: At a given 

antibiotic concentration, resistant subpopulations continue growth, perhaps at reduced rate, 

while susceptible subpopulations decline. The net effect is net growth of both live and dead 

bacterial cell counts combined, but at a rate lower than natural growth, as dead cells do 

not disappear but do not grow either. This trend offers useful information early on, long 

before a bacterial population reaches its saturation point. This partly offsets the experimental 

shortcomings of the instrument used, which introduces small systematic errors over time. 

Thus, combining everything, the equations developed in section 2 (most notably Eq. (17)) 

allow for fit of the data by a corresponding model and subsequent inference of Nlive(t), 
which is the outcome produced by the method.

The fundamental capability described above creates the potential for OD measurements 

to be routinely used as a highly efficient tool for automatically discerning the 

pharmacodynamics of bacteria/antibiotic interaction in a short period of time and for using 

the outcome towards the rapid design of personalized therapeutic treatments.

The robustness of the results presented here is better appreciated in view of the fact that 

small systematic errors are evident in all OD measurements collected, as the associated OD 

measurement technology is under development. For example, the OD measurement growth 

curves in Fig. 6 through Fig. 9 exhibit a temporary reduction in growth rate starting at 

around 4 hours. The growth rate resumes its previous value at around 6 hours. Finally, it 

starts to plateau at around 10 hours. The growth rate fluctuation from an initial value to a 

lower one and back is purely an artifact of the instrument used, as different optical methods 

(diffraction and absorption) are used for cell counting in different time regimes. Artificial 

fluctuations are also noticed in the time-kill curves at around 6 hours and 24–35 hours for 

1/2 × MIC, at 12 hours for the 2 × MIC curve and slightly later for the 8 × MIC curve. 

The sources of these systematic errors vary. One is that dead cells decompose over time, 

thus changing the optical signature of the cell suspension. Another is the non-uniformity 

of concentration of cells in suspension used in the instrument. Yet another one is that 

antibiotics can induce morphological changes to the bacteria; for instance, fluoroquinolones, 

as levofloxacin, may induce filaments when exposed to concentrations close to the MIC, 

which increases the size but not the number of bacteria, thus inadvertently changing again 
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the optical signature observed.1 As expected, model fits to data collected over different 

time periods are impacted by these fluctuations. Nevertheless, the results show remarkable 

robustness, and one can only expect improvements with the availability of better OD 

instruments.

Finally, it should also be emphasized that the information contained in the fitted model could 

be used in the design of effective therapies against challenging infections, e.g. by ensuring 

that rmin > Kg or by ensuring that 1
T ∫0

T rmin(C(t))dt > Kg is satisfied. This underscores 

the important role of using the proposed mathematical modeling framework to extract 

information on a declining population from measurements that could not possibly provide 

a direct detection of such decline, and to use such information effectively for therapeutic 

purposes.

5. Conclusion

A mathematical model-based method was developed to glean in vitro pharmacodynamics 

from otherwise unusable OD measurements collected in time-kill experiments of bacterial 

populations exposed to antibiotics. The model-based method was applied to experimental 

OD measurements over time, and produced estimates of live bacteria count patterns in 

agreement with count patterns produced manually by a standard plating method at a few 

sampling points. The mathematical model-based method developed here helps retain all of 

the advantages associated with OD measurements, while removing their basic disadvantage, 

namely their inability to distinguish between live and dead cells and thus to track the size 

of a bacterial population in decline from exposure to antibiotics. This model-based method 

paves the way towards rapid systematic design of effective personalized dosing regimens 

against resistant bacteria. As development of OD measurement technology progresses 

further, e.g. by simplifying calibration or by extending the dynamic range (López, Prieto 

et al. 2004, Mytilinaios 2012, Pla, Oltra et al. 2015), it is anticipated that use of the 

model-based method presented here will prove useful at improving therapeutic outcomes in 

treatment of resistant clinical infections.
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Appendix A.: Connection between Kg, Kb, and Kd

In the absence of an antibiotic, the growth dynamics of a bacterial population is 

characterized by

dNlive
dt = Kb 1 − Nlive(t)

Nc
Nlive(t)

Physiological birth

− KdNlive(t)
Physiological death

= (Kb − Kd)
Kg

1 − Kb
Kb − Kd

Nlive(t)
Nc

Nlive(t)

= Kg 1 − Nlive(t)
Nmax

Nlive(t)

Net physiological growth

(A.1)

where

Nmax = Nc
Kb − Kd

Kb
= Nc

Kg
Kb

(A.2)

and

Kg = Kb − Kd (A.3)

Appendix B.: Derivation of Eq. (15)

Eq. (8) can be solved analytically to yield

Nlive(t)
N0

= eλ(e−at − 1) + (Kg − rmin)t

1 + Kg
N0

Nmax
∫0

teλ(e−aτ − 1) + (Kg − rmin)τdτ

= eλ(e−at − 1) + (Kg − rmin)t

1 + Kg
N0

Nmax
e−λ

a λ
Kg − rmin

a ∫λe−atλ z−1 +
rmin − Kg

a ezdz

(B.1)

with λ > 0, a > 0, rmin > 0. Therefore

dNtotal
dt =

dNlive
dt +

dNdead
dt

Ntotal(t)
N0

=
Nlive(t)

N0
+ ∫

0

t
dNdead/N0

dτ dτ =
Nlive(t)

N0

+ ∫
0

t
(Kd + μ(τ))

Nlive(τ)
N0

dτ

which implies Eq. (15).
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Appendix C.: Parameter estimation from experimental plating data

See Table C.1.

Table C.1

Parameter estimation for each plating experiment and derivation of average parameters for 

each concentration of antimicrobial agent.

 Source: Parameter Plating experiment 1 
Values

Plating experiment 
2 Values

Plating experiment 
3 Values

Average values

Time Growth Placebo

 log Nmax 8.8 ± 0.1 8.2 ± 0.01 8.4 ± 0.05 8.5 ± 0.06

 Kg 1.8 ± 0.2 2.2 ± 0.03 2.3 ± 0.012 2.1 ± 0.13

 LogNo 5.1 ± 0.2 5.3 ± 0.02 5.0 ± 0.08 5.2 ± 0.09

 Kd 4.0** 4.0** 4.0** 4**

Time Kill 1/2 MIC

 μ(0) 8.1 ± 0.3 12 ± 0.3 4.0 ± 0.7 8.0 ± 0.3

 σ(0) 3.1 ± 0.1 4.5 ± 0.1 0.74 ± 0.36 3.0 ± 0.1

 α 1.4 ± 0.1 2.1 ± 0.1 0.24 ± 0.9 1.3 ± 0.1

Time Kill 2 MIC

 μ(0) 15 ± 0.6 11 ± 0.4 13 ± 0.53 13 ± 0.5

 σ(0) 4.6 ± 0.1 3.6 ± 0.1 4.0 ± 0.12 4.0 ± 0.1

 α 1.6 ± 0.1 1.5 ± 0.1 1.5 ± 0.12 1.5 ± 0.1

Time Kill 8 MIC

 μ(0) 17 ± 1.1 17 ± 1.1

 σ(0) 4.3 ± 0.2 4.3 ± 0.2

 α 1.2 ± 0.2 1.2 ± 0.2
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Fig. 1. 
Qualitative patterns in measurements of total number of (live and dead) bacterial cells (thick 

lines) corresponding to populations of live bacterial cells (thin dashed lines) over time, in 

response to time-invariant antibiotic concentrations. A heterogeneous bacterial population 

is considered, comprising subpopulations of varying degrees of antibiotic resistance. As 

the antibiotic concentration is set at increasingly higher values, the bacterial response over 

time changes from full growth to the point of saturation (in the absence of antibiotic), to 

retarded growth, to regrowth (resulting from rapid decline of bacterial subpopulations highly 

susceptible to the antibiotic combined with growth of subpopulations less susceptible to the 

antibiotic), then retarded regrowth, and finally complete eradication of the entire bacterial 

population. Complete eradication will not occur if a resistant subpopulation is part of the 

bacterial population.
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Fig. 2. 
Typical profiles for each of Eqs. (11), (12), and (13).
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Fig. 3. 
Fit of Eq. (17) to experimental data on Ntotal generated by the OD instrument for a bacterial 

population of AB exposed to LVX at a number of time-invariant concentrations for 48 hours, 

and inference of the live cell population, Nlive, using Eq. (1).
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Fig. 4. 
Fit of Eq. (1) to experimental data on Nlive generated by plating for a bacterial population 

of AB exposed to LVX at a number of time-invariant concentrations. Standard error 

bands included. Note that plating data were collected at two additional concentrations in 

comparison to OD data, namely at 16 and 32 MIC.
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Fig. 5. 
Comparison of experimental data produced by the OD instrument to the output of Eq. (1) 

and Eq. (17) with parameter values set by the estimates produced from the data fits reported 

in Table 1, referring to Fig. 4.
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Fig. 6. 
Fit of Eq. (17) to experimental data on Ntotal generated by the OD instrument for a bacterial 

population of AB exposed to LVX at a number of time-invariant concentrations for 24 hours, 

and inference of the live cell population, Nlive, using Eq. (1).
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Fig. 7. 
Fit of Eq. (17) to experimental data on Ntotal generated by the OD instrument for a bacterial 

population of AB exposed to LVX at a number of time-invariant concentrations for 12 hours, 

and inference of the live cell population, Nlive, using Eq. (1).
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Fig. 8. 
Fit of Eq. (17) to experimental data on Ntotal generated by the OD instrument for a bacterial 

population of AB exposed to LVX at a number of time-invariant concentrations for 9 hours, 

and inference of the live cell population, Nlive, using Eq. (1).
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Fig. 9. 
Fit of Eq. (17) to experimental data on Ntotal generated by the OD instrument for a bacterial 

population of AB exposed to LVX at a number of time-invariant concentrations for 6 hours, 

and inference of the live cell population, Nlive, using Eq. (1).
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