Skip to main content
. 2022 Feb 25;2022:7377502. doi: 10.1155/2022/7377502

Table 2.

Testing analysis (%) of the proposed IoT-enabled deep ensemble model for automated diagnosis of COVID-19 suspected cases on the four-class chest CT dataset when training to testing ratio is 65 : 35.

Model Accuracy F-measure AUC Recall Precision
JLM [16] 97.46 97.84 97.65 97.98 98.08
WSDL [17] 96.96 97.17 97.06 97.46 97.88
IPCNN [18] 97.95 97.55 97.75 98.03 98.03
DeCNN [19] 97.36 97.36 97.18 97.27 98.11
DLCRD [20] 98.13 98.12 98.14 98.19 97.63
PARL [22] 97.11 97.52 97.31 97.78 97.93
AGGDF [24] 97.73 97.44 97.58 97.75 97.47
GCNN [25] 97.46 97.75 97.65 97.92 97.99
GoogLeNet [53] 97.77 97.33 97.55 97.69 97.94
ResNet152V2 [44] 96.96 97.89 97.42 97.74 97.67
DenseNet201 [34] 97.44 97.59 97.51 97.87 98.11
IRNV2 [3] 98.06 97.98 98.02 98.27 98.36
Proposed 98.97 98.75 98.57 98.58 98.56