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Abstract
Nonfuctional pituitary neuroendocrine tumor (NF-PitNET) is highly heterogeneous and generally considered a common 
intracranial tumor. A series of molecules are involved in NF-PitNET pathogenesis that alter in multiple levels of genome, 
transcriptome, proteome, and metabolome, and those molecules mutually interact to form dynamically associated molecular-
network systems. This article reviewed signaling pathway alterations in NF-PitNET based on the analyses of the genome, 
transcriptome, proteome, and metabolome, and emphasized signaling pathway network alterations based on the integrative 
omics, including calcium signaling pathway, cGMP-PKG signaling pathway, mTOR signaling pathway, PI3K/AKT signaling 
pathway, MAPK (mitogen-activated protein kinase) signaling pathway, oxidative stress response, mitochondrial dysfunction, 
and cell cycle dysregulation, and those signaling pathway networks are important for NF-PitNET formation and progression. 
Especially, this review article emphasized the altered signaling pathways and their key molecules related to NF-PitNET inva-
siveness and aggressiveness that are challenging clinical problems. Furthermore, the currently used medication and potential 
therapeutic agents that target these important signaling pathway networks are also summarized. These signaling pathway 
network changes offer important resources for insights into molecular mechanisms, discovery of effective biomarkers, and 
therapeutic targets for patient stratification, predictive diagnosis, prognostic assessment, and targeted therapy of NF-PitNET.

Keywords Nonfuctional pituitary neuroendocrine tumor (NF-PitNET) · Invasive NF-PitNET · Aggressive NF-PitNET · 
Multi-omics integration analysis · Calcium signaling pathway · cGMP-PKG signaling pathway · mTOR signaling pathway · 
PI3K/AKT signaling pathway · MAPK signaling pathway · Oxidative stress response · Mitochondrial dysfunction · Cell 
cycle dysregulation · Signaling pathway · Molecular network · Biomarker · Therapeutic target · Patient stratification · 
Predictive diagnosis · Prognostic assessment · Targeted therapy · Predictive preventive personalized medicine (3P 
medicine; PPPM)

Introduction

Pituitary neuroendocrine tumors (PitNETs) are the sec-
ond most common primary central nervous system 
tumors in adults [1]. Among them, non-functional PitNET 

(NF-PitNET), a PitNET with hormone synthesis but with-
out hormone hypersecretion symptoms, is accounted for 
15 ~ 54% [2]. Although NF-PitNET is generally consid-
ered a non-malignant tumor, it still significantly decreases 
patients’ quality of life from multiple aspects [3]. Because 
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of the lack of secondary syndrome from hormone hyperse-
cretion, NF-PitNETs are relatively not easy to be diagnosed 
at early stage and typically have mass effect symptom with 
hypopituitarism, headache or visual field defect when they 
were diagnosed [4, 5]. NF-PitNETs are highly heteroge-
neous. According to the 2017 World Health Organization 
classification for tumors in pituitary glands based on adeno-
hypophyseal hormone and transcription factor profile, clini-
cally NF-PitNETs are classified into seven kinds of groups 
[6]. The high heterogeneity of an NF-PitNET makes it more 
complex to elucidate the molecular mechanism of forma-
tion and progression of NF-PitNET and makes it hard for 
the common single therapy to achieve an ideal efficacy for 
NF-PitNET patients [7]. Moreover, more than 40% NF-Pit-
NETs possess invasiveness that is regarded as a malignant 
potential characteristic of NF-PitNETs [8]. The invasive NF-
PITNETs may invade the bone, dura, and cavernous sinuses 
and can be too infiltrative to be entirely removed during 
neurosurgery. Patients with invasive NF-PitNETs usually 
need adjuvant radiotherapy or chemotherapy after neuro-
surgery, resulting in more complications and poorer prog-
nosis [9]. Nowadays, more and more researchers use omics 
technologies to analyze genome, transcriptome, proteome, 
and metabolome of NF-PitNETs to clarify the molecular 
mechanism of formation and development of NF-PitNETs 
and find efficient biomarkers and therapeutic targets for NF-
PitNET diagnosis and treatment. In addition to single omics 
analysis, integrative omics analysis, which integrates at least 
2 omics technologies, is more widely used in NF-PitNET 
studies in recent years to meet the requirement of system-
atic analysis of NF-PitNETs. The molecules at the levels 
of genome, transcriptome, proteome, and metabolome are 
mutually regulated and form dynamically associated network 
in NF-PitNET formation and progression. One molecule 
change is able to trigger the change of other molecules in 
the network, it is crucial to study molecular variations at a 
systematic, multi-omics level [10]. This review explored the 
current knowledge of single omics and integrative omics of 
NF-PitNETs and highlighted key signaling pathways and 
signaling pathway network alterations identified from multi-
omics data. Finally, we further probed multi-target pharma-
ceutical treatment, and biomarkers identified from signaling 
pathway networks for their important contributions to patient 
stratification, predictive diagnosis, prognostic assessment, 
and personalized treatment of NF-PitNETs.

Omics analysis of NF‑PitNETs

Genomics analysis of signaling pathway alterations 
in NF‑PitNETs

With the spring up of high-throughput technologies, the 
application of DNA sequencing technologies, such as 
next-generation sequencing, genome-level research, is not 
only used to identify genome sequence but also to expand 
the space for scientific research such as epigenomics 
and nucleomics, which paves the way for more accurate 
molecular medical diagnosis and therapy. With the use of 
genomic technologies, more and more important signaling 
pathways affecting NF-PitNET occurrence and progres-
sion were identified and deeper analyzed (Table 1). The 
 Ca2+/CaM pathway, which is involved in the activation 
of tumorgenesis-related PI3K/AKT pathways, was signifi-
cantly altered with a combination analysis of microarray 
technology, gene ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and protein–protein inter-
action (PPI) network analysis. The selective inhibitor of 
 Ca2+/calmodulin-dependent protein kinase kinase (CaM-
KK), STO-609, exhibited strong inhibiting effects on NF-
PitNET growth in experiments in vitro, further verifying 
the importance of  Ca2+/CaM pathway in NF-PitNET for-
mation process and the potential to be a therapeutic target 
for NF-PitNET [11]. The gene expression profiles related 
to invasive and non-invasive NF-PitNETs compared to 
normal pituitaries were mined from the Gene Expres-
sion Omnibus (GEO) database and further analyzed with 
pathway enrichment analysis. Among these differentially 
expressed genes (DEGs), upregulated genes were mainly 
enriched in the PI3K-Akt signaling pathway and cysteine 
biosynthesis/homocysteine degradation (trans-sulfuration) 
signaling pathway, whereas downregulated genes were sig-
nificantly associated with chemokine signaling pathway 
and docosahexaenoate biosynthesis III (mammals) signal-
ing pathway, which clearly demonstrated that the altera-
tions of these pathways might be involved in NF-PitNET 
invasiveness [12]. Aberrant activation of the Wnt signal-
ing pathway is closely related to tumorigenesis. Secreted 
frizzled-related proteins (sFRPs) and WIF1 genes both 
were antagonist genes in the Wnt signaling pathway, and 
these two genes were decreased in invasive NF-PitNETs, 
and their low expression showed a significant correlation 
with tumor invasion. Furthermore, WIF1 promoter was 
hypermethylated in invasive NF-PitNETs compared to 
noninvasive NF-PitNETs and miRNA-137 might regulate 
WIF1 promoter methylation to activate the Wnt signaling 
pathway and affect NF-PitNET aggressiveness [13]. In 
addition, protein kinase A in the adenylyl cyclase pathway, 
key residue (Arg183) in G alpha q in the phospholipase 
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C beta/Ca2+/protein kinase C pathway, and thyrotrophin-
releasing hormone (TRH) receptor in the TRH-signaling 
pathway were studied with valid genomic technologies, 
respectively. However, for all of them, no mutation was 
found in NF-PitNETs. It is thereby unlikely that these gene 
mutations were associated with NF-PitNET etiology, but 
the mutation possibility of other components in these sign-
aling pathways or other key residues of the same gene 
cannot be excluded and is still worth further investigat-
ing [14–16]. However, all of the omics-level molecules 
are mutually regulated and form a dynamic system; thus, 
these reported mutations are nothing but one of the driver 
factors that cause the alteration of key signaling pathways 
or molecular networks to affect NF-PitNET occurrence 
and progression. Therefore, it is necessary for the integra-
tion of data from genomics, transcriptomics, proteomics, 
metabolomics, or other types of omics data to gain a com-
prehensive vision of NF-PitNETs and find out credible 
disease management.

Transcriptomics analysis of signaling pathway 
alterations in NF‑PitNETs

Transcriptomic technologies, including RNA sequencing 
and microarray, were extensively used to detect differentially 
expressed mRNAs, long non-coding RNAs (lncRNAs), and 
microRNAs (miRNAs) in NF-PitNETs to find out signaling 
pathways or molecular networks related to tumorgenesis, 
invasiveness, recurrence, and therapy (Table 1). Patients 
with bone-invasive PitNETs (BI-PitNETs) were found to 
have shorter progression-free survival than non-bone-inva-
sive PitNETs (NBI-PitNETs) in the NF-PitNET group. A 
comprehensive transcriptomics analysis was performed to 
identify differentially expressed mRNAs, lncRNAs, circR-
NAs, and miRNAs between BI-PitNETs and NBI-PitNETs 
and explore key pathway alterations and potential mecha-
nisms for BI-PitNET tumorigenesis. Immune and inflamma-
tory pathways and osteoclast differentiation pathway were 
altered in BI-PitNET since most differentially expressed 
mRNAs were enriched in these pathways with GO and 
KEGG analysis, and other key pathways were also found to 
involve in BI-PitNET tumorigenesis, including apoptosis and 
NF-kB signaling pathway by the construction of pathway 
active network [17]. Research with in silico analysis also 
reported that genes related to immune and calcium metabo-
lism were altered in NF-PitNETs compared to normal tis-
sues [18]. Another study found that local immune response 
was attenuated and TGF-β signaling was down-regulated in 
invasive NF-PitNETs, which might be related to NF-PitNET 
invasiveness [19]. The miRNAs are single-stranded, non-
coding RNAs with approximately 22 nucleotides and func-
tion in homologous sequence-dependent gene silencing in 
cells. A study performed a miRNA microarray analysis to 

identify differentially expressed miRNAs between invasive 
and non-invasive NF-PitNETs and explore miRNAs involved 
in NF-PitNET invasiveness, which revealed that a series of 
signaling pathways, including endocrine and other factor-
regulated calcium reabsorption and fatty acid metabolism, 
were altered in invasive NF-PitNETs with GO and KEGG 
analysis of differentially expressed miRNAs [20]. LncRNAs 
are RNAs that do not code proteins and have more than 200 
nucleotides in length. LncRNAs play important roles in 
many essential biological processes such as tumorgenesis 
and might be a promising target for diagnosis, therapy, and 
prognostic assessment in numerous cancers. According 
to the current understanding regarding lncRNA, the most 
prominent function of lncRNA appears to regulate mRNA 
expression so that the co-expression between a lncRNA and 
a particular mRNA might provide a relatively credible hint 
to predict the functions of that lncRNA [43]. A study has 
identified differentially expressed lncRNAs and mRNAs in 
NF-PitNETs and constructed a lncRNA-mRNA co-expres-
sion network to predict the biological function and/or action 
mechanism of specific lncRNA, the upregulated lncRNAs 
might be involved in signaling pathway alterations, includ-
ing oxidative phosphorylation and calcium signaling path-
ways; and the down-regulated lncRNAs might be involved 
in signaling pathway alterations, including Jak-STAT signal-
ing pathway and PI3K-AKt signaling pathway [21]. Another 
study constructed a lncRNA-mRNA co-expression network 
to reveal the lncRNA related to NF-PitNET recurrence, and 
these lncRNAs functioned in signaling pathways, includ-
ing cell cycle, and tumor necrosis factor (TNF) signaling 
pathway identified with KEGG analysis [22]. Gonadotrophin 
adenomas (GA) are comprised of 29–35% of NF-PitNETs 
and often present a larger volume and invasiveness. A co-
expression analysis was performed between differentially 
expressed lncRNAs identified in GAs and differentially 
expressed mRNAs (extracted with ingenuity pathway analy-
sis) of mTOR (the mammalian target of rapamycin) signal-
ing pathways, which found that some differentially expressed 
lncRNAs might cause mTOR signaling pathway alterations 
to affect GA tumorigenesis [23]. Multiple endocrine neo-
plasia syndrome (MENX)–associated rat GA models were 
constructed to perform whole transcriptomic analysis for 
GA molecular mechanism study in humans since remark-
able similarities exist between MENX-associated rat GA 
and their human counterparts [24]. This study found that 
dysregulated transcripts were mainly enriched in signaling 
pathways related to cell cycle, cell differentiation/prolifera-
tion, development, and lipid metabolism, which demon-
strates that these pathways might involve in GA formation 
[24]. In addition, various studies found that immune-related 
genes and pathways were altered in NF-PitNETs, particu-
larly in aggressive NF-PitNETs [17–19, 25]. Immunother-
apy becomes a promising strategy to deal with refractory 
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NF-PitNETs. In recent years, a novel computational tool, 
direct data integration, was proposed to combine available 
microarray datasets of NF-PitNET to find out immune-
related genes, which was considered more credible target 
candidates for NF-PitNET immunotherapy [44]. Transcrip-
tomic technologies have identified much more signaling 
pathway alterations, and those altered key molecules in 
those signaling pathways might be target candidates for NF-
PitNET therapy, compared to genomic technologies. A tran-
scriptomic dataset is a valuable resource to combine other 
omic-data for integrative omics analysis of NF-PitNETs to 
elucidate molecular network alterations for NF-PitNET tum-
origenesis and progression and find out effective biomark-
ers for patient stratification, predictive diagnosis, targeted 
therapy, and prognostic assessment of NF-PitNET.

Proteomics analysis of signaling pathway 
alterations in NF‑PitNETs

Proteins are the final executor of genetic function in a bio-
logical system, whose abnormalities, including the differ-
ence in protein abundance, post-translational modifications 
(PTMs), and dysfunction in protein activity, protein–pro-
tein interactions, might alter signaling pathways, protein 
complex, and metabolism in cells and affect tumorigenesis 
[45, 46]. With the development and improvement of protein 
separation and identification technologies, proteomic anal-
ysis has identified more and more differentially expressed 
proteins (DEPs) between different subtypes of NF-PitNETs 
and controls and revealed corresponding signaling path-
ways and molecular networks involved in the formation and 
development of NF-PitNETs [47] (Table 1). Among them, 
comparative proteomics analysis is the most commonly used 
approach. A comprehensive pathway network analysis of 
three NF-PitNET proteomic datasets, including protein-map-
ping data from an NF-PitNET, comparative proteomics data 
from NF-PitNETs and prolactinoma relative to control pitui-
tary tissues, and nitroproteomic data from NF-PitNETs and 
control pituitary tissues, revealed four important signaling 
pathway alterations, including mitochondrial dysfunction, 
cell-cycle dysregulation, oxidative stress, and MAPK-sign-
aling abnormality, for NF-PitNET development [26]. Other 
comparative proteomics analyses between NF-PitNETs and 
control pituitaries mainly focused on PTM alterations, such 
as ubiquitination, phosphorylation, and acetylation. A com-
parative ubiquitinomics analysis found four significantly 
altered ubiquitination-mediated signaling pathways, includ-
ing PI3K-AKT signaling pathway, ribosome, hippo signaling 
pathway, and nucleotide excision repair, to affect tumorigen-
esis in NF-PitNETs [27]. A comparative phosphoproteom-
ics analysis found nine significantly altered phosphoryla-
tion-mediated signaling pathways, including spliceosome 
pathway, RNA transport pathway, proteoglycan in cancer, 

SNARE interactions in vesicular transport, platelet activa-
tion, bacterial invasion of epithelial cells, tight junction, 
vascular smooth muscle contraction, and protein processing 
in the endoplasmic reticulum [28]. A comparative acety-
lomics analysis found that proteins differentially acetylated 
in NF-PitNET mainly caused metabolism-related signaling 
pathway alterations, such as oxidative phosphorylation, cit-
rate cycle, and glycolysis/gluconeogenesis, to affect tumo-
rigenesis [40]. The pathway network analysis of DEP data 
between invasive and non-invasive NF-PitNETs found that 
eight signaling pathways were significantly associated with 
NF-PitNET invasiveness, including mitochondrial dysfunc-
tion, oxidative stress, proteolysis abnormality, MAPK-sign-
aling abnormality, CDK5 signaling abnormality, ketogenesis 
and ketolysis, amyloid processing, and TR/RXR activation 
[29]. The pathway network analysis of DEPs between four 
different hormone-expressed subtypes of NF-PitNETs  (LH+, 
 FSH+, LH/FSH+, and  NF−;  NF− means NF-PitNET with 
negative immunohistochemical stains for ACTH (adreno-
corticotropic hormone), GH (growth hormone), FSH (folli-
cle-stimulating hormone), LH (luteinizing hormone), TSH 
(thyroid-stimulating hormone), and prolactin) and control 
pituitaries revealed that four signaling pathway systems were 
commonly altered in each NF-PitNET subtype, including 
MAPK-signaling abnormality, oxidative stress, mitochon-
drial dysfunction, and cell-cycle dysregulation [30]. How-
ever, these four common pathway systems were not the same 
among four NF-PitNET subtypes, which mainly reflected in 
different protein profiles, different expression levels of most 
protein nodes, and different pathway network profiles [30]. 
Silent hormone-expressed NF-PitNET subtypes demon-
strated a more invasive and aggressive trend [48, 49]. A pro-
teomic analysis identified the protein profiles of a silent hor-
mone-expressed NF-PitNET subtype,  FSH+-NF-PitNETs, 
and these proteins were mainly involved in mitochondrial 
dysfunction, oxidative stress, cell-cycle alteration, gluconeo-
genesis and glycolysis, MAPK signaling system, immune 
response, VEGF-signaling, TP53-signaling, and inflamma-
tion signaling pathways [31]. Moreover, a pathway network 
analysis of DEPs between  FSH+-NF-PitNETs and control 
pituitaries found that three signaling pathway alterations, 
namely ECM-receptor interaction, focal adhesion, and PI3K-
Akt signaling pathways, were significantly associated with 
tumor invasiveness and aggressiveness [32]. In addition, the 
pRb/p16/cyclinD1/CDK4 pathway was also altered in NF-
PitNET tumorigenesis with the direct detection of the key 
component expressions (pRb, p16, and cyclin D1) of this 
pathway [33].

With the concept formation of one gene corresponding 
to multiple proteoforms, the number of human proteoforms 
is estimated to be billions in total [50, 51]. However, the 
achieved proteomic studies of NF-PitNETs mainly focused 
on the difference in the copy number or abundance of a 
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protein between different characteristics or subtypes of 
NF-PitNETs compared to control pituitaries, a few studies 
referred to proteoforms, including PTMs. Proteomic analy-
sis about proteoform alterations in NF-PitNETs is much 
insufficient, which needs to br extensively carried out for 
the comprehensive understanding of proteoform alterations 
and the corresponding pathway-network system alterations 
at the proteoform level in NF-PitNETs. In addition, the pro-
teome reflects the results of the underlying transcriptome 
and genome and affects the downstream metabolome to 
some extent. Thus, the integration of proteomic data with 
other omics data benefits the in-depth understanding of the 
significance of proteomic data and overall alterations in 
pathway-network systems of NF-PitNETs.

Metabolomics analysis of signaling pathway 
alterations in NF‑PitNETs

Metabolomics is a relatively recent entry into the study of 
omics, which is represented by metabolites, a kind of small 
molecular chemical entities in cells, biofluids, and tissues 
[52]. The metabolome is the most downstream stage of 
the dynamic biological system in humans, and intertwines 
with the activities of the genome and proteome [53]. How-
ever, seldom has metabolomics analysis been performed in 
NF-PitNETs, and the present metabolomics analysis about 
NF-PitNETs mainly aimed to find out valuable biomark-
ers for diagnosis and prognostic assessment [54–56]. Few 
pathway-network analyses have been performed based on the 
present metabolomic data, which is a huge gap in the fields 
of metabolomics analysis of NF-PitNETs, and it is worth 
more investigating.

Integrative omics analysis of signaling pathway 
alterations in NF‑PitNETs

Each type of omics data mentioned above (“Genomics 
analysis of signaling pathway alterations in NF-PitNETs,” 
“Transcriptomics analysis of signaling pathway alterations 
in NF-PitNETs,” “Proteomics analysis of signaling pathway 
alterations in NF-PitNETs,” and “Metabolomics analysis of 
signaling pathway alterations in NF-PitNETs” sections) has 
typically provided differentially expressed profiles associ-
ated with NF-PitNET pathological process. Based on these 
data, the corresponding pathway-network alterations were 
identified between NF-PitNETs and controls. However, the 
information that underlies NF-PitNET formation and pro-
gression flows through different omics levels. The analysis 
of only a single omics type is insufficient to reflect correla-
tion, especially the causative ones among different omics 
[57]. Integration of the different omics data to analyze NF-
PitNETs is promised to conduct a comprehensive insight 
into its molecular pathogenesis-related pathway-network 

systems and find out potential causative changes that lead 
to NF-PitNET formation and progression. The development 
of high-throughput technologies and abundant omics data 
enable researchers to integrate multi-omics data for in-depth 
study. In recent years, more and more integrative omics stud-
ies have been performed to analyze NF-PitNETs and found 
out some significant signaling pathway alterations. These 
studies focused on the integration of two omics level data, 
including the integration of epigenomics and transcriptom-
ics, transcriptomics and proteomics, and transcriptomics and 
metabolomics (Table 1).

Epigenomic (methylomic) and transcriptomic analysis 
of signaling pathway alterations in NF‑PitNETs

DNA methylation plays an important role in the complex, 
multi-factor epigenetic regulation of gene expressions [58]. 
Approximately 10% of differentially methylated CpGs were 
related to gene expression, and generally, the affected genes 
were involved in various tumorigenesis-related pathways 
[59]. An integrative analysis of methylomics and transcrip-
tomics between invasive and non-invasive NF-PitNETs 
found the key genes and pathways that function in tumor 
invasion. The integrative analysis of differentially methyl-
ated genes and DEGs identified 115 genes that altered both 
in promoter methylation and expression, and among them, 
58 genes showed a negative correlation in DNA methyla-
tion status vs expression level. KEGG pathway analysis of 
these 58 genes found that these genes were mainly enriched 
in the viral carcinogenesis pathway [34]. Moreover, one 
study used multi-omics approaches to analyze the profile 
of DNA methylation, copy number variation (CNV), and 
DEGs between highly proliferative (hpNF-PitNET) and 
lowly proliferative NF-PitNETs (lpNF-PitNET), which 
found that loss of methylation occurred in hypermethylated 
section, and aberrant arm level CNV existed in two samples 
of hpNF-PitNETs; and in these two samples, chromosomal 
losses were associated with decreased expressions of DNA 
methyltransferases, which further altered their global meth-
ylation. Methylation in promoter and gene body regions was 
identified to be involved in gene regulation between DNA 
methylation and gene expression in all hpNF-PitNETs and 
lpNF-PitNETs with correlation analysis. Given the epige-
netic changes can alter gene expression and affect biological 
functions, the ingenuity pathway analysis (IPA) of DEGs 
between hpNF-PitNETs and lpNF-PitNETs found that 
PPARα/RXRα, cAMP-mediated signaling, calcium sign-
aling, and dopamine receptor signaling were all activated, 
whereas ERK5 and p38 MAPK signaling were inhibited in 
hpNF-PitNETs [35]. Other studies that integrated methy-
lomic and transcriptomic profiles focused on the identifi-
cation of key genes that can be served as biomarkers for 
NF-PitNET re-growth evaluation, or investigation of the 
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role of DNA methylation in gene expression misregulation 
of GAs; however, it is a pity that neither of them analyzed 
the pathway-network alterations that underlie NF-PitNET 
re-growth or the pathway-network alterations that under-
lies the misregulation of aberrant DNA methylation to gene 
expression in GAs [59, 60]. Previous studies revealed that 
NF-PitNET was the PitNET subtype that was most affected 
by aberrant DNA methylation [61–63]. Thereby, it is sig-
nificant to further integrate methylomic and transcriptomic 
data to investigate pathway-network alterations that operated 
by aberrant DNA methylation-affected DEGs for in-depth 
understanding of NF-PitNET molecular pathogenesis. This 
field is worth more in-depth investigating.

Transcriptomic and proteomic analysis of signaling 
pathway alterations in NF‑PitNETs

The central dogma of molecular biology deems RNA as an 
intermediate link between DNA and protein, which can read 
out the genetic information of DNA and direct the translation 
of proteins [64]. However, large transcriptomic studies have 
shown that, although up to 80% of the genome is transcribed, 
only ~ 1% of the genome encodes proteins [65]. A mass of 
non-coding RNA functions in many biological processes, 
including endocrine regulation, gene expression regula-
tion, and signal transduction [66]. The single assessment of 
alterations at the transcriptomic level is insufficient to reflect 
the alterations at the proteomic level between NF-PitNETs 
and controls because additional post-transcriptional mecha-
nisms, such as PTMs and alternative splicing, affect the level 
of a protein presented. Therefore, proteomic analysis is an 
important complementary technology for transcriptomic 
analysis to monitor gene expressions. One study preformed 
transcriptomic analysis with RNA microarray to identify dif-
ferentially expressed mRNAs and proteomic analysis with 
liquid chromatography-tandem mass spectrometry (LC–MS/
MS) to identify DEPs, between invasive and noninvasive 
NF-PitNETs; and then integrative analysis of differentially 
expressed mRNAs and DEPs with IPA analysis discovered 
significantly altered pathway-network systems and cel-
lular functions with 29 differentially expressed molecules 
involved in; and these 29 differentially expressed molecules 
were enriched into 25 significant pathways. Some of these 
pathways overlapped with each other, and among them, the 
pathway about production of NO and ROS in macrophages 
shared the most overlap with other pathways. Based on the 
25 pathways, two significant networks related to tumor inva-
sion were also identified, namely (i) cellular movement, cel-
lular growth, proliferation, and cellular development, and 
(ii) cellular movement, cellular development, and dell death 
and survival [36].

Pituitary null cell adenoma (PNCA) is an NF-PitNET 
subtype that originates from pluripotential uncommitted 

precursor cells and occupies approximately 30% of all NF-
PitNETs [37]. Due to the heterogeneities among different 
NF-PitNET subtypes, the mechanism that underlies PNCA 
invasion might be different from other subtypes, or the 
mechanism suggested in the previous study based on data 
from overall NF-PitNETs. One study performed an integra-
tive transcriptomic and proteomic analysis to investigate the 
profile of differentially expressed molecules between inva-
sive and noninvasive PNCAs, which found 15 significant 
signaling pathways involved in PNCA invasion. Among 
them, eight pathways presented similar trends across the two 
datasets, one of which is the acute phase response signaling 
pathway with two molecules (IL-6R and STAT3) enriched. 
Thereby, the IL-6R/STAT3 cascade was considered to be 
activated in this signaling pathway in PNCA invasiveness. 
Furthermore, the disease and biological function analysis 
in the IPA system was performed to show the downstream 
effects of these differentially expressed molecules, which 
also found that IL-6R/STAT3 molecules were related to the 
migration of cells. The upstream analysis predicted IL-6, the 
upstream regulator of IL-6R/STAT3, as one of the upstream 
regulators of these differentially expressed molecules. This 
study further validated the gene and protein expressions 
of IL-6R, JAK2, and STAT3 in invasive and noninvasive 
PNCAs, which found that gene and protein expression of 
these molecules were increased in the invasive PNCAs. 
Therefore, IL-6R/JAK2/STAT3 pathway was suggested to 
be activated in PNCAs and correlated with the invasiveness 
of PNCA [37].

One study identified the expressed pattern of differen-
tial molecules between NF-PitNETs and normal pituitar-
ies from the overlap of transcriptomic and proteomic data, 
which were obtained from GEO datasets and tandem mass 
tag (TMT)–based quantitative proteomics analysis, respec-
tively [38]. In total, 52 statistically significant pathways were 
identified based on these differentially expressed molecules 
with KEGG pathway analysis, including focal adhesion, 
platelet activation, cGMP-PKG signaling pathway, carbon 
metabolism, dopaminergic synapse, proteoglycans in can-
cer, human cytomegalovirus infection, regulation of actin 
cytoskeleton, biosynthesis of amino acids, and retrograde 
endocannabinoid signaling [38]. PTMs, such as nitration, 
phosphorylation, ubiquitination, and acetylation, are impor-
tant aspects of a proteome to mediate a large fraction of 
protein functions and play key roles in many intracellular 
signaling processes, including controlling enzyme activity, 
maintaining overall cell structure, and protein turnover and 
transport. One study identified and quantified phosphopro-
teins and phosphosites in NF-PitNETs and normal pituitaries 
with TMT-labeling reagents incorporated with  TiO2 enrich-
ment of phosphopeptides and LC–MS/MS, and obtained 
transcriptomics data between invasive and non-invasive 
NF-PitNETs from the GEO database. Subsequently, the 
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two datasets were overlapped to investigate phosphorylation-
mediated molecular events for NF-PitNET invasive char-
acteristics. KEGG analysis of these overlapped molecules 
identified phosphorylation-mediated signaling pathway 
network alterations related to tumor invasiveness, including 
platelet activation, long-term depression, proteoglycans in 
cancer, insulin signaling pathway, salivary secretion, gap 
junction, calcium signaling pathway, estrogen signaling 
pathway, cGMP-PKG signaling pathway, glucagon signaling 
pathway, GnRH signaling pathway, vascular smooth muscle 
contraction, inflammatory mediator regulation of TRP chan-
nels, and Fc gamma R–mediated phagocytosis [39].

Another study about acetylated protein profiling of NF-
PitNETs was also overlapped with transcriptomics data from 
invasive and noninvasive NF-PitNETs. KEGG analysis of 
these overlapped molecules found that they were mainly 
involved in the metabolism-related signaling pathways, 
such as carbon metabolism, oxidative phosphorylation, and 
glycolysis/gluconeogenes, which indicated that the acetyla-
tion-mediated signaling pathway network alterations might 
regulate metabolic reprogram to affect NF-PitNET invasive-
ness [40].

In addition, one study integrated nine sets of NF-PitNET 
omics data that previously documented, namely NF-PitNET 
quantitative transcriptomics datasets, NF-PitNET quantita-
tive proteomics datasets, NF-PitNET mapping protein data-
sets, NF-PitNET mapping protein nitration datasets, invasive 
NF-PitNET quantitative transcriptomics datasets, invasive 
NF-PitNET quantitative proteomics datasets, control map-
ping protein datasets, control mapping protein nitration data-
sets, and control mapping phosphorylation datasets, to bring 
a more comprehensive insight into the molecular-network 
system that affects NF-PitNET formation and progression 
by meta-analysis coupled with IPA pathway-network analy-
sis [10]. Based on the nine NF-PitNET omics datasets, a 
total of 519 statistically significant canonical pathways were 
identified; and among them, 139 were mined from a least 
2 datasets. Among the 139 canonical pathways, 68 were 
considered that were obviously related to the tumor occur-
rence and development in direct and indirect ways. Among 
68 tumor-related pathways, 54 canonical pathways that were 
involved in any DEGs or DEPs were further divided into 
nine canonical-pathway panels based on similar cellular 
functions and biological processes, including cytoskeleton, 
cell adhesion and movement pathways, mitochondrial dys-
function and energy metabolism-related pathways, angio-
genesis, invasion, and metastasis-related pathways, toxin 
metabolism and oxidative stress-related pathways, protein 
synthesis, degradation and amino acid metabolism-related 
pathways, cell cycle, proliferation and apoptosis-related 
pathways, immunity-related pathways, ER stress-related 
pathways, and others. Among them, the expression patterns 
and phosphorylations of four important molecular-network 

systems, including mTOR, PI3K/AKT, Wnt, and ERK/
MAPK pathway systems, were confirmed to alter in NF-
PitNETs with PTMScan experiments [10].

More and more studies have been committed to the inte-
grative analysis of transcriptome and proteome to investigate 
signaling pathway network alterations affecting NF-PitNET 
tumorigenesis and progression, but most of them just focus 
on protein-coding transcriptome and expression level of pro-
teome. In fact, non-coding RNA fields have significantly 
developed in past decades, and thousands of novel isoforms 
have been identified. The proteome is even more complex 
than other omes because of billions of proteoforms from 
post-translational mechanisms, including PTMs and alter-
native splicing. Therefore, more attentions are worthy to 
pay to the protein-noncoding transcriptome and proteoform 
alterations of NF-PitNETs and their integrative analysis in 
future researches.

Metabolomic and transcriptomic/proteomic analysis 
of signaling pathway alterations in NF‑PitNETs

The biochemical roles of metabolites are far-reaching. 
Metabolites can regulate epigenetic mechanisms, modulate 
PTMs that affect protein activity, and interact with proteins 
to initiate signaling cascades to facilitate cellular responses, 
etc. [52, 53, 67]. Lipid metabolism has been reported to 
substantially reprogram in cancers to meet the needs of 
increased membrane biogenesis by strong upregulation of 
lipogenesis [68]. Silent corticotroph adenoma (SCA) is one 
of the clinically NF-PitNETs without clinical characteristics 
of Cushing’s syndrome and can be distinguished from other 
NF-PitNETs only by exhibiting immunopositivity for t-box 
transcription factor (TPIT) with ACTH immunopositivity 
or negativity with postoperative pathological examinations. 
Similar to other NF-PitNETs with hormone immunopositive, 
SCAs exhibit more aggressively, more frequently invade into 
surrounding tissues, such as cavernous or sphenoid sinus, 
and present a higher rate of recurrences than hormone 
immunonegative NF-PitNETs. To explore the lipid altera-
tions that were associated with SCA invasiveness and the 
underlying molecular mechanism, one study identified dif-
ferentially lipidomic profiles between invasive and noninva-
sive SCAs with ultra-performance liquid chromatography-
mass spectrometry (UPLC-MS) [41]. Generally, lipids and 
genes in the same pathway functioned and were dysregulated 
together; thus, they further integrated differential lipids and 
DEGs between invasive and noninvasive SCAs with KEGG 
pathway analysis to reveal their intrinsic connections. A 
total of 28 differential lipids and 1114 DEGs were identi-
fied between invasive and noninvasive SCAs. Among them, 
2 differential lipids and 17 DEGs were found to share four 
signaling pathways, including glycosylphosphatidylinosi-
tol-anchor biosynthesis, glycerophospholipid metabolism, 
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phosphatidylinositol signaling system, and glycerolipid 
metabolism, and a multiomic functionally connected net-
work was constructed based on these three factors. These 
key lipids and genes are generally believed to function and 
dysregulate together [41]. A study integrated the results of 
metabolic and proteomic analyses in the 8 subtypes of Pit-
NETs with normal pituitary glands as controls, including 
corticotroph adenomas (silent ACTH and functional ACTH), 
gonadotroph adenomas, somatotroph adenomas, mammo-
somatotroph adenomas, lactotroph adenomas, oncocyto-
mas, and null cell adenomas, which revealed that several 
metabolic pathways changed in these subtypes of PitNETs 
by the enrichment and topology analyses [42]. However, 
metabolomics is still rarely applied in NF-PitNET studies. 
With innovative bioinformatics and analytical technologies 
developed, in fact, it is now feasible to expand metabolomic 
analyses to understand the effects of metabolites at the 
system level. Due to the far-reaching roles of metabolites, 
metabolomic analysis is worthy to bring into integrative 
omics studies of NF-PitNETs to aid in finding out key mol-
ecules that affect NF-PitNET formation and progression by 
constructing a systematic molecular network.

Signaling pathways operated in human 
NF‑PitNETs

The integrated omics analysis of NF-PitNETs mentioned 
above found that several signaling pathways are altered in 
the NF-PitNET tumorigenesis and progression, which are 
considered as valuable resources to systematically elucidate 
the molecular pathogenesis of NF-PitNETs and discover 
hub-molecules that might become effective biomarkers for 
diagnosis and therapy of NF-PitNETs. Some of these path-
way alterations have been intensively studied in NF-PitNETs 
or verified as important for tumorigenesis and progression 
(Table 2).

 i. Calcium signaling pathway alteration: This pathway 
was found to be altered in hpNF-PitNETs compared to 
lpNF-PitNETs [35]. The phosphorylation alterations 
of proteins enriched in the calcium signaling pathway 
can affect NF-PitNET invasive characteristics [39]. 
Cytosolic calcium  ([Ca2+]i) is a pivotal second mes-
senger that directly links to hormone release, which 
synergizes with the signaling of cyclic adenosine 
mono-phosphate (cAMP) to control virtually all secre-
tory gland functions [69]. It is reported that pituitary 
cells appear to proliferate in response to cAMP, lead-
ing to tumorigenesis [70]. Some specific peptides, 
such as hypothalamic peptide and pituitary adenylate 
cyclase-activating polypeptide, can modulate  [Ca2+]
i and cAMP formation in NF-PitNETs that suggested 

their possible modulatory action on tumor growth 
[71]. An additional potential mechanism by which 
calcium signaling regulates pituitary cell function is 
the activation of  Ca2+-sensing receptor (CaSR), which 
induced a significant increase of  [Ca2+]i and cAMP 
[72]. In addition, an assay in vitro was conducted with 
STO-609, the selective inhibitor of CaM-KK, to verify 
its anti-NF-PitNET effects, which was found to induce 
apoptosis of NF-PitNET cells, and inhibit tumor cel-
lular viability, diffusion and migration [11]. Other 
signaling pathways mined from integrated omics 
analysis of NF-PitNETs, including the cGMP-PKG 
signaling pathway and MAPK signaling pathway, 
have been found to interact with calcium signaling 
pathway to co-regulate many pathophysiological pro-
cesses. In gene transcription,  Ca2+ acted as an activa-
tor to promote its process by recruiting MAPK signal-
ing pathways. In cardiac compensatory hypertrophy, 
angiotensin II and endothelin that function by Gq and 
phospholipase C-β to produce inositol-1,4,5-trispho-
sphate, which could increase  Ca2+ and diacylglycerol. 
This process seems to realize by recruiting the MAPK 
signaling pathway to stimulate cAMP response ele-
ment-binding protein [73, 74]. However, the crosstalk 
of calcium signaling pathway and these two signaling 
pathways have not been reported in NF-PitNETs so 
far.

 ii. PI3K-Akt signaling pathway alteration: The expres-
sion patterns and phosphorylations of PI3K (phos-
phatidylinositol 3-kinases)-Akt signaling pathway 
have been confirmed to alter in NF-PitNETs [10] 
(Fig. 1). The PI3K-Akt signaling pathway is activated 
by multiple types of cellular stimuli or toxic insults, 
such as growth factor receptor tyrosine kinases and 
G-protein-coupled receptors and regulates essen-
tial cellular functions such as translation, transcrip-
tion, growth, proliferation, and survival [75, 76]. 
Components of this pathway have been extensively 
studied, which were found to be commonly activated 
in human cancer [77–79]. The PI3K-AKT signal-
ing pathway also has been reported to alter in NF-
PitNETs although it is generally considered a benign 
tumor. The pAKT, an essential effector of the PI3K-
AKT signaling pathway, has been found to present 
in microvascular areas related to tumor size of Pit-
NETs by immunostaining, which suggested that the 
pAKT signaling plays a major role in tumor growth 
and angiogenesis [80]. The somatic mutations and 
amplifications of the PIK3CA proto-oncogene, which 
encodes PI3K, have been found to present in NF-Pit-
NETs [81]. In addition, the laminin subunit alpha 2 
(LAMA2) gene functions as a tumor suppressor in 
NF-PitNETs, and overexpression and demethylation 
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of this gene suppressed the invasion of NF-PitNET 
cells, partially by affecting the PTEN-PI3K-AKT sign-
aling pathway [82]. PI3K signaling pathway has close 
relations with mTOR signaling pathway and MAPK 
signaling pathway. It is reported that rapamycin and 
its analogs induce the MAPK pathway activation in 
human cancers and this feedback loop depends on an 
S6K-PI3K-Ras pathway [83]. In prolactinoma, pro-
lactin, and estradiol were found to exert synergistic 
effects on tumor cell proliferation, and both the protein 
expressions of estrogen receptor α (ERα) and prolactin 
receptor (PRLR) increase in bromocriptine-resistant 
prolactinomas. Further study found that PRL induced 
the ERα phosphorylation via JAK2-PI3K/Akt-MEK/
ERK pathway, while estrogen facilitated PRLR 
upregulation via pERα, which might be the underly-
ing mechanism that contributes to the bromocriptine 
resistance for prolactinomas [84]. However, the cross-

talk among PI3K signaling pathway, mTOR signaling 
pathway, and MAPK signaling pathway has not been 
investigated in NF-PitNETs.

 iii. mTOR signaling pathway alteration: The expression 
patterns and phosphorylations of the mTOR signaling 
pathway have been confirmed to alter in NF-PitNETs 
[10] (Fig. 2). The mTOR, a highly conserved serine/
threonine protein kinase, is a PI3K/AKT pathway 
downstream effector. It forms two distinct complexes 
termed mTOR complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2). The mTORC1 is sensitive to 
rapamycin and activated by diverse stimuli, such as 
nutrients, energies, growth factors, and stress signals, 
and other essential signaling of pathways, such as 
MAPK, PI3K, and AMPK, to control cell prolifera-
tion, growth, and survival. The mTORC2 is resistant 
to rapamycin and generally insensitive to nutrients and 
energy signals. It involves in the regulation of actin 

Fig. 1  PI3K-AKT signaling pathway in NF-PitNETs. Red 
color = upregulation; Green color = downregulation. The gradient 
color degree represents a slightly different expression tendency of 

that molecule. Reproduced from Long et  al. (2019) [10], copyright 
permission from Frontiersin publisher open-access publication, copy-
right 2019
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cytoskeleton that is related to tumor migration and 
invasion by activating PKC-α and AKT [85]. Deregu-
lation of multiple components of the mTOR pathway 
has been reported in many cancers. The mTOR signal-
ing pathway perturbations have also been reported to 
exist in NF-PitNETs. Components and regulators of 
the mTOR signaling pathway, such as AKT, p-MEK, 
and Raf, have been found to present specifically dif-
ferential expressions (mainly up-regulation) in NP-
PitNETs, compared to normal pituitaries [86]. In addi-
tion, the expressions of mTOR pathway regulators, 
mTOR, RICTOR, and RAPTOR, also have been found 
to be significantly correlated with clinical courses of 
NF-PitNETs, such as invasion, staging, and tumor 
growth [87].

 iv. ERK5 and p38 MAPK signaling pathway altera-
tions: This pathway was found to be inhibited in 
hpNF-PitNETs compared to lpNF-PitNETs, and the 
expression patterns and phosphorylations of the ERK/
MAPK pathway have also been verified to generally 
alter in NF-PitNETs [35] (Fig. 3). The MAPK signal-
ing system is highly complex and diverse, and both 
p38 proteins and extracellular signal-related kinases 
(ERK)-1/2 are the regulated MAPKs, which are acti-
vated by specific MAPKKs: MKK3/6 for p38, and 
MEK1/2 for ERK1/2. However, each MAPKK can 
be activated by more than one MAPKKK as well. 
Presumably, each MAPKKK confers responsive-
ness to different stimuli to exert an effect on differ-
ent cellular functions, including cell differentiation, 

Fig. 2  mTOR signaling pathway in NF-PitNETs. Red color = upreg-
ulation; Green color = downregulation. The gradient color degree 
represents slightly different expression tendency of that molecule. 

Modified from Long et  al. (2019) [10], copyright permission from 
Frontiersin publisher open-access publication, copyright 2019
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proliferation, and migration [88]. Many studies have 
reported that MAPK signaling pathways extensively 
involved in tumorigenesis and progression [89–91], 
including NF-PitNETs. The overexpression of B-Raf 
mRNA and protein might be a feature of NF-PitNETs, 
because its overactivity highlights the overactivity of 
the Ras-B-Raf-MAP kinase pathway to facilitate pitui-
tary tumorigenesis [92]. It has been reported that the 
crosstalk of the MAPK signaling pathway and PI3k-
AKT signaling pathway was involved in pituitary 
tumorigenesis and progression [93]. For example, a 
transcription factor and coregulator that are important 

for pituitary maturation and tumorigenesis, zinc-finger 
protein (Zac1) lies downstream to both MAPK and 
PI3K pathways. Its target genes control cell prolif-
eration and hormone synthesis and frequently lose 
expression in NF-PitNETs [94]. Inhibition of the PI3K 
pathway by therapeutic drugs, like somatostatin ana-
logs, can upregulate Zac1 expression. Zac1 in fact is 
an important mediator of the antiproliferative effects 
of PI3K pathway inhibition, and correlates to outcome 
in acromegalic patients [95]. In addition, p38 MAPK 
signaling is also considered an important canonical 

Fig. 3  ERK-MAPK signaling pathway in NF-PitNETs. Red 
color = upregulation; Green color = downregulation. The gradient 
color degree represents slightly different expression tendency of that 

molecule. Reproduced from Long et  al. (2019) [10], copyright per-
mission from Frontiersin publisher open-access publication, copy-
right 2019

27EPMA Journal (2022) 13:9–37



1 3

pathway that participates in oxidative stress response 
in NF-PitNETs [26].

 v. Oxidative stress: Oxidative stress is defined as a rela-
tive excess of free-radical/reactive oxygen/nitrogen 
species (ROS/RNS) when compared with antioxidants, 
which emphasizes that the balance must be disturbed 
between the relative abundance of ROS/RNS and anti-
oxidants (Fig. 4). This process is extensively involved 
in neurodegenerative disease, cardiovascular disease, 
tumorigenesis, and many other pathologies, includ-

ing PitNET pathology [96]. Oxidative stress response 
signaling pathway and the signaling pathways related 
to the regulation of redox homeostasis, including 
mitochondrial dysfunction pathway, oxidative phos-
phorylation pathway, glutathione redox reaction I 
pathway, superoxide radical degradation pathway, 
aryl hydrocarbon receptor signaling, glucocorticoid 
receptor signaling, corticotrophin-releasing hormone 
signaling, melatonin signaling, methylglyoxal degra-
dation III pathway, and AMPK signaling, have been 

Fig. 4  NRF2-mediated oxida-
tive-stress response pathway in 
NF-PitNETs. Reproduced from 
Zhan, et al. (2021) [99], copy-
right permission from Fron-
tiersin publisher open-access 
article, copyright 2021
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found to be altered in NF-PitNETs by the integrative 
analysis of nine sets of documented NF-PitNET omics 
data, which clearly demonstrated that the imbalance 
between production and detoxification of free radicals 
ROS/RNS exist in NF-PitNETs to result in oxidative 
stress and damage in NF-PitNETs [10]. The toxic per-
oxynitrite anion  (ONOO−) is generated by the reac-
tion of nitric oxide, one of the most important RNS, 
and superoxide radical, which is able to attack DNAs, 
RNAs, proteins, and membrane lipids.  ONOO− is an 
important factor that causes protein tyrosine nitra-
tion in vivo and alters protein functions [96]. In NF-
PitNET, nine nitrotyrosine-containing proteins have 
been identified, and tyrosine nitration occurs in crucial 
structural and functional domains, which is able to 
change protein functions [97]. Recently, a study has 
shown that signs of oxidative damage, such as ROS 
levels and signs of antioxidant response; for example, 
nuclear factor-E2-related factor-2(Nrf2) significantly 
increases in PitNETs [98]. The transcriptional fac-
tor Nrf2 is pivotal to the antioxidant response. DEP 
and nitroproteomic data have clearly revealed that 

the Nrf2-mediated oxidative-stress response pathway 
system is involved in NF-PitNET occurrence and pro-
gression [99, 100].

 vi. Mitochondrial dysfunction: Mitochondria are sub-
cellular organelles that ubiquitously exist and are 
responsible for supplying energy to eukaryotic cells; 
and mitochondria are the key links to oxidative stress, 
metabolism, cell cycle, cell apoptosis, autophagy, and 
immunity process [101] (Fig. 5). Thereby, mitochon-
drial dysfunction is considered a hallmark and plays an 
important role in many diseases such as cancers, car-
diovascular diseases, neurodegenerative diseases, dia-
betes mellitus, and inflammatory diseases [100, 102]. 
Recent studies found that increased mitochondrial 
fission was a pro-tumorigenic phenotype [103]. Also, 
study about a human PitNET found that mitochon-
drial dysfunction could be represented as the increased 
number of mitochondria and mitochondrial morpho-
logical change [104, 105]. Many studies have reported 
that mitochondrial dysfunctions mediate reprogram-
ming energy metabolism, oxidative stress, cell apop-
tosis dysregulation, and autophagy dysregulation to 

Mitochondrial dysfunction

Phosphatase

Enzyme Peptidase Kinase

Cytokine or regulator

Transporter

Others

Note:

Fig. 5  Mitochondrial dysfunctional pathway in NF-PitNETs. Red 
color = upregulation; Green color = downregulation. The various 
shapes of nodes represent different functions. A duplicated shape 
denotes this node contains multiple components. An arrow means 

the pathway direction. A line with a small circle means a biological 
result. Reproduced from Zhan et  al. (2010) [26], copyright permis-
sion from BioMed Central publisher open-access article, copyright 
2010
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affect the pituitary tumorigenesis and progression. For 
mitochondrial dysfunction-mediated energy metabo-
lism reprogram, some mitochondria-associated pro-
teins were found to play a key role in PitNETs, such 
as oxamate and succinate dehydrogenase [106, 107]. 
Mitochondrial dysfunction signaling pathway and 
the signaling pathways related to energy metabolism, 
including oxidative stress response signaling pathway, 
oxidative phosphorylation, and AMPK signaling, 
have been found to be altered in NF-PitNETs with 
the integrative analysis of nine sets of documented 
NF-PitNET omics data, which clearly demonstrate 
that the defective mitochondrial function and energy 
metabolism alterations exist in NF-PitNETs [10]. 
Mitochondrial dysfunction-mediated oxidative stress 
is accompanied by mitochondria swelling during Pit-
NET development, and is associated with augmented 
biogenesis and increased fusion process [98]. It is 
reported that mitochondria-mediated ROS- MAPK 
pathways in PitNETs can be activated by 18beta-
glycyrrhetinic acid to induce tumor cells apoptosis, 
and these activating effects can be attenuated by pre-
treatment with N-acetyl-L-cysteine, a ROS inhibitor 
[108]. Mitochondrial dysfunction-mediated apoptosis 
dysregulation is caused by the change of mitochon-
drial membrane potential and subsequently internal 
apoptosis stimulator responses [109]. The imbalanced 
expressions of apoptosis-related genes/proteins, such 
as trefoil factor 3 and apoptotic protease-activating 
factor-1, are able to lead to uncontrolled cell prolif-
eration in PitNETs [110, 111]. Also, targeting mito-
chondria has an effective impact on PitNET therapy 
through the apoptosis pathway. Autophagy is a pro-
tein degradation system that functions in maintaining 
homeostasis and inducing apoptosis. Mitophagy is a 
complex physiological process in that cells selectively 
eliminate mitochondria through autophagy. Many 
studies have found that mitophagy and mitochondrial 
dysfunction are associated with pituitary tumorigen-
esis and progression [112]. In pituitary GH3 cells, the 
regulating mechanism of mitophagy has been found to 
be mediated by Nrf2/PTEN-induced putative kinase 
protein 1 (PINK1)/E3 ubiquitin ligase Parkin path-
way, and the activation of protective protein kinase A 
signaling pathway can activate the Nrf2/PINK1/Par-
kin pathway to mediate mitophagy [113]. Moreover, 
increasing mitophagy and mitochondrial dysfunction 
might increase chemo-resistance in pituitary GH3 
cells [113].

 vii. Cell cycle dysregulation: Cell cycle is the basic bio-
logical process that regulates cells growth and prolif-
eration, and its dysregulation could cause the uncon-
trolled growth and proliferation of cells, which results 

in tumorigenesis [114]. Cell-cycle dysregulation and 
the signaling pathways related to cell cycle, prolifera-
tion and apoptosis, including 14–3-3-mediated sign-
aling, calcium signaling, cardiac β-adrenergic signal-
ing, ERK/MAPK signaling, IGF-1 signaling, mTOR 
signaling, p53 signaling, PEDF signaling, PI3K/Akt 
signaling, sonic hedgehog signaling, tec kinase signal-
ing, telomerase signaling, and β-adrenergic signaling, 
have been found to be altered in NF-PitNETs, which 
revealed that cell-cycle dysregulation was involved 
in NF-PitNET tumorigenesis and progression [10]. 
Numerous cell cycle regulators have been identified 
to be altered in NF-PitNETs, such as Rb1 and cyclin-
dependent inhibitors (CDKIs) (p16, p15, p21, and 
p27) [115–117]. A recent study further investigated 
the relationship between the protein expressions of 
cell cycle regulators, including pituitary adenylate 
cyclase-activating peptide (PACAP), cyclin D1, 
vascular endothelial growth factor (VEGF), c-MYC 
and pituitary tumor transforming gene (PTTG), and 
patient clinical characteristics (Ki-67, age, regrowth, 
and tumor size) [118]. Cyclin D1 was positively cor-
related with Ki-67 and tumor size. The c-MYC was 
correlated with PTTG nuclear expression, which 
indicated that PTTG might induce c-MYC expres-
sion in PitNETs and c-MYC might have a principal 
role in early pituitary tumorigenesis [118]. Also, the 
protein expression of p21 was significantly increased 
in the regrown NF-PitNETs, which indicated that it 
was a predictor for residual PitNET progression [119]. 
However, many studies demonstrated that cell cycle 
dysregulation in PitNET mainly occurred through the 
alterations of genes that regulate the G1/S checkpoint, 
such as CDKIs (p14, p15, p16, p18, p21, and p27), 
few studies investigated the genes that regulate G2/M 
checkpoint. Recently a study systematically studied 
the expressions of the G2/M transition members in 
NF-PitNETs and found that CDK1 and CDC25A 
were overexpressed and might have an important role 
in the pathogenesis of NF-PitNET [120]. Thus, cell 
cycle dysregulation has currently become one of the 
research hotspots in the field of NF-PitNET tumori-
genesis.
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Signaling pathway network‑based 
multi‑target pharmaceutical treatment 
in NF‑PitNETs

As described above, multi-omics studies in human NF-
PitNETs have demonstrated that several signaling path-
ways, including calcium signaling pathway, cGMP-PKG 
signaling pathway, PI3K-Akt signaling pathway, mTOR 
signaling pathway, MAPK signaling pathway, oxidative 
stress response signaling pathway, mitochondrial dysfunc-
tion signaling pathway, and cell cycle signaling pathway, 
are important for NF-PitNET pathogenesis, which inter-
regulate and facilitate NF-PitNET tumorigenesis and pro-
gression. The roles of these pathways in the treatment of 
NF-PitNETs are demonstrated by the effects of currently 
used medications.

Biguanides are well-known medicine commonly pre-
scribed to treat diabetes mellitus, but this drug can con-
vey other beneficial actions, including antitumor effects. 
A recent study found that biguanides reduced cell viabil-
ity in all PitNETs, including NF-PitNETs. The effects of 
biguanides on PitNETs might involve the modulation of 
both AMP-activated protein kinase signaling pathway-
dependent (PI3K/Akt,  [Ca2+]i) and independent MAPK 
mechanisms [121]. A well-known drug used to treat hyper-
lipidemia/cardiovascular diseases, simvastatin, also was 
reported to reduce cell viability and/or hormone secre-
tion in all subtypes of PitNETs. This antitumor effect was 
armed with the modulation of MAPK/PI3K/mTOR path-
ways and expression levels of key receptors, GHRH-R, 
ghrelin-R, and Kiss1-R, which regulate pituitary functions 
[122]. Other drugs include nelfinavir and somatostatin 
analogs; the former is radiosensitizer for PitNETs, and the 
latter is the conventional treatment of the major subtypes 
of PitNETs; and their antitumor effects might attribute to 
their modulation of PI3K-AKT-mTOR signaling pathway 
and/or ERK pathway in recent studies [95, 123, 124]. 
Ketoconazole, initially developed as an antifungal agent, 
acts as a potent inhibitor of adrenal steroidogenesis and 
therefore has been used in the treatment of Cushing’s dis-
ease. A study further investigated the underlying mecha-
nism of ketoconazole treatment using different pituitary 
tumoral cell lines, which found a negative relationship 
between ketoconazole concentration and pituitary cell 
viability, and ACTH levels decrease in AtT-20 cells after 
the drug removal. This study has observed that the expres-
sions of apoptosis-related cell death receptors and cas-
pases increased in pituitary cells, and the gene expressions 
of the cell cycle inhibitors (p27 and p21) were increased 
in GH3 cells, and the expressions of p21 were increased 
in aT3.1 cells, which suggested that ketoconazole reduced 
cell viability in a concentration-dependent way in pituitary 

tumor cell lines, which is related to the increase of apopto-
sis- and cell cycle regulation-associated gene expressions 
[125]. The expressions of epidermal growth factor recep-
tor 2 (HER2)/ERK1/2 signaling were significantly upreg-
ulated in PitNETs, and trastuzumab could decrease the 
expressions of ERK1/2, cyclin D1, and CDK4 as well as 
the pituitary tumor growth [126]. Further study found that 
trastuzumab inhibited pituitary tumor growth and modu-
lated HER2/ERK1/2 signaling by blocking HER2 [126]. 
Many drugs have been found to play their therapeutic roles 
in PitNETs by targeting mitochondria, including dopamine 
agonists, melatonin, cyclosporine A, temozolomide and 
pyrimethamine, T-2 toxin, grifolic acid, and yougui pill 
[112].

Furthermore, potential novel therapies of PitNETs have 
been proposed based on putative molecular targets among 
some of these signaling pathways. All of the components 
and regulators of the ERK/MAPK signaling pathway are 
considered to be potential targets for treating PitNETs [127]. 
Overexpression of epidermal growth factor pathway sub-
strate number 8 (Eps8) and overactivation of Raf, ERK, and 
MEK in the ERK signaling pathway facilitate cell prolifera-
tion and survival in PitNETs [128]. MAPK kinase inhibitor 
(PD98059) can eliminate the proliferative effects. Silence 
of Eps8 inhibits cell proliferation as well, which suggested 
that Eps8 promotes PitNET cell proliferation by enhancing 
the Raf/MEK/ERK signaling, and it is a potential drug target 
for PitNET treatment [129]. Also, some components and 
regulators in PI3K/Akt/mTOR and Raf/MEK/ERK signal-
ing pathways have been recognized to be potential thera-
peutic targets for NF-PitNETs. PI3K/Akt and ERK sign-
aling pathways are both diverged from the tyrosine kinase 
receptors IGF-1R and epidermal growth factor receptor 
(EGFR) [86]. NVP-AEW541, a selective IGF-1R inhibitor, 
was abrogated IGF-1-induced NF-PitNET cell proliferation 
and signaling [130]. Although the EGFR expression levels 
in NF-PitNETs are low according to some studies, EGFR 
inhibitors might still be effective as it does not always cor-
relate with EGFR expression [131]. Gefitinib, a tyrosine 
kinase inhibitor (TKI) of EGFR, and lapatinib, a dual TKI 
of EGFR and HER2, have been studied in human and rat 
prolactinoma cells, which found they suppressed cell growth 
[132, 133]. However, for all we knew, no study reported 
that the EGFR inhibitors affected NF-PitNETs so far. The 
effects of mTOR inhibitors on NF-PitNETs are complex. 
mTOR inhibitors, such as everolimus, were found to indeed 
inhibit pituitary cell proliferation [134], but drug-resistance 
to NF-PitNETs also existed [135] because of the overacti-
vation of Akt [86]. Moreover, Nrf2 signaling, as the hub 
of the oxidative stress response, is extensively involved in 
cancer pathogenesis, and many drugs targeting Nrf2 sign-
aling pathways have been developed and further tested as 
potential anticancer agents for different cancers. It is thereby 
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considered chemical agents targeting Nrf2 signaling as novel 
therapeutic strategies for PitNETs. Although no study has 
investigated Nrf2 signaling as a therapeutic target for Pit-
NETs, it is still strongly believed to be the promising target 
for new therapeutic strategies for PitNETs [99].

Conclusions

This review summarized current studies about signaling 
pathways and molecular networks based on different omics 
analyses in NF-PITNETs, including genomics, transcrip-
tomics, proteomics, metabolomics, and integrative omics. 
NF-PitNET pathogenesis widely involves the alterations of 
genome, transcriptome, proteome, and metabolome, and 
molecules in the different omics levels mutually regulate 
and form dynamically associated networks. Therefore, the 
integrative omics-based signaling pathway alterations were 
emphasized in this review to systematically elucidate the 
important pathway-network alterations that affected NF-
PitNET occurrence and progression, especially invasive-
ness-related pathway network alterations. Some signaling 
pathway network alterations were important for NF-PitNET 
tumorigenesis and development identified with integra-
tive omics analysis, including calcium signaling pathway, 
cGMP-PKG signaling pathway, mTOR signaling pathway, 
PI3K/AKT signaling pathway, MAPK signaling pathway, 
oxidative stress response, mitochondrial dysfunction, and 
cell cycle dysregulation. Some currently used medicines, 
such as biguanides, statins, and somatostatin analogs, have 
an antitumor effect on NF-PitNET targeting the components 
and/or regulators of these pathways, and some novel agents 
targeting these pathways are developing and promised to 
be effective medications for NF-PitNET treatment. In all, 
multi-omics-based signaling pathways, network alterations 
pave way for our systematic understanding of NF-PitNET 
pathogenesis and provide valuable clues for the development 
of novel effective medication of NF-PitNET to prevent NF-
PitNETs from invasion and recurrence.

Outlook and expert recommendations for 3P 
medicine in NF‑PitNET

NF-PitNET is a highly heterogeneous and complex tumor 
in the hypothalamic-pituitary-target organ axes, which 
seriously affects the endocrine system and health. Multi-
omics is an effective approach to mine the molecular 
alterations at different levels of genome, transcriptome, 
proteome, and metabolome and further reveals the signal-
ing pathway network changes in the NF-PitNET biological 

system. These signaling pathway network changes offer 
the in-depth understanding of molecular mechanisms, the 
discovery of effective biomarkers and therapeutic targets/
drugs, for patient stratification to simplify highly heter-
ogenous NF-PitNET population for personalized treat-
ment, predictive diagnosis to earlier screen the invasive 
tumor for early treatment, and prognostic assessment for 
earlier screening, and treatment to avoid recurrence and 
drug-resistance. For example, mitochondrial dysfunc-
tion is one of important signaling pathway alterations in 
NF-PitNEts, which is crucial for PPPM strategies such as 
potential application of “mitochondrial health index” for 
predictive diagnostics and targeted prevention tailored to 
the person [136].

This review highlighted the achievement of multi-
omics-based signaling pathway network changes in NF-
PitNETs. We emphasize strengthening the transitional 
research of these molecular network data for PPPM clini-
cal practice in NF-PitNETs, especially resolving its inva-
sive and aggressive characteristics of NF-PitNETs.
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