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Summary:

The neural circuit mechanisms underlying observational learning, learning through observing the 

behavior of others, are poorly understood. Hippocampal place cells are important for spatial 

learning and awake replay of place cell patterns is involved in spatial decisions. Here we show 

that, in observer rats learning to run a maze by watching a demonstrator’s spatial trajectories from 

a separate nearby observation box, place cell patterns during self-running in the maze are replayed 

remotely in the box. The contents of the remote awake replay preferentially target the maze’s 

reward sites from both forward and reverse replay directions and reflect the observer’s future 

correct trajectories in the maze. In contrast, under control conditions without a demonstrator, the 

remote replay is significantly reduced and the preferences for reward sites and future trajectories 

disappear. Our results suggest that social observation directs the contents of remote awake replay 

to guide spatial decisions in observational learning.
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eTOC Blurb:

Mou et al demonstrate that observing an animal running a maze reactivates the firing sequences 

of the observer’s hippocampal place cells, remotely during awake ripples in a physically separated 

observation box. Such reactivation preferentially focuses on reward sites in the maze and predicts 

the observer’s future spatial decisions.

INTRODUCTION

Observational learning allows an individual to acquire new skills or new information by 

observing actions of other subjects (Bandura, 1997). It is an essential cognitive function in 

a wide range of species including humans and rodents (Heyes, 1996; Meltzoff et al., 2009). 

Recent studies have started to reveal the neural processes relevant to observational learning 

(Allsop et al., 2018; Danjo et al., 2018; Jeon et al., 2010; Leggio et al., 2000; Mou and Ji, 

2016; Olsson and Phelps, 2007; Omer et al., 2018). However, the neural activity patterns 

underlying ongoing observational learning behavior remain largely unknown.

The hippocampus is a learning and memory center (Scoville and Milner, 1957). 

Hippocampal place cells, widely studied in rats and mice, are active when an animal is 

at one or a few places (place fields) of an environment (O’Keefe and Dostrovsky, 1971; 

Wilson and McNaughton, 1993). When an animal travels through a spatial trajectory, place 

cells are activated one after another in a sequence. This sequential firing is believed to be a 

hippocampal internal code, or a cognitive map, representing the spatial trajectory (Burgess 

and O’Keefe, 2003; Harris et al., 2003; O’Keefe and Nadel, 1978). The firing sequence can 
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be replayed during sleep or resting (Foster and Wilson, 2006; Wilson and McNaughton, 

1994). Replay occurs when the local field potentials (LFPs) in the hippocampal CA1 area 

display high-frequency oscillations called sharp-wave ripples and a population of CA1 cells 

bursts together (Buzsaki, 1989; Buzsaki et al., 1992). Replay during awake resting (awake 

replay) can be in the same (forward) or reverse order of the original firing sequence and can 

sometimes reflect a different or novel trajectory (Carey et al., 2019; Davidson et al., 2009; 

Diba and Buzsaki, 2007; Foster and Wilson, 2006; Gupta et al., 2010; Karlsson and Frank, 

2009). Recent studies suggest that awake replay may be a neural substrate for memory recall 

or planning of future spatial trajectories (Carr et al., 2011; Jadhav et al., 2012; Pfeiffer and 

Foster, 2013; Wu et al., 2017).

Given the role of hippocampal awake replay in spatial learning, we set out to study whether 

awake replay is involved in the observational learning of spatial trajectories. We designed 

an observational working memory task, in which an observer rat (OB) first stayed in an 

observation box and watched a demonstrator rat (Demo) choosing a spatial trajectory in a 

separate, nearby T-maze. The observer rat was then placed in the maze and had to run the 

same observed trajectory for water reward. We recorded place cells from the hippocampal 

CA1 area in the OB. We asked whether the place cell sequences associated with self-running 

in the maze were replayed in the observation box, and if so, how the replay was related to 

the OB’s task performance.

RESULTS

We trained rats to observe and run for water reward in an apparatus consisting of an 

observation box and a nearby, separated T-maze (Figure 1A, Figure S1A). Each daily session 

consisted of 30 – 50 trials. Each trial started with an OB staying in the box, while a 

well-trained Demo ran along the central arm of the maze and chose a random left or right 

turn to reach the left or right reward site (outbound trajectory). The Demo received water 

after nose-poking the corresponding (left or right) water port in the maze. Meanwhile, once 

the Demo made the first poke, the OB received water in the box after poking the water 

port on the same side as the Demo within 10 s. After consuming water, the Demo returned 

along the left or right side arm (inbound trajectory) and was confined in a rest box. The OB 

was then moved to the central arm of the T-maze. The OB received water after making the 

same choice as the Demo and poking the same water port. The OB returned along the same 

inbound trajectory as the Demo, before being moved back to the box for the next trial.

In this task, the OB’s trajectories in the maze varied from trial to trial, similar to a typical 

working memory task. However, the OB’s choice depended on the choice of the Demo, 

not its own. Therefore, this task is an observational learning version of spatial working 

memory. We refer to the trials with a well-trained Demo as the standard Demo condition, to 

distinguish from control and other behavioral conditions (see STAR Methods).

We trained 18 rats as the OB in this task. Before training, all OBs went through a pre-

training phase in which they only observed a Demo but did not run in the T-maze. All 

OBs were then trained under the Demo condition until reaching a criterion performance 

(the percentage of correct trials in the maze >70% for 2 consecutive days). In this post-
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training stage, 6 of the 18 OBs were surgically implanted with tetrodes to record from CA1 

place cells after they were re-trained back to the criterion performance. Further behavioral 

experiments with neural recordings (on the 6 implanted OBs) or without were performed in 

testing sessions under the Demo or other behavioral conditions (Table S1).

Behavioral performance in the observation box

As expected, OBs in the box learned to poke on the same side as their corresponding 

Demo in the maze. An example OB’s nosepokes gradually transitioned from random in 

a pre-training session to promptly following its Demo’s in a post-training session (Figure 

1B, Figure S1B). For each session, we computed a poke performance curve, defined as the 

average normalized poking activity of the OB triggered at different time points from the 

Demo’s first pokes (time 0). The curve showed a positive peak close to 0 in the post-but not 

in the pre-training session (Figure 1C), indicating an average correct poking response of the 

OB in post-training that was synchronized to the Demo’s poking.

The poke performance curves across all sessions show that the peak time gradually shifted 

close to 0 during pre-training and stayed so afterward during training and post-training 

even after the tetrode implantation surgery (Figure 1D). The curves also show that the OB 

sometimes poked slightly before the Demo (after the Demo chose the turn in the maze). We 

therefore defined a poke synchronization index (PSI) for each session as the mean value of 

the poke performance curve within a time window of [−1 2] s. The PSI averaged over all 

OBs significantly increased over pre-training sessions (One-way ANOVA, F(21,224) = 2.8, P 
= 1.1 × 10−4, N = 225 sessions from 18 rats) and stayed at a similar positive level during 

training (F(24,345) = 0.67, P = 0.88, N = 346 from 18 rats; Figure 1E). In post-training, the 

average poke performance curve (N = 35 from 6 rats) clearly showed a positive peak at 0.25 

s (Figure 1F), indicating a stable poke performance.

To investigate whether the poke performance in the box required the presence of a Demo, 

we tested OBs in post-training (after reaching the criterion performance in the standard 

Demo condition) under two control conditions, in which either the Demo was replaced 

by a moving object (Object condition, N = 26 sessions from 8 rats) or the Demo was 

removed (Empty, N = 23 sessions from 8 rats; Table S1). The poke performance curves 

under these conditions lacked a prominent peak close to 0 and that their poke performance 

values were significantly lower than those in the Demo condition (Two-way ANOVA, F(2,38) 

= 57, P = 8.0 × 10−10; Post-hoc test: P = 5.8 × 10−7 between Demo and Object, P = 1.8 

× 10−10 between Demo and Empty; Figure 1F). Therefore, the performance of OBs in the 

observation box depended on the presence of a Demo in the maze.

Despite the largely correct poke performance under the Demo condition, we noticed that an 

OB’s first poke in a trial was not always correct, but the animal quickly switched to the 

correct side of the box to poke. We computed a percentage of correct first pokes in the box 

for each session in post-training. The percentage (median [25% 75%] range values: 64.3% 

[55.6% 73.2%], same below) under the Demo condition (N = 35 sessions) was significantly 

higher than the chance level (Wilcoxon signed-rank test: Z = 4.7, P = 1.6 × 10−6, comparing 

to 50%) and higher than those under the Object (49.4% [47.8% 61.5%], N = 26) and Empty 

(55.6% [43.6% 62.8%], N = 23) conditions (Kruskal-Wallis test across conditions: χ2
(df = 2) 
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= 14, P = 9.3 × 10−4; Post-hoc Dunn’s test: P = 0.0013 between Demo and Object, P = 

0.0023 between Demo and Empty; Figure 1G). Therefore, although the first poke in the box 

was not always correct, it was still largely influenced by the Demo’s choice in the maze.

Behavioral performance in the T-maze

As expected, OBs learned to run the same trajectories in the maze as their Demo did. 

An example OB’s choices in the maze under the Demo condition were unrelated to the 

corresponding Demo’s in an early training session, but closely followed the Demo’s in a 

post-training session (Figure 2A, Figure S1B), despite equal left and right choices of the 

Demo with a seemingly random pattern (Figure 2A, Figure S1C). We quantified the OB’s 

maze performance by the percentage of correct trials (trials in which the OB followed the 

Demo’s trajectories) in each session. The average performance over all OBs significantly 

increased over training sessions (One-way ANOVA, F(24,345) = 28, P = 3.6 × 10−64, N = 

346 sessions from 18 rats) and all OBs passed the criterion performance with a mean of 

86.9% ± 0.8% correct trials in the last 3 sessions (Figure 2B). For the 6 recorded rats, their 

performance dropped slightly in the initial 2 – 3 post-training sessions after the surgery, but 

quickly restored to the pre-surgery level (Two-way ANOVA comparing the last 3 training 

sessions before surgery to the last 3 post-training sessions, F(1,71) = 1.3, P = 0.25, N = 54 

sessions from 18 rats for training, N = 18 sessions from 6 rats for post-training; Figure 2B).

We compared the maze performance under the Demo condition to those under control 

(Object, Empty) conditions (Figure 2C). In contrast to the performance in the last 3 days of 

training under Demo (86.7 ± 1.4%, N = 24 sessions from 8 rats), the performance in the first 

3 testing sessions under Object dropped to the chance level (50.8 ± 2.0%, N = 23 sessions 

from 8 rats; Two-way ANOVA, F(1,46) = 240, P = 3.3 × 10−19). Similarly, compared to the 

performance under Demo (86.9 ± 1.7%, N = 24 sessions from 8 rats), the performance under 

Empty also dropped to the chance level (50.2 ± 1.6%, N = 21 sessions from 8 rats; Two-way 
ANOVA, F(1,44) = 229, P = 2.2 × 10−18). Therefore, the high performance of OBs in the 

maze required the presence of a Demo.

To examine the possibility that an OB’s choice in the maze under the Demo condition 

was solely based on the rewarded side in the box without following its Demo’s choice, we 

focused on the trials when the OB did receive reward in the box under the control Object 

and Empty conditions. We found that the maze performance fell to the chance level for these 

trials in the first 3 testing sessions under both Object (49.6 ± 1.5%, N = 21 sessions from 7 

rats) and Empty (48.4 ± 2.1%, N = 15 sessions from 5 rats) and was significantly lower than 

the performance in the first 3 testing sessions under Demo (83.7 ± 1.9%, N = 18 sessions 

from 6 rats; Two-way ANOVA across conditions: F(2,53) = 120, P = 1.3 × 10−19; Post-hoc 

t-test: P = 2.0 × 10−18 between Demo and Object, P = 1.5 × 10−17 between Demo and 

Empty; Figure 2D). Therefore, OBs did not simply use the reward sites in the box to guide 

their choices in the maze.

CA1 dependence and sensory modalities

We next investigated whether the performances of OBs in the observation box and in 

the T-maze depended on the hippocampal CA1 area. We infused the neurotoxic chemical 
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NMDA in a group of OBs (N = 5) to induce lesions in the dorsal CA1 and infused vehicle in 

a control (N = 5) group (Figure 3A), after all OBs were trained to the criterion performance. 

We compared the performances between the NMDA and vehicle groups in 3 sessions tested 

2 weeks after the infusion (After) and in 3 sessions before the infusion (Before), all under 

the Demo condition.

In the observation box, the average poke performance curve of the vehicle group in After 

showed a clear peak (at 0.25 s) as expected, but that of the NMDA group displayed a weaker 

peak (Figure 3B). Indeed, the poke performance values in the curves were significantly 

different between the two groups in After (Two-way ANOVA: F(1,25) = 7.3, P = 0.022), but 

not in Before (F(1,25) = 0.33, P = 0.58). For the percentage of correct first pokes, the two 

groups also showed a significant difference in After (Two-way ANOVA: F(1,29) = 5.4, P = 

0.028), but not in Before (F(1,29) = 0.0069, P = 0.93; Figure 3C). We point out that the box 

performance in this measure varied across OBs and the difference in After seems mainly 

driven by a further increase in correct first pokes from Before in the vehicle group (Before: 

59.9 ± 2.2%, N = 15 sessions; After: 67.3 ± 3.3%, N = 15), but not in the NMDA group 

(Before: 59.5 ± 3.9%, N = 15; After: 58.4 ± 2.1%, N = 15; Figure 3C). Nevertheless, our 

data show that the performance of OBs in the observation box was impaired by the CA1 

lesion.

In the maze, the percentage of correct trials of the NMDA group was significantly lower 

than that of the vehicle group in After (NMDA: 61.8 ± 2.1%, N = 15 sessions from 5 rats; 

vehicle: 81.7 ± 1.8%, N = 15; F(1,29) = 59, P = 4.0 × 10−8), but not in Before (NMDA: 83.5 

± 0.9%, N = 15; vehicle: 83.8 ± 1.7%, N = 15; F(1,29) = 0.02, P = 0.88; Figure 3D). The 

difference in After was not due to a deficit in locomotion or motivation, because there were 

no significant differences in the number of trials per session (NMDA: 33.9 ± 1.7, vehicle: 

31.4 ± 1.8, Two-way ANOVA, F(1,29) = 1.0, P = 0.33) or the mean trial duration (NMDA: 

136.5 ± 4.0 s, vehicle: 131.0 ± 2.9 s, Two-way ANOVA, F(1,29) = 1.2, P = 0.28). Therefore, 

the CA1 lesion clearly impaired the performance of OBs in the maze.

We conducted additional control experiments in testing sessions to probe the sensory 

modalities involved in the performances of OBs (Figure S2). First, when the Demo’s licking 

sounds were missing or when the odor in the T-maze was masked, the performance in the 

box was largely unaffected and the performance in the maze was intact. Second, when the 

view from the observation box was blocked (Blocked-view condition), the box performance 

was reduced and the maze performance was significantly impaired but stayed above the 

chance level (Figure S2). These data suggest that OBs did not primarily use licking sounds 

or odor to acquire social information and that vision was important, but if unavailable, could 

be compensated by other sensory cues (Kim et al., 2010).

Remote awake replay

We recorded CA1 place cells in 6 OBs during testing sessions in post-training. Five OBs 

were recorded in 19 sessions under the standard Demo condition, as well as in sessions 

under control conditions (see below. One OB was recorded only under control conditions, 

Table S1). We analyzed place cell patterns in the observation box and in the T-maze, 

focusing on whether the patterns during maze running were replayed in the box.
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For each session of each OB, we identified all place cells active in each of the 4 maze 

trajectories (outbound/inbound, left/right) during self-running and built up to 4 templates of 

place cell patterns (Figure 4A). Since replay occurs with ripple-associated population burst 

events (PBEs), we examined how the templates were replayed within these events in the 

box. Ripples and PBEs primarily took place during reward consumption when the OB was 

stationary with low speeds (Figure 4B). Within individual PBEs, the spike raster frequently 

displayed the replay of a template sequence in either forward or reverse order (Figure 4C), 

which was identified by Bayesian decoding (Davidson et al., 2009; Karlsson and Frank, 

2009; Wu et al., 2017; Zhang et al., 1998). More examples of PBEs and replays in different 

animals are shown in Figures S3 & S4.

To determine the statistical significance of the number of identified replays, we computed a 

Z-score of the actual number relative to its chance distribution obtained by random shuffling 

of template cell identities (see STAR Methods). We found that the Z-score of number of 

actual replays, combined from all sessions of all OBs, was highly significant for both the 

outbound (Z = 15; Z-test: P = 1.5 × 10−52) and inbound (Z = 13; P = 3.4 × 10−38) templates 

(Figure 4D). Thus, our data demonstrate the occurrence of awake replay in the observation 

box. Since the box was physically separated from the maze where the place cell templates 

were built, we refer it to as “remote” awake replay.

Promotion of remote awake replay by the presence of a Demo

We also recorded CA1 place cells under the Object (N = 11 sessions from 3 OBs) and 

Empty (N = 14 from 5 OBs) conditions in testing sessions during post-training (Table 

S1). We found that remote awake replay also occurred in these sessions during reward 

consumption in the box (for trials that did result in rewards in the box; Figures S5 & S6), 

which was significantly more than chance (Object: Z = 8.8; Z-test: P = 7.8 × 10−29 for 

outbound, Z = 8.5; Z-test: P = 1.8 × 10−26 for inbound; Empty: Z = 9.6; Z-test: P = 5.9 × 

10−40 for outbound, Z = 9.2; Z-test: P = 5.5. × 10−34 for inbound templates). We therefore 

compared the remote replay under these control conditions to that under the standard Demo 

condition.

We noticed that ripples and PBEs during reward consumption in the box appeared to occur 

less frequently under the control conditions (Figure 4A, Figures S3 - S6). We performed 

a power-spectral density analysis on LFPs during reward consumption and found higher 

average power in the band [130 220] Hz under the Demo than under the Object and Empty 

conditions (Figure 5A). The quantified ripple power of individual sessions was significantly 

higher under the Demo (7.0 [6.5 7.6] × 10−4 V2, N = 10 sessions) than under the Object 

(4.3 [3.3 6.5] × 10−4 V2, N = 11) and Empty (5.9 [4.6 6.6] × 10−4 V2, N = 10) conditions 

(Kruskal-Wallis test across conditions: χ2
(df = 2) = 7.6, P = 0.022; Post-hoc Dunn’s test: P 

= 0.0083 between Demo and Object, P = 0.041 between Demo and Empty; Figure 5B). We 

then detected the number of PBEs during reward consumption in the box and found that the 

median PBE rate (number of PBEs per s) was significantly higher under the Demo (0.29 

[0.25 0.35], N = 19 sessions) than under the Object (0.12 [0.068 0.20], N = 11) and Empty 

(0.12 [0.080 0.16], N = 14) conditions (Kruskal-Wallis test across conditions: χ2
(df = 2) = 22, 

P = 1.7 × 10−5; Post-hoc Dunn’s test: P = 0.0020 between Demo and Object, P = 5.0 × 10−5 
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between Demo and Empty; Figure 5C). Therefore, the ripples and PBEs in the observation 

box were enhanced by the presence of a Demo.

The increased PBEs under Demo suggested higher number of replays. Indeed, the median 

replay rate (number of replays per s during reward consumption) for the templates under 

the Demo (0.033 [0.023 0.061], N = 66 templates) was significantly higher than for those 

under the Object (0.024 [0.0086 0.044], N = 36) and Empty (0.019 [0.012 0.026], N = 48) 

conditions (Kruskal-Wallis test cross conditions, χ2
(df = 2) = 28, P = 7.8 × 10−7; Post-hoc 

Dunn’s test: P = 0.0033 between Demo and Object, P = 1.9 × 10−7 between Demo and 

Empty; Figure 5D). Therefore, the presence of a Demo enhanced the remote awake replay in 

the box.

We further examined the remote awake replay in details. First, for each template of a 

session, we computed the ratio of candidate events, defined as those with at least 4 active 

template cells, among all PBEs in the session. The median ratio of candidate events under 

the Demo (0.41 [0.25 0.64], N = 66 templates) was not different from that under the Object 

(0.44 [0.32 0.58], N = 36) and Empty (0.45 [0.27 0.66], N = 48) conditions (Kruskal-Wallis 
test cross conditions: χ2

(df = 2) = 0.38, P = 0.83; Figure 5E). Second, we computed the 

ratio of identified replays among all candidate events. The result was similar: There were 

no significant differences among the conditions (Demo: 0.37 [0.33 0.43], N = 66 templates; 

Object: 0.35 [0.31 0.40], N = 36; Empty: 0.36 [0.29 0.41], N = 48; χ2
(df = 2) = 3.5, P = 0.17; 

Figure 5F). Third, for each template, we compared a replay Z-score for the actual number of 

replays to its distribution expected from chance. The median replay Z-score under the Demo 

(2.3 [1.9 2.8], N = 66 templates) was modestly, but significantly, higher than those of the 

Object (1.8 [0.94 2.6], N = 36) and Empty (2.0 [0.98 2.6], N = 48) conditions (χ2
(df = 2) 

= 6.7, P = 0.035; Post-hoc Dunn’s test: P = 0.024 between Demo and Object, P = 0.040 

between Demo and Empty; Figure 5G). Fourth, for each template, we quantified the degree 

of match between its replays and the template by a match index (see STAR Methods). The 

median match index under the Demo (2.5 [2.3 2.6], N = 66 templates) was slightly, but 

significantly, higher than those under the Object (2.4 [2.2 2.5], N = 36) and Empty (2.3 

[2.1 2.5], N = 48) conditions (χ2
(df = 2) = 10, P = 0.0068; Post-hoc Dunn’s test: P = 0.038 

between Demo and Object, P = 0.0024 between Demo and Empty; Figure 5H). The results 

suggest that the quality of remote awake replay was modestly enhanced by the presence of a 

Demo.

Taken together, our data show that the presence of a Demo promoted remote awake replay 

during reward consumption in the observation box, primarily by a significant increase in 

ripple power and in number of PBEs, as well as a modest enhancement in replay quality.

Preference for reward sites in the maze

To understand how remote replay contributed to the behavioral performances of OBs, our 

analyses in the following focused on the contents of remote awake replay. Since OBs learned 

to run for reward in the maze, we asked whether the maze reward sites were specially 

targeted by remote replay.
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We started by plotting a reactivation spatial map (see STAR Methods) to illustrate how 

different places of the maze were represented by spikes within PBEs during reward 

consumption in the box for each condition. The maps reveal that the cells representing 

the maze reward sites were more reactivated in PBEs under the Demo than the Object 

and Empty conditions (Figure 6A). To quantify this finding, we identified those cells 

with peak locations inside a reward zone of each maze trajectory (reward zone cells). We 

then computed a reward zone reactivation rate for the cells active along the left or right 

trajectories of each session (see STAR Methods). The reward zone reactivation rate was 

significantly higher under the Demo (1.2 [0.75 1.5], N = 38 trajectory type (left or right) 

× sessions) than the Object (0.65 [0.12 1.1], N = 22) and Empty (0.78 [0.29 1.2], N = 

28) conditions (Kruskal-Wallis test cross conditions: χ2
(df = 2) = 9.9, P = 0.0071; Post-hoc 

Dunn’s test: P = 0.0029 between Demo and Object, P = 0.035 between Demo and Empty; 

Figure 6B). This result shows that the presence of a Demo enhanced the remote reactivation 

in the box of those cells representing the reward zones of the maze.

We next examined how the decoded trajectories in remote replay were distributed in the 

maze. For each replay event, we created a replay vector spanning from the decoded start 

to end positions along its linearized template trajectory. The replay vector of a forward or 

reverse replay would point to the same or opposite running direction of the OB, respectively, 

along its template trajectory (Figure 6C). Plotting all replay vectors along the outbound and 

inbound trajectories in example sessions suggest that the majority of replays were leading 

toward the reward sites in the maze under the Demo, but not so under the Object or Empty 

condition (Figure 6C).

We quantified this finding by analyzing the direction of replay vectors. We defined a replay 

as reward-leading if its decoded trajectory pointed to the reward site, meaning forward and 

reverse replay for outbound and inbound templates respectively. Similarly, a replay was 

reward-away if its decoded trajectory pointed away from the reward site, meaning reverse/

forward replay for outbound/inbound templates respectively (Figure 6C). We computed a 

percentage of reward-leading replays among the total number of replays for inbound and 

outbound (boundtype) templates in a session. We found that the median percentage of 

reward-leading replays under the Demo condition (56.0 [52.4 65.1]%, N = 34 boundtype 

× sessions) was significantly higher than the chance (50%) level (Wilcoxon signed-rank 
test: Z = 3.9, P = 5.8 × 10−5), but not under the Object (54.4 [45.8 60.5]%, N = 19; Z 

= 1.0, P = 0.15) or Empty (52.7 [44.4 58.8]%, N = 26; Z = 1.6, P = 0.06) condition 

(Figure 6D). Directly comparing across conditions, however, did not reach a significant level 

(Kruskal-Wallis test: χ2
(df = 2) = 3.2, P = 0.20; Figure 6E), suggesting that, although the 

direction of remote replay under the control conditions was less likely leading to the reward 

sites than under Demo, the difference was modest.

We then analyzed whether replay trajectories were more likely to end around the reward 

sites in the maze. We first computed the distribution of number of replay vectors that 

terminated at different locations along the T-maze (see STAR Methods) to examine the 

“termination bias” of remote replay (Pfeiffer and Foster, 2013; Zheng et al., 2021). We 

found a higher number of replays ending at individual locations within the reward zones 

under Demo than under control conditions (Figure S7). Then, for each boundtype (outbound 
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or inbound) of templates in each session, we computed an “ending rate” of their replays 

in the reward zones as the number of replays that ended within the reward zones divided 

by the number expected from chance. For comparison, we also computed an ending rate in 

the non-reward zones for each boundtype in a session. We found that the median ending 

rate in the reward zones under the Demo condition was significantly higher than that in the 

non-reward zones (reward: 1.9 [0.89 3.2], non-reward: 0.90 [0.79 1.0], N = 34 boundtype 

× sessions; Wilcoxon signed-rank test: Z = 3.4, P = 3.3 × 10−4), but not under the Object 

(reward: 0.89 [0 1.7], non-reward: 1.0 [0.94 1.1], N = 19; Z = −0.22, P = 0.59) or Empty 

(reward: 0.62 [0 1.4], non-reward: 1.1 [0.94 1.1], N = 26; Z = −0.97, P = 0.83) condition 

(Figure 6F). Directly comparing the ending rates in the reward zones across conditions 

showed a significant difference (Kruskal-Wallis test: χ2
(df = 2) = 11, P = 0.0033; Post-hoc 

Dunn’s test: P = 0.018 between Demo and Object, P = 0.0018 between Demo and Empty; 

Figure 6G).

Our quantifications thus demonstrate that the remote replay under the Demo condition 

tended to reactivate the cells representing the reward sites in the maze, point toward the 

reward sites, and end within the reward zones. The bias was largely absent in control 

conditions. The result suggests that the remote replay in the observation box was directed 

toward the reward sites in the T-maze by the presence of a Demo. We point out that 

for inbound trajectories, the reward-leading replay was in reverse direction (Figure 6C), a 

direction of running not actually experienced by OBs.

Preference for future correct choices in the maze

We next asked how the remote replay in the observation box was related to the decision of 

OBs in the maze. Under the Demo condition, an OB was required to poke at the same side 

of the box as the corresponding Demo’s and run the same trajectory in the maze for rewards. 

We examined whether PBEs occurring on one side (left or right) of the box replayed the 

templates on the same (left or right) side of the maze (same templates) and those on the 

opposite side (opposite templates) differently. Although the number of active cells was 

comparable among templates (Figure S8), to avoid possible effects of other differences in 

templates such as place field coverage (Davidson et al., 2009; Wu and Foster, 2014), we 

took a template-based approach and compared how a template was remotely replayed by 

the PBEs occurring on the same versus opposite side in the box (see STAR Methods). The 

strength of replay for a template was quantified by the ratio of number of replays over 

number of candidate PBEs.

We found a higher replay ratio for the same than the opposite templates (same: 0.38 [0.32 

0.46], opposite: 0.35 [0.28 0.40]; Wilcoxon signed-rank test: Z = 3.7, P = 9.3 × 10−5, N 
= 66 templates; Figure 7A) under the Demo condition, indicating a bias of remote replay 

toward same templates. No significant difference was found under either the Object (same: 

0.37 [0.28 0.42], opposite: 0.37 [0.31 0.42]; Z = 0.12, P = 0.45, N = 36) or Empty (same: 

0.34 [0.31 0.40], opposite: 0.37 [0.31 0.41]; Z = 0.26, P = 0.40, N = 48) condition (Figure 

7A). To directly compare the biases across conditions, we defined a bias index for each 

template (measuring replay bias toward the same side; see STAR Methods). The bias index 

was significantly higher under the Demo (0.064 [−0.034 0.16], N = 66 templates), than the 
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Object (0.020 [−0.13 0.085], N = 36) and Empty (0.016 [−0.11 0.13], N = 48) conditions 

(Kruskal-Wallis test: χ2
(df = 2) = 6.5, P = 0.038; Post-hoc Dunn’s test: P = 0.025 between 

Demo and Object, P = 0.047 between Demo and Empty; Figure 7B). Our data thus show 

that the bias toward the templates on the same side only occurred under the Demo condition, 

but not under the control conditions, suggesting that it was not simply driven by visual cues 

associated with the box or the maze per se.

Although the trajectories associated with the same templates were also the correct 

trajectories in most trials under Demo, they were not always identical in individual trials. 

To explicitly analyze how remote replay distinguished correct versus wrong trajectories in 

the maze, we also compared the replays for the templates corresponding to correct choices 

(correct templates) versus the wrong choices (wrong templates). The replay ratio for the 

correct templates was significantly higher than for the wrong templates (correct: 0.38 [0.32 

0.45], wrong: 0.32 [0.29 0.40], Wilcoxon signed-rank test: Z = 3.6, P = 1.4 × 10−4, N = 64 

templates; Figure 7C) under the Demo condition. No significant difference was found under 

either the Object (correct: 0.36 [0.31 0.40], wrong: 0.36 [0.31 0.43], Z = −1.1, P = 0.87, N 
= 32) or Empty (correct: 0.38 [0.29 0.43], wrong: 0.35 [0.29 0.42], Z = 1.1, P = 0.14, N = 

45) condition (Figure 7C). The bias index for the correct trajectories was significantly higher 

under the Demo (0.079 [−0.025 0.15], N = 64 templates) than under the Object (0.00 [−0.13 

0.071], N = 32) and Empty (0.017 [−0.11 0.17], N = 45) conditions (Kruskal-Wallis test: 

χ2
(df = 2) = 7.5, P = 0.023; Post-hoc Dunn’s test: P = 0.0085 between Demo and Object, P = 

0.043 between Demo and Empty; Figure 7D).

We then examined how the immediate future trajectory (future template) versus immediate 

past trajectory (past template) of OBs in the maze were replayed. Since this analysis was 

possible only for those trials with different future and past trajectories, which resulted 

in a limited number of candidate events per template, we computed the replay ratio by 

combining the two templates within the same boundtype (inbound or outbound) in a session. 

We found a higher replay ratio for the future than for the past templates (future: 0.40 [0.37 

0.44], past: 0.32 [0.28 0.40]; Wilcoxon signed-rank test: Z = 3.4, P = 3.5 × 10−4, N = 32 

boundtype × sessions; Figure 7E). In contrast, the replay ratio did not differ between the 

future and past templates under the Object (future: 0.30 [0.23 0.36], past: 0.34 [0.30 0.39], 

Z = −1.7, P = 0.95, N = 16) or Empty (future: 0.37 [0.28 0.44], past: 0.36 [0.27 0.50], Z 
= −0.48, P = 0.69, N = 26) condition (Figure 7E). The bias index for future templates was 

significantly higher under the Demo (0.092 [−0.0055 0.18], N = 32 boundtype × sessions) 

than under the Object (−0.076 [−0.25 0.013], N = 16) and Empty (−0.0084 [−0.071 0.10], N 
= 26) conditions (Kruskal-Wallis test: χ2

(df = 2) = 11, P = 0.0052; Post-hoc Dunn’s test: P = 

0.0027 between Demo and Object, P = 0.022 between Demo and Empty; Figure 7F).

Our analyses thus show that remote replay content was biased toward the correct, future 

spatial decision under the Demo condition and such bias largely disappeared under the 

control conditions. Besides replay content, we also found a clear bias in replay rate toward 

the future correct choices under Demo, but not under the control (Object, Empty) conditions 

(Figure S9). In addition, we asked whether remote replay in the box predicted an OB’s 

future trajectory in the maze on a trial-by-trial basis. In this case, we analyzed trials in 

the sessions under Demo, Object and Empty, as well as two sessions under a Blocked-
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view condition, in which the box performance was reduced due to less available social 

information but remained significantly higher than the chance level (Figure S2). We found 

that, indeed, the remote replay in a trial significantly predicted the future choice in the maze 

of the same trial under Demo, but not under Object or Empty (Figure S10). The prediction 

under Blocked-view remained significant, but was less accurate than under Demo (Figure 

S10), suggesting that less social information led to less prediction power of remote replay.

DISCUSSION

In a CA1-dependent observational working memory task, we have shown that observer rats 

can learn to follow a Demo’s trajectories in a T-maze by observing the Demo’s action 

from a nearby, physically separated observation box. We found that the CA1 place cell 

patterns in the maze are replayed remotely in the box. The remote awake replay is directed 

toward the reward sites of the maze in both forward and reverse replay directions and 

preferentially represents its reward zones. In addition, the contents of remote awake replay 

predict the future correct choices of OBs in the maze. Under control conditions without the 

presence of a Demo, however, the remote awake replay occurs much less frequently and 

its preference for reward sites and future choices largely disappears. Our results suggest 

that observing a Demo’s action in one environment (observation box) constructs contents 

of remote awake replay that can be used to guide the observer’s future spatial decisions in 

another environment (maze).

Our study demonstrates observational learning behavior in a spatial working memory task 

in rats. In our experiments, OBs responded to their corresponding Demo’s action by 

synchronizing poking activity in the box to that of the Demo’s in the maze and by following 

the Demo’s trajectories during later self-running. These behavioral responses were clearly 

reduced under the control conditions without the presence of a Demo or when the CA1 

was damaged by NMDA infusion. A third behavioral response in our experiments, the 

percentage of correct first pokes in the box, was less prominent, but still significantly higher 

than the chance level under the Demo condition. This is likely due to the natural tendency 

of rats to rush to the closest reward site available in the box. This explanation is consistent 

with the finding that OBs sometimes poked in the box slightly before the Demo’s first pokes 

in the maze. Despite this, OBs accurately followed their Demo’s trajectories in the maze. 

Therefore, rats can be trained to perform a spatial working memory task by observational 

learning. Although a similar task is demonstrated in bats (Omer et al., 2018), our task 

enables the analysis of neuronal ensembles underlying observational learning in a species 

that permits large-scale simultaneous recording of many neurons.

Using simultaneous recording of CA1 place cells, our study reveals important novel features 

of awake replay in spatial navigation. Although it is known that awake replay may not 

always associate with the animal’s current task experience (Carey et al., 2019; Gupta et al., 

2010; Karlsson and Frank, 2009), here we show that place cells during reward-consumption 

in one environment can replay their patterns representing trajectories in another, physically 

separated environment. In our experiment, a crucial result is that, although the awake replay 

occurred at the reward sites of the current environment (observation box), it preferentially 

targeted the reward sites in the other (maze). Furthermore, the trajectories leading to the 
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reward sites along the side arms of the maze were consistently replayed in the observation 

box in the reverse order, even though OBs always traveled away from the reward sites 

along the side arms. This feature is unexpected from previous studies of reward-driven 

self-learning tasks (Diba and Buzsaki, 2007; Foster and Wilson, 2006; Pfeiffer and Foster, 

2013; Singer and Frank, 2009), but serves the goal of targeting the reward sites in the maze 

for observational learning in this task. Therefore, our study reveals a remarkable versatility 

in replay contents underlying the spatial planning function of awake replay.

Our study provides a potential hippocampal mechanism in observational learning of spatial 

working memory tasks. Our data show that the templates on future correct trajectories are 

reactivated remotely in the observation box by stronger (measured by replay ratio) and more 

frequent (measured by replay rate) replays than those on other trajectories. Remote replay 

contents can predict future choices on a trial-by-trial basis. Thus, after an OB observes 

the choice of a Demo, remote replay contents reflect the outcome of a spatial decision 

in the OB. This finding is consistent with the hypothesis that the action of a conspecific 

serves as a powerful social cue that influences the construction of awake replay content 

in the observer, which in turn guides the observer’s own future action. Our study has not 

investigated whether learning by observing non-social information can also trigger remote 

replay. However, given that learning by observing social conspecifics is the most frequent, 

natural way of observational learning, our finding reveals how remote awake replay may 

contribute to observational spatial learning, a type of learning common in social animals but 

rarely studied at the neural circuit level. Together with previous studies on the activation 

of place cells (Danjo et al., 2018; Omer et al., 2018) and place cell sequences (Mou and 

Ji, 2016) during the observation of a conspecific, our study strengthens the case that the 

hippocampus may play a crucial role in observational learning.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Daoyun Ji (dji@bcm.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• All data reported in this study will be shared by the corresponding authors upon 

request.

• The analyses in this paper were performed by MATLAB scripts with 

existing MATLAB functions. The main MATLAB codes for the analysis 

are publicly available in GitHub (https://github.com/DaoyunJiLab/DM2021.git; 

DOI: 10.5281/zenodo.5758889).

• Any additional information required to reanalyze the data reported in this study 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eighteen adult Long-Evans rats (Charles River Laboratories), all males, 4 – 10 months 

old with a weight of 400 – 600 g, were used in this study. Among them, 12 were 

only used for behavioral experiments and 6 were used for electrophysiological recordings 

while performing the observational working memory task (Table S1). All behavioral and 

recording procedures followed the guidelines from the US National Institute of Health and 

were approved by the Institutional Animal Care and Use Committee at Baylor College of 

Medicine.

METHOD DETAILS

Apparatus—Our behavioral apparatus included a small observation box and a continuous 

T-maze with a resting box (Figure 1A, Figure S1A). The observation box had a trapezoidal 

shape (10 cm top width, 20 cm bottom width, 30 cm height). The T-maze consisted of a 

horizontal arm (120 cm long), a central arm (110 cm long), and two side arms (each 125 cm 

long). Both the observation box and the T-maze were elevated ~50 cm above the floor. The 

observation box was placed ~30 cm away from the choice point of the T-maze.

The observation box had opaque, tilted (~30°), high (60 cm) walls on three sides, leaving 

only one side with clear plexiglass facing the T-maze. The T-maze was made of 10 cm wide 

tracks with low walls (5 cm) on both sides except the side facing the observation box (clear 

plexiglass). An opaque rest box (20 cm wide × 40 cm long × 50 cm high) was appended at 

the bottom of the T-maze and separated from the T-maze by a tunnel. A sliding door was 

placed between the tunnel and the bottom of the T-maze to control the animal’s entry to the 

central arm and the exit out of the side arms of the maze.

Two water ports (Lafayette Instrument, IN) were mounted on two side walls of the 

observation box. Another two water ports were placed at the two ends of the horizontal 

arm of the T-maze. Each water port had a conical opening (2.54 cm in diameter) with a 

photo beam detector placed 6.35 mm back from the front of the opening. A beam break by 

an animal’s nosepoke triggered water delivery, and was registered by ABET II (Lafayette 

Instrument, IN). Water reward was supplied through peristaltic water pumps (Lafayette 

Instrument, IN) bundled with a water reservoir. The pumps were placed at the center under 

the T-maze horizontal arm and delivered water at the back of the water ports.

Behavioral procedures

Observational working memory task.: Several days before a rat started training in the 

apparatus, the animal’s daily water consumption was restricted with weight maintained at 

>85% of the ad libitum level. Food was available ad libitum at all times. Our training 

procedure for the observational working memory task consisted of three phases.

Phase 1: Familiarization.: In this phase, the rat was familiarized with the T-maze. The 

animal was trained one session per day for 6 days. Each familiarization session consisted 

of 20 trials or lasted 20 min, whichever came first. In each trial, the rat was released from 

the rest box and ran an outbound trajectory: running along the central arm, making a free 

choice, and reaching either the left or right water port at either end of the horizontal arm. 
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The rat received ~100 μl water reward after poking at the water port. After returning from 

the corresponding (left or right) side arm (inbound trajectory), the rat was retained in the rest 

box for ~10 s before the next trial started. Animals were not allowed to turn to the opposite 

side of the horizontal arm after water consumption in the maze or run on the side arm in 

the wrong direction. If a rat chose the same reward side for three consecutive trials, water 

reward on that side was halted until the animal chose the alternative arm.

Phase 2: Pre-training.: In this phase, an observer rat (OB) was placed in the observation 

box while a demonstrator rat (Demo) was running in the T-maze. The Demo was always a 

cage mate of the OB and already well-trained for the task in Phase 1. The OB could move 

freely and had full visual access to the T-maze. The OB was trained for 2 – 3 weeks, one 

session per day. Each daily session consisted of ~20 trials.

Each trial started with the Demo running along the central arm, making a free choice, and 

reaching one of the two reward sites. After making a nosepoke to the water port at the 

reward site, the Demo was given a series of 7 pulses of water, each pulse lasting 0.7 s with 

a 3 s interval. The total water reward amounted to ~250 μl. In the meantime, as soon as the 

Demo made the first nosepoke in the T-maze, a 10 s time window was set to allow the OB 

to make a nosepoke in the box. If the animal poked the same side as the Demo’s choice of 

reward site in the maze, the OB was rewarded with a series of 4 pulses of water with a 7 

s interval; otherwise no reward was provided. Each pulse lasted for 0.5 s. The total water 

reward amounted to ~100 μl. After water consumption, the Demo returned to the rest box 

through a side arm and was retained in the rest box for ~10 s before the next trial started.

Phase 3: Training.: In this phase, the trial procedure was similar to Phase 2, except that 

after the Demo made a choice, consumed water, and returned to the rest box, the OB was 

transported on a plate by the experimenter from the observation box to the bottom of the 

T-maze central arm, facing away from the choice point. The experimenter returned to the 

default position (behind the rest box). The OB was then required to make a choice in the 

T-maze. A trial was considered a “correct” trial if the OB’s choice agreed with the Demo, 

and an “error” trial otherwise. In each correct trial, ~300 μl water reward was provided once 

the OB poked the same water port that the Demo poked. After water consumption, the OB 

returned to the tunnel along a side arm and was transported back to the observation box. In 

error trials, no reward was given, and the OB was not allowed to turn back to the correct 

side. To avoid potential bias by human cues, the experimenter always transported the OB out 

of and returned him back to the observation box on the same side of the T-maze. Animals 

were not allowed to turn to the opposite side of the horizontal arm after water consumption 

in the maze or run on the side arm in the wrong direction. Therefore, the inbound trajectories 

in the maze were never run by the OB in the opposite direction, although stopping did occur 

occasionally.

Each training session consisted of >30 trials, each lasting for ~2 minutes. All OBs were 

trained one session per day, each with a well-trained Demo (Demo condition), until reaching 

a criterion performance in the maze (the percentage of correct trials >70% for at least 2 

consecutive sessions).
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On average, an OB was trained for 40.2 ± 0.9 sessions (N = 18 OBs) to reach this 

performance, completing all 3 phases. Further behavioral or recording experiments were 

conducted only in the post-training stage after the training was completed.

Additional behavioral conditions.: In a subset of OBs (N = 14, Table S1), during 

post-training after reaching the criterion performance, we conducted testing experiments 

following the same procedure as in Phase 3, but under one of the behavioral conditions listed 

below. These conditions were designed to provide control conditions for the standard Demo 

condition and to test the contribution of various factors to the behavioral performance of 

OBs. Only one condition was used on a given day. If multiple conditions were used for the 

same OB and the performance in the maze was below the criterion (>70% for at least 2 

consecutive sessions) under one condition, the OB was re-trained before the next condition 

using the standard Demo condition, back to the criterion performance. For OBs that were 

used in control conditions and then underwent the infusion surgery, they were retrained 

under Demo before the surgery and behavioral testing started 2-weeks after the surgery. 

For the recorded OBs that underwent the tetrode implantation surgery, they were re-trained 

2-weeks after the surgery under Demo before testing sessions began.

1) Object.: To test whether social cues were truly required for the OB’s performance, 

the Demo was replaced by a moving object (10 cm × 20 cm black rectangle plastic block 

attached to the end of a 1.5 m wood pole) to mimic the Demo’s movement in the T-maze. 

Water ports were triggered by the object. The moving object remained at the reward location 

for the same duration as the Demo rat did under the Demo condition.

2) Empty.: To test whether the OB’s performance required the presence of a moving 

subject or object at all, the T-maze was left empty without the Demo or a moving object. 

Water ports were triggered by a manually controlled wood pole every ~2 min. The pole 

remained at the reward location for the same duration as the Demo rat did under the Demo 

condition.

3) No lick.: To test whether the OB merely followed the acoustic cue emitted by the 

Demo’s licking, no water was delivered after the Demo’s nosepokes in the maze in each 

trial.

4) Mixed bedding.: To test whether the OB followed an olfactory cue (the smell left 

behind by the Demo along their trajectories), regular cage bedding was laid along the top 

half of the central arm and half of left and right horizontal arms adjacent to the choice point. 

Each time after the Demo returned to the rest box, the bedding was scrambled thoroughly 

and evenly on both sides of the choice point.

5) Blocked-view.: To test whether vision played a role in the OB’s performance, the front 

panel of the observation box was fully covered by a black cloth to block the OB’s visual 

access to the T-maze.

Surgery—Six well-trained OBs were surgically implanted with a hyperdrive that contained 

22 independently movable tetrodes and two reference electrodes, targeting the right dorsal 
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hippocampal CA1 region at the coordinates anteroposterior (AP) −3.8 mm and mediolateral 

(ML) 2.4 mm relative to the Bregma and the right dorsal anterior cingulate cortex at the 

coordinates AP 1.9 – 1.3 mm and ML 1.0 mm. The surgery was conducted under anesthesia 

using isoflurane (0.5 – 3%) as in previous studies (Haggerty and Ji, 2015; Mou and Ji, 

2016; Wu et al., 2017). The hyperdrive was fixed to the rat skull through dental cement and 

anchoring screws. Only the data recorded from the CA1 tetrodes were used in this study.

Recording procedure—Within 2–3 weeks following the surgery, tetrodes were slowly 

advanced to the CA1 pyramidal layer until characteristic sharp-wave ripples were observed 

(Buzsaki et al., 1992). The reference tetrode was placed in the white matter above the CA1. 

Recording started only after the tetrodes had not been moved for at least 24 hours.

Starting about a week after the surgery, the implanted OBs (N = 6) resumed water 

restriction. In the second to third weeks after the surgery, the OBs underwent 2 – 3 Phase 

3 (as in training) sessions, one session per day, to get accustomed to the hyperdrive and 

overhead tethers. Afterward, each OB was recorded for 5 – 11 consecutive days. On each 

recording day, the OB performed the observational working memory task in a session under 

the standard Demo condition or under the Object or Empty control condition as described 

above, using the Phase 3 procedure. Before and after this task session, the OB rested on an 

elevated flowerpot for ~30 minutes. Out of the 6 recorded OBs, 5 were recorded under the 

Demo condition, 3 under the Object condition, and 5 under the Empty condition (Table S1).

Data acquisition—Tetrode recording was made using a Digital Lynx acquisition system 

(Neuralynx, Bozeman, MT) as described previously (Haggerty and Ji, 2015; Mou and Ji, 

2016; Wu et al., 2017). Recordings started once stable single units (spikes presumably from 

single neurons) were obtained. A 60 μV threshold was set for spike detection. Spike signals 

above this threshold were digitally filtered between 600 Hz and 9 kHz and sampled at 32 

kHz. Local field potentials (LFPs) were filtered between 0.1 Hz – 1 kHz and sampled at 

2 kHz. The animal’s head and body center positions were tracked by the EthoVision XT 

system (Noldus, Leesburg, VA). Position data were sampled at 30 Hz with a resolution of 

approximately 0.1 cm. All positions presented in this study were body center positions.

Lesion and histology—To examine whether our task was CA1-dependent, 10 well-

trained OBs (male, 4 – 5 months, 400 – 500 g) were used for a lesion experiment (Table 

S1). Rats were randomly assigned to a control (N = 5) or a lesion group (N = 5). Neurotoxic 

lesions in the dorsal CA1 were made by infusing 20 μg/μL NMDA (Sigma-Aldrich, St. 

Louis, MO) in a vehicle of 100 mM phosphate-buffered saline (PBS, pH = 7.4). NMDA was 

bilaterally infused to three sites per hemisphere using a microinfusion pump (KD Scientific, 

Holliston, MA) and a 10-μL Hamilton syringe (Hamilton, Reno, NV) at a rate of 0.2 μL/

minute. Each site was infused with 0.2 μL NMDA. The syringe was left at the infusion site 

for 3 minutes before the next infusion. The coordinates of the infusion sites were: [AP −3.8 

mm, ± ML 1.0 mm, −2.6 mm ventral to the dura (DV)], [AP −3.8 mm, ± ML 2.0 mm, 

DV −2.3 mm], [AP −3.8 mm, ± ML 3.0 mm, DV −2.5 mm]. For the control group, 0.2 μL 

vehicle alone was similarly infused at the same coordinates. After fully recovering from the 

surgery (~14 days), the lesioned animals were subjected to Phase 3 behavioral testing as 

described earlier under the Demo condition.
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After experiments, all OBs in the lesion and recording experiments were euthanized by 

pentobarbital (150 mg/kg) and were subjected to histology to verify lesion or recording sites. 

For the recorded animals, a 30 μA current was passed for 10 s on each tetrode to generate 

a small lesion at each recoding site. Brain tissues were fixed in 10% formaldehyde solution 

overnight and sectioned at 90 μm thickness. Brain slices were stained using 0.2% Cresyl 

violet and cover-slipped for storage. Tetrode locations were identified by matching the lesion 

sites with tetrode depths and their relative positions. All data presented in this study were 

recorded by the tetrodes at the pyramidal cell layer of CA1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral quantifications—For each OB in a session, its performance in the 

observation box was quantified by a poke synchronization index (PSI) and a percentage 

of correct first pokes.

An OB’s nosepoke times in the observation box of a session were binned at 0.25 s time 

windows. For each session under the Demo condition, we counted the number of nosepokes 

in each time bin when the OB and the corresponding Demo were on the same side (positive 

values) or on the opposite side (negative values) separately, and smoothed by a Gaussian 

kernel with a σ of two bins. In order to compare across sessions and animals, these nosepoke 

counts were divided by the mean number of nosepokes in each time bin expected from a 

uniform distribution of all nosepokes in the session. A normalized nosepoke rate at a time 

bin was the difference between the positive and negative poke values divided by the bin 

size (0.25 s). We then computed a poke performance curve for the session. To do so, we 

aligned the times of the Demo’s first pokes in all trials at time 0 (reference time) and then 

computed the average normalized poke rates of the OB across all trials at different trigger 

time points from the reference time. The PSI was the mean value of this poke performance 

curve within the trigger time window of [−1 2] s. This time window was based on an OB’s 

typical response time and the observation that some OBs sometimes predicted the Demo’s 

pokes and made nosepokes slightly earlier than the Demo.

For each OB in a session under the Demo condition, we defined a percentage of correct first 

pokes in the box. For each trial, we identified the OB’s first poke in the box within the [−1 

2] s window around the Demo’s first poke in the maze. The first poke was considered correct 

(or wrong) if it was the same (or opposite) side to the Demo’s in the maze. The percentage 

of correct first pokes among all trials in the session was then computed.

For each OB in a session under the Demo condition, the animal’s performance in the maze 

was quantified by a percentage of correct trials. A trial was considered correct if the OB 

made the same choice and poked the same water port as the Demo. Otherwise, it was a 

wrong trial.

Besides the standard Demo condition, these behavioral quantifications in the box and in the 

maze were also computed for sessions under additional behavioral conditions (see above). 

For the control (Object, Empty) conditions without a Demo, the reference time was the time 

when the moving object made the nose poke after reaching the reward site in the maze under 

the Object condition or when the poke was manually triggered under the Empty condition. A 
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first poke of an OB in the box was considered correct if it agreed with the side of the object- 

or manually activated water port in the T-maze. Similarly, a trial in the maze was considered 

correct if the OB chose the water port activated by the moving object or manually.

Cell inclusion—Single units were sorted off-line using custom software (xclust, M. 

Wilson at MIT, available at GitHub repository:https://github.com/wilsonlab/mwsoft64/tree/

master/src/xclust). Since we did not track cell identities across multiple recording sessions, 

certain cells might be repeatedly sampled across sessions. A total of 2102 single units were 

obtained from 44 sessions (6 rats with an average of 7 sessions per rat). Among them, 1226 

were classified as putative CA1 pyramidal cells that were active (mean firing rate between 

0.4 and 10 Hz) in at least one of the four trajectories (see below) in the T-maze. Further 

analyses were based on these active cells.

Firing rate curves and template construction—For each OB in a session, we broke 

its running trajectories in the left or right trials in the continuous T-maze at the reward sites 

and generated four types of trajectories (Figure 4A):

Left/right outbound: from the bottom of the central arm to the left/right reward site; Left/

right inbound: from the left/right reward site to the end of the left/right side arm.

A rate curve was computed for each cell active on a trajectory, which was divided into 2 

cm spatial bins with the 10 cm adjoining the reward sites excluded. The number of spikes 

occurring within each bin was counted, with the stopping periods (velocity < 5 cm/s for > 3 

s) excluded. The spike counts were divided by the animal’s occupancy time in each bin and 

smoothed by a Gaussian kernel with a σ of two bins to generate a rate curve.

For each trajectory, we then constructed a template sequence. To be included in a template, 

a cell needed to be active on the trajectory and its rate curve on the trajectory needed to 

have a peak with firing rate at least 3 standard deviations (SDs) above its mean firing rate. 

Qualified cells were ordered by their peak firing locations on the trajectory to generate a 

template sequence, as described in previous studies (Ji and Wilson, 2007; Mou and Ji, 2016). 

If a rate curve had two peaks, the peak with the highest firing rate was used in the ordering. 

Rate curves with more than two peaks were excluded. Only those templates consisting of at 

least 4 cells were used for the replay analysis described below. Therefore, up to 4 templates 

were constructed for a given session, but not all sessions produced 4 templates.

LFP analysis and population burst events (PBEs)—For each of those sessions with 

available LFPs during water consumption periods in the box (LFPs not always available 

because of the noise produced by animals making nosepokes), we computed the power 

spectral density (PSD) within the frequency range of 100 – 250 Hz. The power between 130 

– 220 Hz was computed for each session and compared among the sessions under the Demo 

and control (Object, Empty) conditions. This frequency range was chosen for comparison 

because the PSD analysis showed clear separation among the 3 conditions in this range.

We detected PBEs by the multiunit activity (MUA) as in previous studies (Diba and Buzsaki, 

2007; Wu et al., 2017). In each session, all putative spikes recorded by all tetrodes in the 
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CA1 were binned and counted in each 10 ms time bin. Spike counts in each bin were 

smoothed by a Gaussian kernel with a σ of two bins and normalized from 0 to 1. A PBE 

was defined as a time period within which the normalized peak MUA spike counts exceeded 

a threshold of 0.35, with its start and end times detected by crossing a threshold of 0.15. 

Adjacent events with gap < 30 ms were combined. The PBEs defined as such were closely 

related to the ripple events defined from LFPs in previous studies (Diba and Buzsaki, 2007; 

Wu et al., 2017).

Replay identification and shuffling—Ripple replays were identified by a Bayesian 

decoding method as described in previous studies (Davidson et al., 2009; Karlsson and 

Frank, 2009; Wu et al., 2017; Zhang et al., 1998). Briefly, each firing rate curve of a 

cell in a template was used as the firing probability of the cell at each location of the 

trajectory. For each template, we defined those PBEs with at least 4 active template cells 

as candidate events. For each candidate event, we computed the posterior spatial probability 

distribution for each 20 ms time bin (with a 10 ms step) that had at least one spike, assuming 

independent Poisson processes among the template cells. The decoded position at each 

time bin was the location of the trajectory with the maximum posterior probability. We 

then performed a linear regression between decoded positions and time bin numbers. The 

correlation coefficient, R, of the linear regression was compared to 1000 shuffle-generated 

values, each computed by correlating the decoded position with randomly shuffled time 

bin numbers. The P value was the proportion of shuffle-generated values greater than the 

actual R value. A candidate event was considered a replay if P < 0.05 and the Z-score of its 

associated R relative to the shuffle-generated distribution was the match Z-score. A replay 

event was defined as a forward replay if its R value was positive, or a reverse replay if 

negative.

For each template of a session, from the detected PBEs and identified replays we computed 

a PBE rate (number of PBEs per s within the water consumption periods in the observation 

box), a replay rate (number of replays per s within the same time periods), a candidate 

event ratio (number of candidate events over the number of PBEs), a replay ratio (number of 

replays over the number of candidate events), and a match index (mean match Z-score of all 

replays).

To assess the significance of the number of detected replay events, we compared the number 

to what was expected from chance either for each session or for the sessions combined 

under a behavioral condition (Demo, Object or Empty). For this purpose, 200 copies of 

randomly shuffled templates (randomizing cell identities in a template) were generated. The 

number of replay events for each copy was computed as described above and a distribution 

of the number across all the shuffled copies was generated. A Z-score of the actual number 

of replays related to the shuffle-generated distribution and its associated P value were 

computed.

Reactivation spatial map and reward zone reactivation rate—We defined a reward 

zone for each trajectory in the maze, which was within 40 cm from its reward site for 

outbound trajectories and within 25 cm from its reward site for inbound trajectories. This 

definition was decided empirically from our observation that replay events tended to end 
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further from a reward site when approaching and end closer when leaving a reward site in 

the maze.

To visualize the spatial representation by the (reactivated) spikes in all PBEs in the 

observation box of a session, we first computed a 2-dimensional (2D) rate map for each 

template cell, i.e., each cell active during maze running. In this case, we divided the 2D 

maze space into 1 × 1 cm grids and computed the cell’s firing rate in each bin, and then 

smoothed the map by a Gaussian kernel with a σ of two bins. The rate maps of all cells 

were weighted by the number of their spikes in the PBEs and then averaged. The resulting 

rate map was then normalized to values between 0 (minimum) and 1 (maximum) to generate 

an overall reactivation spatial map for the left trajectories (inbound and outbound combined 

into a single map since their locations did not overlap) or the right ones in each session 

(Figure 6A).

We then computed a reward-zone reactivation rate for each trajectory type (left or right 

trajectories) in a session. A reward-zone cell was defined as a place cell with its peak place 

field location inside the reward zone. The spikes fired by all reward-zone cells in templates 

of a trajectory type (left or right) were counted in all PBEs of a session (reward-zone spikes). 

The reward-zone reactivation rate was the fraction of reward-zone spikes over all spikes in 

the PBEs, normalized (divided) by the fraction of the number of reward-zone cells over the 

number of all template cells.

Replay direction, termination bias and ending rate—To illustrate the replay 

directionality, we created a replay vector for each replay event, defined as a vector extending 

from the decoded start position to the decoded end position on its linearized template 

trajectory. For outbound trajectories, the replay vector of a forward or reverse replay pointed 

(leading) toward or away from the reward sites. For inbound trajectories, the opposite was 

true. For each bound type of template trajectories (inbound or outbound) of a session, we 

quantified replay direction by the percentage of the leading (forward replay for outbound, 

reverse replay for inbound) or away (reverse replay for outbound, forward replay for 

inbound) replay events among all replay events. To evaluate whether replay events have any 

spatial preference, we analyzed the “termination bias” of replay vectors following previously 

published procedures (Pfeiffer and Foster, 2013; Zheng et al., 2021). The termination 

locations were binned into 3 cm spatial bins. The true number of termination locations 

in each bin was compared to the uniform distribution and Z-scored. Locations with Z-scores 

> 95% confidence level (>1.96) were considered significantly biased. For each bound type in 

a session, we then computed an “ending rate” for the reward zones or the non-reward zones 

(outside reward zones). The ending rate was the number of replay trajectories that ended in 

the corresponding zones divided by the number expected from a uniform distribution of all 

replay end positions.

PBE event categories and replay bias—To understand how the remote awake replay 

was functionally related to an OB’s decision in the maze, we examined whether PBEs in 

the box were biased to replay the templates associated with the trajectories on the same side 

more often or strongly than the opposite side (Category #1 comparison), the OB’s correct 

trajectories more than the wrong trajectories (Category #2), and the OB’s future trajectories 
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more than past trajectories (Category #3). For this purpose, the bias was examined on 

two measures of replay: replay ratio (ratio of the number of replays among all candidate 

PBEs to measure replay strength) and replay rate (number of replays per s during reward 

consumption in the box to measure replay frequency).

A common issue in the analysis of replay is that replay detection is sensitive to the nature of 

a template (Davidson et al., 2009; Wu and Foster, 2014). Although the number of cells did 

not differ between the templates on the left and right trajectories in our study (Figure S8), 

other features of template cells (e.g., place cell tuning properties or spatial coverage) could 

lead to replay differences among different templates. To avoid this complication, instead 

of comparing different types of templates for the same PBEs (PBE-based approach), here 

we took a template-based approach, i.e., we compared two different types of PBEs for the 

same templates in each category of comparison. For example, for Category #1, we took a 

template on one side (e.g. left) and then classified those PBEs occurring on the same (e.g. 

left) side in the box as the “same” type and those occurring on the opposite (e.g. right) side 

as the “opposite” type. We then compared measures of replay between these two types of 

PBEs in a session for the template. In this case, each available template was considered a 

sample (except for Category #3, see below). We point out that the replay detection itself 

was identical as in the PBE-based approach, but here we used each template as a sample for 

fair comparison. For easy understanding, in the Results section, we still used phrases such 

as “same vs. opposite templates”, despite our template-based approach. The classification of 

PBEs in each of the 3 categories is provided below.

For each of the 4 templates (left outbound, left inbound, right outbound and right inbound, 

described above) in a session, we classified every PBE into one of two groups in each of the 

three categories, based on the OB’s current position in the box when the PBE took place or 

the OB’s current/past choices in the maze.

1. Category #1: same vs. opposite. A PBE was classified into the “same” type if 

the OB’s position in the box was on the same side as the template’s trajectory; 

otherwise it was the “opposite” type.

2. Category #2: correct vs. wrong. A PBE was classified into the “correct” type if 

the template’s trajectory was chosen by the OB and it agreed with the Demo’s 

trajectory in the current trial. A PBE was the “wrong” type if the template’s 

trajectory was chosen but it did not agree with the Demo’s.

3. Category #3: future vs. past. We isolated the trials in which the OB’s choice in 

the maze in the current trial disagreed with the OB’s last choice in the previous 

trial (switch trials). A PBE in one of these trials was classified into the “future” 

type if the template’s trajectory in the maze was chosen by the OB in the current 

trial (after the PBE in the box). A PBE was the “past” type if the template’s 

trajectory in the maze was chosen by the OB in the last trial.

For each template of a session, we measured the replay ratio for each of the two types of 

PBEs in a category. To quantify the bias in replay strength between two types of PBEs in a 

category for a template, we defined a bias index (BI) as
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BI = RP1 − RP2
RP1 + RP2

(1)

where RP1 and RP2 were the replay ratios for the two types of PBEs P1 and P2, respectively.

For Category #3, since this analysis was only possible for the switch trials, which resulted 

in a relatively small number of trials and thus PBEs, we combined the same type of PBEs 

assigned to the two templates with the same boundtype of a session (e.g., combining the 

future PBEs of the left inbound template and the future PBEs of the right inbound). We then 

computed a BI for each boundtype of a session, instead of each template.

In this analysis, the same PBE could be identified as a replay event for two or more 

templates. This occurred in a relatively small percentage of PBEs. We found that the 

majority (64%) of identified replay events only replayed one template, 29% replayed two 

templates, and only a very small portion (7%) replayed three or four templates. However, 

this redundancy did not affect the quantification of replay bias in our template-based 

approach, because the bias was computed for individual templates (or boundtypes) and for 

a given template (boundtype), the PBEs classified in the two groups of a category did not 

overlap.

Trial-by-trial maze choice prediction by remote replay—We investigated whether 

remote replay in the box predicted an OB’s choice in the maze on a trial-by-trial basis. 

Among various parameters of remote replay, we found that the number of remote replays 

for the inbound trajectories of the maze was the best predictor of OBs’ choices in the maze. 

In this case, for each trial, we counted the number of remote replays in the box for the left 

or right inbound trajectories of the maze (left or right replays). We then made a prediction 

that the OB would choose the left (or right) side of the maze in this trial if there were more 

left (or right) remote replays than right (left) ones. Trials with equal number of replays of 

left and right inbound trajectories and trials without replay of any inbound trajectories were 

excluded for this prediction analysis. We constructed a contingency table for the trials (all 

sessions combined) in a condition as percentages of the predicted left (or right) choices that 

were true left and right choices made by OBs. The prediction accuracy was the percentage of 

true choices (left, right, or combined) that were correctly predicted.

Statistical analysis—Sample sizes were decided based on standards in the field. No 

sample-size calculations were performed prior to experimentation. Criteria for excluding 

individual cells or sessions from analyses were detailed in STAR METHODS. Animals 

were not allocated into experimental conditions completely randomly since all animals need 

to be trained with a demonstrator. Therefore, the Demo condition was tested first before 

animals were assigned to other control conditions. Investigators and animals were not blind 

to the condition allocation during data collection because the setup configurations and 

experimental conditions were evident to both investigators and animals by design. Analysis 

tools and codes were automated and applied to different conditions uniformly, therefore 

blinding was not relevant. Results were replicated in individual animals (Figures S3 – S6).
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All statistical analyses were performed using MATLAB functions. Statistical significance 

was set at 0.05. Values are reported as median [25 percentile 75 percentile] unless otherwise 

stated. Non-parametric analyses were used except for Two-way ANOVA. Kruskal-Wallis 

test was used for multiple comparisons followed by post-hoc Dunn’s test for multiple 

comparisons. Wilcoxon signed-rank test was used to compare between two groups. Two-way 

ANOVA was followed by post-hoc Fisher’s least significant difference test corrected by 

multiple comparisons. Fisher’s exact test was used to test the prediction accuracy between 

conditions. All statistical methods and sample size (N) were detailed in the main text or 

figure legends wherever used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Rats learn to run a T-maze by observing a demonstrator’s spatial trajectory

• CA1 place cell sequences in the maze are replayed remotely in the 

observation box

• Remote replay prefers reward sites in the maze and predicts future decisions

• The preference and predictive power disappear without a social demonstrator
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Figure 1. Observer rats followed their demonstrator’s choices in the observation box.
(A) Behavioral apparatus consisting of an observation box (top) and a continuous T-maze. 

Red: water ports. Arrow: running direction of an outbound or inbound trajectory. OB/Demo: 

observer/demonstrator rat. Rest box (bottom) was for Demo to rest when OB was running.

(B) Poke rate of an example OB in a pre- (top) and a post-training session (bottom; only 

1200 s shown to compare with pre). Red line: Demo’s first poke time in a trial. Note the 

clustering of the OB’s pokes following the Demo’s first pokes in post-training.

(C) Poke performance curves for the two sessions in (B), defined as normalized average 

poke rate at different times triggered by the Demo’s first pokes (time 0). Positive (negative) 

value: degree of the OB’s average poke activity that was on the same (opposite) side of the 

Demo.

(D) Poke performance curves in all sessions for the example OB. Green and blue arrows, 

same sessions in (B); black and blue arrows, same sessions in Figure 2A.

(E) Poke synchronization index (PSI) in pre-training and training sessions. Thin/thick line: 

individual rat/average PSI. Red: example rat in (D). Note the significant PSI increase in 

pre-training.
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(F) Average (mean ± SEM) poke performance curves under the Demo, Object and Empty 

conditions in post-training.

(G) Violin plots of the percentage of correct first pokes during post-training under the 

Demo, Object and Empty conditions. Each dot is a session. Bars/whiskers are [25% 75%] / 

[10% 90%] range values. Same in other violin plots.

***P < 0.001, **P < 0.01, *P < 0.05 (same for all figures).

See also Figure S1.
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Figure 2. Observer rats followed their demonstrator’s choices in the T-maze.
(A) An example OB’s (black) and Demo’s (red) choices of the left (up) or right (down) 

reward site in the T-maze in each trial of an early training and a post-training session. Note 

that the OB mostly followed the Demo’s choices in post-training.

(B) Maze performance (percentage of correct trials) for all training sessions of all rats (N = 

18) and for post-training sessions of the recorded rats (N = 6) after the tetrode implantation 

surgery. Thin/thick line: individual rat/average performance.

(C) Maze performance of OBs in the last 3 training sessions under the Demo condition and 

in the first 3 testing sessions under Object and Empty. Thin/thick line: individual rat/average 

performance (not every rat had 3 sessions under Object/Empty).

(D) OBs’ maze performance in the first 3 testing sessions under Demo, Object and Empty, 

computed only for those trials when the OB actually received reward in the box.

See also Figure S1.
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Figure 3. Observer rats’ performances in the observational box and in the maze depended on the 
dorsal CA1.
(A) Coronal brain sections after NMDA or vehicle infusion. Arrow: lesion in the dorsal 

CA1.

(B) Average (mean ± SEM) poke performance curves of OBs in the box in 3 sessions before 

(Before) and the first 3 testing sessions 2 weeks after NMDA or vehicle infusion (After).

(C) Percentage of correct first pokes of OBs in the box in Before and After sessions. Thin/

thick lines: individual rat/average percentage.

(D) Same as (C), but for OBs’ performance in the maze (percentage of correct trials).

See also Figure S2.
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Figure 4. Place cell patterns during maze running were replayed remotely in the observation box.
(A) Four place cell templates (color-coded) in a session of an example OB (Rat5), each built 

from firing rate curves (rate vs. linearized position) of active cells (bottom) on a trajectory in 

the maze (top), ordered by their peak locations (dashed line).

(B) Behavior of the OB and its Demo and associated spiking patterns in the OB during a 

time window in the box. Upper traces: Demo’s distance to the start point (0 = bottom of 

the central arm), Demo’s speed, OB’s speed, and OB’s CA1 LFPs filtered within the ripple 

band. Special time points are marked: Demo reaching choice point ( ), Demo reaching (▲) 

and leaving the right reward site ( ) in the maze, and OB’s first poke at the right reward 

site in the box ( ). Red arrow: example ripple. Bottom spike raster: spikes fired by all active 

place cells. Each tick is a spike. Each row is a cell. Note the PBEs occurring together with 

ripples.
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(C) Zoomed-in view of 3 example replays, occurring at times numbered in (B). For each 

event, spike raster of the template cells corresponding to a trajectory, color-coded as in (A), 

is shown on the top. The Bayesian-decoded probability at each trajectory position (from start 

to end) at each time bin is shown at the bottom. x: decoded (peak probability) position. 

Dashed line: forward or reverse order of replay.

(D) Distribution of the number of replays expected from chance and the actual number of 

replays (red line) for outbound or inbound trajectory templates across all sessions under the 

Demo condition.

See also Figures S3 – S6.
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Figure 5. Remote awake replay was enhanced by the presence of a Demo.
(A) Average (mean ± SEM) power-spectral density (PSD) of LFPs during reward 

consumption in the observation box over all sessions under the Demo, Object and Empty 

conditions.

(B) Ripple power within [130–220] Hz under the 3 conditions. Each dot is a session.

(C) Occurrence rate of PBE during reward consumption in the box under Demo, Object and 

Empty. Each dot is a session.
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(D - H) Occurrence rate of replay (D), ratio of number of candidate events among all PBEs 

(E), ratio of number of replays among all candidate events (F), Z-score for the number of 

replays (replay Z-score) relative to its chance distribution (G), and mean match index (H) 

under Demo, Object and Empty. Each dot is a template.
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Figure 6. Remote awake replay preferred the reward sites in the maze.
(A) Reactivation spatial maps represented by spikes in PBEs in the box for the left and 

right trajectories in example sessions under the Demo, Object and Empty conditions. Color 

represents the average normalized firing rate of all active place cells. Box: reward zone.

(B) Reactivation rate in PBEs for reward zone cells. Each dot is a type of trajectory (left or 

right) in a session.

(C) Replay vectors on outbound and inbound trajectories (arrow: running direction) in 

example sessions under Demo (N = 133), Object (N = 122), and Empty (N =104), each 

connecting the decoded start to end positions (arrowhead: end position), sorted by replay 

occurring time. Note that the majority of vectors were led toward and ended at the reward 

zone (box) under Demo.

(D) Replay direction as measured by percentage of reward-leading and reward-away replays 

for all sessions under Demo, Object and Empty. Each line is a boundtype (inbound or 

Mou et al. Page 35

Neuron. Author manuscript; available in PMC 2023 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outbound) in a session. Lines are slightly jittered along the horizontal axes for visibility. 

Red/black: increase/decrease in values (same in other similar plots).

(E) Comparing percentage of reward-leading replays across the 3 conditions. Each dot is a 

boundtype in a session.

(F) Same as (D), but for replay ending rate within the reward zone and non-reward zone. (G) 

Same as (E), but for replay ending rate within the reward zone and non-reward zone.

See also Figure S7.
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Figure 7. Remote awake replay reflected future correct choices in the maze.
(A) Replay ratio for the same vs. opposite templates under the Demo, Object and Empty 

conditions. Each line is a template.

(B) Bias index for the same templates under Demo, Object and Empty. Each dot is a 

template. (C) Same as (A), but for the correct versus wrong templates. (D) Same as (B), but 

for the correct versus wrong templates.

(E) Same as (A), but for the future versus past templates. (F) Same as (B), but for the future 

versus past templates. Each line/dot is a boundtype (2templates on outbound or inbound 

trajectories combined).

See also Figures S8–S10.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rat: Long-Evans Charles River Laboratories Substrain: Crl:LE; RRID: RGD_2308852

Software and Algorithms

MATLAB 2020b Mathworks https://www.mathworks.com/products/matlab.html

EthoVision XT14 Noldus https://www.noldus.com/ethovision-xt

Digital Lynx Neuralynx https://neuralynx.com/hardware/digital-lynx-sx

xclust Matthew Wilson Lab at MIT https://github.com/wilsonlab/mwsoft64/tree/master/src/xclust

DM2021 Daoyun Ji Lab, Baylor College 
of Medicine

https://github.com/DaoyunJiLab/DM2021.git
DOI: 10.5281/zenodo.5758889

ABET II Lafayette Instrument https://lafayetteneuroscience.com/products/abetii-operant-ctrl-software
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