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Abstract

Navigating by path integration requires continuously estimating one’s self-motion and heading. 

These estimates may be derived from visual velocity and/or from vestibular acceleration signals. 

Importantly, these senses in isolation are ill-equipped to provide accurate estimates, and thus 

visuo-vestibular integration is an imperative. After briefly sketching the visual and vestibular 

pathways involved, the crux of this review focuses on the human and theoretical approaches that 

have outlined a normative account of cue combination in behavior and neurons, as well as on 

the systems neuroscience efforts that are searching for its neural implementation. We highlight 

understanding how cues with time-varying reliabilities, and how prolonged velocity signals are 

integrated into a position estimate, as important contemporary frontiers. Further, we discuss how 

the brain builds internal models inferring when cues ought to be integrated vs. segregated – a 

process of causal inference. Lastly, we suggest that the study of spatial navigation has not yet 

addressed its initial condition: self-location.
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1. Introduction

Successful navigation is central to adaptive behavior as it underlines our ability to trade-off 

between exploiting our current location in the environment with exploring novel ones. 

Traditionally, navigation has been divided into two broad classes; landmark-based and 

path integration. The former relies on fixed environmental anchors for visual homing, re-

orientation, and way finding. The latter, instead, involves integration of evolving estimates 

of heading, angular, and linear velocity derived from visual, vestibular, proprioceptive, and 

motor-efference signals into a best guess of position. In a sense, landmark-based navigation 

may be allocentric (e.g., turn left at the fridge), while path integration cannot – it relies 

on self-motion information derived from an egocentric perspective (e.g., an optical flow 

field radiating from a focus of expansion). As such, the study of path integration and 
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self-motion may allow us to further understand not only navigation, but also our subjective 

and egocentric sense of self-location.

Here, we attempt to contextualize recent findings of path integration and self-motion while 

highlighting novel and interesting developments in neighboring and interdependent fields of 

study. First, we sketch the visual and vestibular neural pathways involved. We start with the 

vestibular pathways, as these are commonly less known to the general audience. Second, 

we highlight that the visual and vestibular systems are in isolation incapable of accurate 

self-motion perception. Thus, much of our focus is in outlining the computational and neural 

principles that underpin visuo-vestibular Bayes near-optimal integration. Further, we review 

initial findings and suggestions regarding the mechanism behind Bayesian causal inference. 

In the last section we highlight an area of study that is seldom incorporated into the study of 

navigation yet constitutes its initial condition; the sense of self-location.

2. Neural Pathways for Self-Motion

A multitude of sensory systems contribute to our subjective sense of self-motion. The 

strongest of these are likely vision and the vestibular system, and thus in what follows we 

briefly outline these neural pathways.

2.1. The Vestibular System in Self-Motion

The vestibular peripheral organ is located in the inner ear and comprises two components; 

the otolith organs and the semi-circular canals (Fig. 1, bottom-most). The former detect 

linear head acceleration, both horizontally and vertically (i.e., gravity). The latter sense head 

rotation in three orthogonal planes. In turn, the afferent fibers of the vestibular nerve project 

to central vestibular areas, in particular the vestibular nuclei. This area is composed of many 

cell types, some are involved in gaze-stabilization, while others (e.g., “vestibular-only”, VO) 

are thought to be involved in posture, self-motion, and likely navigation (see Cullen, 2019 

for a recent review). VO neurons respond to passive (i.e., externally applied) head motion, 

but responses are suppressed during active head motion, translation (Carriot et al., 2013) or 

rotation (Roy & Cullen, 2001, 2004).

The suppression of VO neurons during active self-motion is predicted by a Kalman filter-

based model of self-motion (Laurens & Angelaki, 2017). More specifically, the cerebellum 

is generally thought to form a forward internal model that predicts the sensory consequences 

of self-generated movement (Krakauer & Mazzoni, 2011). Hence, theoretical models 

(Laurens & Angelaki, 2017) of the vestibular system have similarly suggested that during 

active movement the cerebellum may compute an internal model of the expected sensory 

consequences of a motor command. This estimate is then compared with the observed 

sensory inflow to generate sensory prediction errors. When expectations are violated, as 

is the case during passive head movements, vestibular reafference cancellation signals 

from the cerebellum to the vestibular nuclei are not suppressed, and thus activity in VO 

neurons is enhanced (Fig. 1). In addition to VO neurons in the vestibular nuclei, recordings 

from the rostral fastigial nucleus of the primate cerebellum confirm the computation of 

sensory predictions that enable the distinction between self-generated and externally applied 

self-motion (Brooks et al., 2015). Remarkably, therefore, already at this early stage, signals 
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mediating self-motion estimation are multisensory (i.e., vestibular, motor efference copy, 

and likely proprioception from the neck).

From the vestibular nuclei information is sent to the cortex via two ascending 

thalamocortical pathways. The anterior vestibulo-thalamic pathway projects first to the 

prepositus and supragenual nucleus, then to the dorsal tegmental nucleus, and finally the 

lateral mammillary nucleus – all within the brainstem (Fig. 1). The association between 

the latter two areas is postulated to encode a ring attractor (reviewed in Knierim & Zhang, 

2012) that leads to head-direction (HD) cells in their downstream area, the anterior dorsal 

thalamus (ADN; see Hulse & Jayaraman, 2020, for a recent review). These HD cells are 

egocentric in nature, in that they encode the direction of heading. The ADN outputs to the 

retrospenial cortex and the dorsal presubiculum before this anterior pathway converges onto 

the well-known spatial codes of the entorhinal cortex and hippocampus (Moser et al., 2008). 

The entorhinal cortex is heterogeneously composed of and multiplexes (Hardcastle et al., 

2017) head-direction, place (O’Keefe & Nadel, 1978), speed (Kropff et al., 2015), border 

(Solstad et al., 2008), and grid cells. It is likely best known for this latter cell-type, tiling 

space in a hexagonal pattern (Hafting et al., 2005). The hippocampus possesses place cells, 

neurons that fire when the animal is within a particular location of space (O’Keefe, 1976). 

Thus, interestingly, while supported by the vestibular system – an idiothetic sense - the 

anterior vestibulo-thalamic pathway ultimately is involved in building an allocentric map in 

limbic areas (Fig. 1).

The second ascending thalamocortical pathway is the posterior one. This pathway projects 

from the vestibular nuclei and the cerebellum to the ventral posterior lateral thalamus (VPL). 

The VPL is also a hub for somatosensory information (Jones, 1985), and thus it is not 

surprising that this area is highly multisensory, encoding for vestibular, somatosensory, 

proprioceptive, visual, and motor signals. From here, the posterior vestibulo-thalamic 

pathway projects directly to the parieto-insular vestibular cortex (PIVC) and the ventral 

intraparietal area (area VIP), among many others (see Lopez & Blanke, 2011 for an 

extensive review). This vast proliferation of vestibular signals from posterior thalamus to 

numerous cortical areas, and the fact that these target areas are multisensory in nature, is 

why it is said that there is no primary vestibular cortex.

In addition to the above-mentioned areas receiving vestibular input directly from VPL, the 

medial superior temporal area (MST), particularly the dorsal subdivision (MSTd; Duffy, 

1998), but also the lateral one (Sasaki et al., 2019), and area 7a (Avila et al., 2019) also 

respond to vestibular stimulation. Thus, seemingly much of the dorsal stream (e.g., MSTd, 

VIP, 7a) is generally responsive to vestibular self-motion stimuli. Further, until recently 

it was thought that the response patterns in these areas showed a progressively stronger 

correlation with heading discrimination behavior (e.g., MSTd, Gu et al., 2008 vs. VIP, Chen 

et al., 2013), at least insofar as measured by choice probabilities (Britten et al., 1996). 

However, recent causal experiments performing chemical inactivation have questioned the 

causal role of MSTd and VIP in vestibular heading perception, as there is no or little 

impairment in heading discrimination when these areas are “shutdown” (Gu et al., 2012; Yu 

& Gu, 2018).
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Interestingly, while the posterior parietal cortex is widely considered to be a hub for 

egocentric spatial navigation, and its tuning to allocentric variables (e.g., route information) 

is weak (e.g., Chen et al., 1994), area 7a – being downstream from most of posterior 

parietal cortex – shows properties that may suggest a putative gradual transformation toward 

cues amenable for allocentric encoding. That is, 7a seems to show weak visuo-vestibular 

convergence and distinct subpopulations of neurons either code for linear or angular 

velocity (Avila et al., 2019). Given that the distinctive characteristic of 7a relative to its 

parietal neighbors is its anatomical connection to the retrospenial cortex and indirectly 

to hippocampal formation (Pandya & Seltzer, 1982; Kobayashi & Amaral, 2000), we 

may speculate that the neural codes in 7a and retrospenial cortex (showing e.g. progress 

divergence as opposed to convergence of linear and angular velocity signals) may be best 

suited for readout in the hippocampus (see Kravitz et al., 2011, for a similar argument 

linking the caudal inferior posterior lobule with hippocampal formation spatial codes). 

Similarly supporting this conjecture, Avila and colleagues (2019) recently reported that 7a 

is most readily driven by vestibular and not visual optic flow information, and this former 

sensory modality is tuned to acceleration. In this line, Kropff et al., 2021, have recently 

demonstrated that contrarily to popular belief, theta rhythms organizing neural activity 

across hippocampus and entorhinal cortex are modulated by acceleration, and not speed, of 

running rats.

Together, we may speculate that while two ascending thalamocortical vestibular pathways 

exist (anterior and posterior), these in fact form a loop, being separate and egocentric at 

their outset (in thalamus and cortical areas), and converging in the hippocampal formation 

where they employ an allocentric code (Fig. 1, see Herweg & Kahana, 2018 for a similar 

argument, and see Andersen et al., 1985; Bicanski & Burgess, 2016, for arguments regarding 

the involvement of the retrospenial cortex in allo-/ego-centric transformation).

2.2. The Visual System in Self-Motion

When a stationary observer views clouds move past her, a river flow by her, or a train 

departing on the adjacent track, she may experience an illusory sense of self-motion. This 

phenomenon is called vection (Tschermak, 1931) and as the above examples illustrate, it is 

a sensation that may occur in nature. As such, it has long been appreciated that visual cues 

alone can generate self-motion perception (Mach, 1875). In particular, it is well established 

that large field, coherent, and global motion mimicking the pattern of flow that occurs on 

our retinae as we move relative to the environment is capable of eliciting vivid sensations of 

self-motion (see Dichgans & Brandt, 1978). This pattern of motion was denominated “optic 

flow” (Gibson, 1950), and has served as the backbone for much of the modern-day study of 

self-motion.

What are the neural pathways involved in the processing of optic flow? The striate and 

extrastriate cortices are well studied, in particular for their motion responses (Maunsell 

& van Essen, 1983) and hence natural contenders for the processing of optic flow 

emerged rapidly. A subset of cells in primary visual cortex (V1) are highly selective for 

direction, but these cells have small spatiotemporal receptive fields and encode motion 

of local features (Hubel & Wiesel, 1968) – thus likely not ideally suited for self-motion 
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processing (but see Vélez-Fort et al., 2018). The middle temporal area (MT) likely integrates 

motion cues inherited from V1 (Adelson & Movshon, 1982) and cells in this area can 

encode two-dimensional motion, such as patterned motion (i.e., vertical bars moving north 

and south east yielding a rightward percept). MT is also thought to estimate velocity 

(Adelson & Movshon, 1982). However, this area does not seem tailored for complex and 

whole-field flow processing. Instead, the subsequent stages of the visual dorsal stream – 

dorsal subdivision of the medial superior temporal area (MSTd), ventral intraparietal area 

(VIP), and area 7a (Fig. 1) – all seemed to show properties well suited for optic flow 

processing: (1) large and often bilateral receptive fields, (2) selectivity for complex visual 

motion patterns, and (3) often partial remapping of reference frames allowing for heading 

representation independent of eye-position (Tanaka et al., 1986; Duffy & Wurtz, 1991; 

Siegel & Read, 1997; Bremmer et al., 2002; Avillac et al., 2005). These latter areas have 

therefore been those most extensively studied in the processing of optic flow and self-motion 

(see Britten, 2008, for an earlier review focusing on MSTd and VIP).

Early studies suggested a weak but consistent correlation between spiking activity in MSTd 

and trial-to-trial fluctuations in heading perception derived from optic flow (Britten & van 

Wezel, 1998; Gu et al., 2008). This small correlation has recently also been shown in MT 

(Yu et al., 2018; Yu & Gu, 2018). In contrast, the downstream area VIP shows substantially 

larger correlations between brain activity and heading perception (Chen et al., 2013). To the 

best of our knowledge the choice probability for heading judgments has not been reported 

in 7a. While it would be tempting to suggests that higher levels of the visual hierarchy (e.g., 

from MT to VIP) have a stronger role in guiding heading perception, recent experiments 

do not support this simple view. Causal experiments bilaterally suppressing MSTd showed 

a three-fold increase in the psychophysical threshold for visual heading perception (Gu et 

al., 2012). Remarkably, however, bilateral suppression of VIP had no effect on heading 

perception as derived from optic flow (Chen et al., 2016). Supporting the conclusion linking 

MSTd but not VIP to heading perception, Zaidel and colleagues (2017) dissociated bottom-

up sensory and top-down choice driven components to choice probabilities. This analysis 

suggested a preponderance of heading signals in MSTd and of choice signals in VIP.

Recordings in the vestibular and deep cerebellar nuclei (Bryan & Angelaki, 2008), as well as 

PIVC (Chen et al., 2010) showed a lack of responsiveness to optic flow.

In general, therefore, there is a convergence of visual and vestibular signals for self-motion 

in the parietal dorsal stream (e.g., MSTd, VIP, 7a). However, their exact functional roles are 

not yet fully understood. Speculatively, it seems as if the strongest signals relating to the 

encoding of self-motion from vision are in MSTd, but after this stage information may be 

most strongly related to decision-making processes and visuo-vestibular cue combination, 

while being highly distributed and redundantly coded (see Zhang et al., 2016a for a similar 

argument and modeling effort, and see Bizley et al., 2016, for an argument that distributed 

networks underlie multisensory decision-making).
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3. Visuo-Vestibular Integration; computation, algorithm and 

implementation

Despite their clear contribution to self-motion processing, in isolation the visual and 

vestibular systems are ill equipped to guide spatial navigation. As mentioned above, given 

that self-motion is relative, during full field visual motion observers may misinterpret global 

world motion for self-motion (i.e., vection; see Dichgans & Brandt, 1978 for an early 

and extensive review). Similarly, optic flow may be caused by true translation or rotation 

of the head in the environment, but may also be caused by rotation of the eyes in orbit, 

causing a confluence of signals that have to be parsed (i.e., the “rotation problem”). The 

vestibular system also has inherent limitations. For instance, given that the inner ear detects 

acceleration, in the absence of visual cues we cannot sense movement after a prolonged 

period of constant velocity (e.g., closing one’s eyes on a moving train). Likewise, given 

that otolith afferents encode linear acceleration and changes in head orientation relative to 

gravity in an identical manner, this system in isolation cannot distinguish between these 

(i.e., Einstein’s equivalence principle, Einstein, 1907). Thus, the integration of visual and 

vestibular signals does not only suppose a redundancy of encoding that via multisensory 

integration is likely to ameliorate perceptual sensitivity (see Fetsch et al., 2013 for a review), 

but also overcomes fundamental deficits in each of these systems.

In this section we first summarize behavioral and computational evidence specifying 

how signals ought to be combined, from a principled perspective. Then, we highlight 

probabilistic population codes as a theoretical framework detailing how optimal cue 

combination may occur in the brain and review the evidence for this sort of neural code 

in visuo-vestibular integration for heading perception (see Box 1 for a broader discussion 

on the neural instantiation of statistical inference). We attempt to highlight important 

advances that have 1) developed ideal observers who integrate signals over an undetermined 

period of time and with time-varying reliabilities, and 2) have sketched the putative neural 

implementation of this computation. Lastly, we discuss causal inference as a more general 

computation toggling between different internal models (e.g., dictating the integration or not 

of visuo-vestibular cues), and point to theoretical proposals, as well as recent findings from 

cognitive and systems neuroscience that together promise to ultimately elucidate the neural 

underpinning of this fundamental and ubiquitous computation.

3.1. Bayesian Observers

Our brains are locked inside dark and silent skulls. They understand the language of 

spikes and not that of visual objects and vestibular events. Thus, as Helmholtz (1867) most 

famously stated, perception is a process of (unconscious) inference. We do not have direct 

access to the external world, and instead we must make our best guesses based on available 

sensory evidence and prior knowledge.

More formally, and taking the example of heading discrimination, on a particular trial, t, 

an observer is presented with a specific heading, θt. This stimulus is encoded by noisy 

and stochastic biological elements, and thus, our measurements or observations, m, of the 

environment may change on a trial-by-trial basis, even for a fixed θt (Tolhurst et al. 1982). 
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The resultant distribution, p(m| θt) is called a measurement distribution and is defined for 

a fixed stimulus. It is typically considered to be Gaussian and centered on the true θt. 

Together, the relation between i) the different headings that we may experience, p(θ) and ii) 

the measurement distribution, specifies a generative model. This model is an explanation of 

how sensory data was generated by the world and our sensory systems, and is the schema 

the brain is tasked with ‘inverting’ to perceive. That is, we make a hypothesis to explain the 

observed data. The process of translating external stimuli to internal measurements, θt -> m, 

is referred to as neural encoding and has a rich computational history (i.e., efficient coding; 

Barlow, 1961), yet is unfortunately typically considered separately from decoding processes, 

such as Bayesian inference (but see Wei & Stocker, 2015 for an exception).

In a first step of inference, observers generate a degree of belief (Ramsey, 1926) about θ 
based on their measurements. This belief is characterized by likelihood functions, L(θt) that 

effectively take the same shape as p(m| θt), but in this case are functions of θt and not m 
(see Ma, 2019, for details). Next, an observer may incorporate the belief about different 

headings being generally present in the environment, p(θ), the prior distribution. In different 

contexts this distribution is typically considered to be Gaussian, uniform, or broad enough to 

be negligible. According to Bayes’ Rule (Eq. 1), by combining the likelihood and prior we 

can compute posterior distributions; the probability of θ given m.

p(θ ∣ m) ∝ L θt p(θ) (Eq. 1)

In a last step, the observer must make a decision or action. This requires a cost function (i.e., 

penalties and rewards for hits, misses, etc.) and a mapping from posterior distributions to a 

concrete action. In the general case where priors and likelihood distributions are Gaussian, 

the posterior will be so as well, and thus the mean, median, and mode of the posterior 

specify the same value, the same action. However, this is not always true (see Section 

3.5) and thus loss functions and action-selection must be carefully considered (Rahnev 

& Denison, 2018). What characterizes an observer as optimal is the use of the correct 

generative model and computations that minimize cost or maximize reward (see Daptardar et 

al., 2019 for a description of rational observers as those making optimal decisions within an 

incorrect generative model).

3.2. Bayes Optimal Cue Fusion

Borrowing from insights in computer vision (Knill & Richards, 1996) and within the 

Bayesian framework detailed above, Ernst & Banks (2002; among others), specified an ideal 

observer for multisensory cue combination. They assumed a flat prior, Gaussian likelihoods, 

and that measurements are conditionally independent across modalities (i.e., signals may 

co-vary, but their noise does not). Under these assumptions, it can be shown that the 

likelihood function of a combined (e.g., visuo-vestibular) condition, Lcomb(θ) is the product 

of the unisensory likelihoods, Lvis(θ) Lvest(θ), and the maximum-likelihood estimate (MLE) 

will be:

θ comb = wvisθvis + wvestθvest (Eq. 2)
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with θvis  and θvest  being the unisensory estimates, and wvis and wvest being weights that are 

proportional to inverse variances σvis2  and σvest2 :

W vis =

1
σvis2

1
σvis2 + 1

σvest2
(Eq. 3)

and analogously for wvest. The variance of the combined estimate is:

σcomb
2 =

σvis2 σvest2

σvis2 + σvest2 (Eq. 4)

Thus, if individuals are combining information across cues, their combined estimate will 

intuitively fall in between the unisensory estimates, weighted by the relative reliability of 

each cue. More importantly, given that a weighted average estimate across trials could also 

emanate from following a given estimate at times and the other estimate in the remaining of 

trials, the true hallmark of optimal cue combination is a reduction in uncertainty (predicted 

by Eq. 4). Humans have been shown to combine cues optimally or near optimally within 

senses (Hillis et al, 2004) and across visuo-tactile (Ernst & Banks, 2002), audio-visual 

(Alais & Burr, 2004), visuo-proprioceptive (van Beers et al., 1996), and visuo-vestibular 

(Fetsch et al., 2009; Prsa et al., 2012) pairings, among others.

3.3. Neural Instantiation of Bayes Optimal Cue Fusion

Armed with a principled account of multisensory behavior, the next step was to derive how 

such a computation could be instantiated algorithmically – what operations and set of rules 

may neurons follow in accomplishing the computation at hand?

In an influential theoretical contribution Ma and colleagues (2006) highlighted that neural 

populations had to represent the reliability associated with environmental cues in order to 

perform an inference of the type p(S|r), where S is the cue and r is a vector of neural 

responses for a given presentation. In analogy to the Bayesian observers described above, 

p(r|S) is proportional to p(S|r), and the former is something we can measure. In fact, we 

know that cortical neurons tend to show Poisson-like variability (Tolhurst et al. 1982), 

meaning that their average activity is monotonically related to their variance. Taking this 

property into account it can be shown that the posterior distribution p(S|r) approximates 

a Gaussian function, its mean closely corresponds to the peak of population activity, and 

importantly, its variance is implicitly encoded in the amplitude of the population response, 

or gain, g, such that Kg = 1/σ2, where K is a constant.

In turn, regarding cue combination and again with the example of visuo-vestibular 

integration, this probabilistic population code (PPC; Ma et al., 2006) makes the hypothesis 

that if unisensory populations have the same number of neurons, identical tuning functions, 

and independent Poisson-like variability, optimal conservation of information (e.g., Icomb 

= Ivis + Ivest, Clark & Yuille, 1990) equates to a simple sum of neural activities, rcomb = 
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rvis + rvest. Since the unisensory areas are characterized by Poisson-like variability, so will 

the multisensory, and 1
σcomb

2 = 1
σvis2 + 1

σvest2  which is equivalent to the uncertainty reduction 

outlined in Eq. 3. Many of the assumptions outlined (e.g., equal number of neurons) can 

be relaxed in more general formulations (e.g., wcomb rcomb = wvist rvis + wvest rvest), but 

the important take home is that by incorporating the known distribution of single-unit 

variability, PPCs are able to accomplish a multiplication required at the computational level, 

Lvis(θ) Lvest(θ), by simple summation – convergence of unisensory populations onto a 

multisensory one (see Ma et al., 2006 for mathematical details).

Angelaki, DeAngelis, and colleagues performed a series of experiments to detail the neural 

code underlying visuo-vestibular integration, and to specifically ascertain whether PPCs 

were indeed biologically implemented. First, Gu et al., 2008, demonstrated that non-human 

primates perform a discrimination task where they are required to indicate their direction 

of heading relative to straight-head in line with optimal cue combination, their sensitivity 

during visuo-vestibular conditions improving consistently with theoretical predictions (Ernst 

& Banks, 2002). Second, Fetsch et al., (2009, 2012) showed that these animals also took 

into account the relative uncertainty between cues in generating estimates when visual and 

vestibular cues were incongruent. In addition to the behavioral observations, these authors 

performed single-neuron recordings in MSTd, and observed two classes of neurons; those 

with congruent visual and vestibular tuning functions, and those with opposite preferences. 

Neurometric curves constructed from receiver operating characteristic (ROC) analysis of 

spiking activity of congruent cells had visuo-vestibular discrimination thresholds in line with 

predictions from optimal cue combination (Gu et al., 2008, see Chen et al., 2013 for a 

similar result in VIP). We return to the “opposite” cells below.

These behavioral and physiological studies set the stage for questioning whether optimal 

cue combination in fact occurs in the brain as predicted by PPCs. However, the headings 

probed in the early reports were fairly restricted and thus did not allow for sketching a 

neural combination rule – the set of weights A, such that Rcomb = Avis Rvis + Avest Rvest 

+ C, where R are neural responses and C is a constant. To remedy this situation, Morgan 

et al., 2008 recorded from MSTd while presenting non-human primates with the full gamut 

of visual, vestibular, and visuo-vestibular headings – including incongruent presentations. 

Results demonstrated that a linear combination of unisensory visual and vestibular responses 

was indeed well able to predict multisensory responses (i.e., the addition of non-linear 

components did not significantly improve fits). However, somewhat surprisingly weights 

Avis and Avest were smaller than ‘1’ (i.e., sub-additive as opposed to the additive), and 

perhaps most vexingly, varied with changes in cue reliability. This latter observation was at 

face value incongruent with PPC, as this theory in essence suggests that the weighting of 

likelihood functions by their reliability is accomplished at the unisensory level, where, for 

example, visual responses are modulated by coherence, and thus Poisson statistics imply that 

there is no need in updating neural weights, A, with changes in stimulus coherence.

Two subsequent reports proposed why, and putatively how, neural weights may change as 

a function of visual coherence, and hence re-instated PPCs as a putative neural mechanism 

of optimal cue integration. Fetsch and colleagues (2012) first showed that Poisson statistics 
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do not entirely account for how neural responses in MSTd change with visual motion 

coherence. Instead, with increasing coherence in visual stimuli there is both a multiplicative 

scaling of neural responses and a change in baseline firing. Taking these properties into 

account, the researchers derived the optimal neural weights for visuo-vestibular integration 

in MSTd and showed a correlation between mathematically-derived optimal and measured 

neural weights (see Hou et al., 2019, for a suggestion that incorporating neural correlations 

could have strengthened the agreement between PPC theory and empirical observations). 

Secondly, Ohshiro and colleagues (2011) suggested that both the sub-additivity in neural 

weights (i.e., A < 1) and rapid changes of these weights on a trial-by-trial basis could be 

accounted by divisive normalization acting at the stage of multisensory integration. Divisive 

normalization is a ubiquitous neural computation wherein the output of each neuron is 

divided by the summed activity of a “normalization pool” (Carandini & Heeger, 1994, 

2011). Thus, the strength of the normalization pool depends on unisensory firing rates, and 

hence, as firing rates co-vary with stimuli coherence, so will the neural weights. In fact, 

divisive normalization can give rise to a neural combination rule similar to that measured 

in Morgan et al., 2008 and Fetsch et al., 2012. Further, this property is likely critical for 

appropriate function of the nervous system as a whole in that it prevents neural saturation 

– a “ceiling effect” in firing rates – and hence potentially why neural weights in fact need 

to be sub-additive. Lastly, in a beautiful convergence of evidence, divisive normalization 

at a multisensory layer is not only able to account for population level properties in 

cortex (Ohshiro et al., 2011), but is equally able to account for properties of individual 

multisensory neurons in subcortex, such as their supra-additive responses during weak 

stimuli presentations (“inverse effectiveness”), or presentations within co-localized receptive 

fields (“spatial principle”; see Stein & Stanford, 2008, for a review summarizing early 

work detailing the properties of multisensory neurons in superior colliculus). The divisive 

normalization conjecture makes a strong and testable prediction: non-preferred sensory input 

from one modality should suppress the response to a preferred input in another modality. 

Recent recordings have confirmed the presence of this form of cross-modal suppression in 

MSTd and not in MT (Ohshiro et al., 2017).

Broadly, therefore, a multitude of visuo-vestibular phenomena (e.g., vection) and the 

basic peripheral properties of the visual and vestibular system implied that appropriate self-

motion perception requires the integration of visual and vestibular information. Normative 

approaches to modeling behavior then suggested how these signals ought to be integrated, 

and landmark theoretical studies bridged the gap between behavioral cue combination and 

neural integration. Physiological recordings in MSTd then largely confirmed predictions 

from theory, while iteratively adding caveats – e.g., MSTd responses are further from 

Poisson-like than initially suggested, neural weights may vary trial-to-trial with changes 

in stimuli reliability. These empirical observations lead to the conjecture of a network-

level operation that may account for the inconsistencies between theory and empirical 

observations. And in turn, this circuit property (i.e., divisive normalization) was not only 

able to account for population level responses in cortex, but also to incorporate traditional 

properties of single neurons in subcortex (see Fetsch et al., 2013 and Hou & Gu, 2020, for 

insightful reviews).
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3.4. Time and Time-Varying Reliabilities

An important and more recent extension to the study of optimal cue combination is the 

incorporation of time as a critical variable. Indeed, the human literature on multisensory 

integration appears to be divided between those employing estimation tasks and optimal cue 

combination as a theoretical framework on one side (e.g., Gu et al., 2008; Fetsch et al., 

2009), and those using reaction time tasks and race-models (Raab, 1962, Miller, 1982) or 

principles derived from early single-unit electrophysiology (Stein & Stanford, 2008) on the 

other hand. The former have so far ignored a critical dimension present in all perceptual and 

decisional processes, time, while the latter ignore the perceptual sensitivity benefits derived 

from multisensory integration and have not been able to connect behavior with neurons, nor 

can they establish whether multisensory inputs are combined optimally.

Drugowitsch et al. (2014) closed the gap between the study of multisensory precision 

and speed by deriving an extension to the traditional drift diffusion model (DDM). 

The conventional DDM (Ratcliff & Rouder, 1998) is based on particle dynamics 

accumulating evidence until hitting a decision bound. These models can account well 

for stereotypical distributions of reaction times, and changes in the speed of evidence 

accumulation (i.e., drift-rate) and/or the initial distance of particles to the decisional 

boundary can accommodate speed-accuracy trade-offs during decision making. Additionally, 

these diffusion models are known to optimally integrate evidence over time given that the 

reliability of the evidence is time-invariant (Bogacz et al., 2006). However, in their standard 

implementation DDMs are not optimal when the speed of evidence accumulation changes 

over time (within or across trials), nor are they designed to integrate disparate sources 

of information. In Drugowitsch and colleagues’ (2014) extension, a multisensory DDM’s 

drift-rate is determined by a weighted combination of unisensory drift-rates, each weighted 

in proportion to their relative and momentary (i.e., time-evolving) sensitivities.

This version of DDMs is optimal despite time-varying reliability of cues (see Drugowitsch 

et al., 2014 for mathematical detail). In applying this model, and within the context of 

a speeded version of the visuo-vestibular heading discrimination task, the multisensory 

DDM can account for apparent sub-optimal behavior as indexed by standard analyses not 

incorporating time as a factor. It also suggests a near optimal speed-accuracy trade-off in 

maximizing reward rate across trials (Drugowitsch et al., 2015). Further, in analogy, this 

framework specifying both accumulation of evidence across time and across the senses 

may be able to account not only for apparent sub-optimal behavior (Drugowitsch et al., 

2014), but also for recent reports of “supra-optimal” behavior, most common in the rodent 

literature (Raposo et al., 2012; Nikbakht et al., 2018, but see Shalom & Zaidel, 2018, 

for an alternative explanation). Finally, and perhaps most interestingly from a neural 

implementation standpoint, the extended DDM suggests that in natural self-motion visual 

and vestibular signals may each play an outweighed role during different time periods. 

As alluded to above, vestibular signals are most sensitive to acceleration while visual 

signals are tuned to velocity, and thus their weight during visuo-vestibular motion may vary 

accordingly. This conjecture would also suggest that there is no need to integrate vestibular 

acceleration into a velocity signal, a process that could in principle be costly in terms of 

signal-to-noise (Bogacz et al., 2006; Churchland et al., 2011; but see Laurens et al., 2017 for 
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evidence that vestibular acceleration seems to indeed be transformed into velocity estimates 

as it climbs the neuraxis).

In the most recent physiological recordings attempting to further delineate the neural 

underpinning of optimal visuo-vestibular integration, Hou and colleagues (2019) took on 

the challenge of determining if in fact cue combination is dependent on momentary evidence 

(e.g., visual velocity and vestibular acceleration), and whether such a code is compatible 

with PPC (Ma et al., 2006). These authors presented non-human primates with translations 

of a Gaussian velocity profile, naturally dissociating moments of maximal vestibular 

information (early and late in the motion profile, due to its encoding of acceleration) vs. 

visual information (peaking with maximal velocity). Single unit recordings were performed 

in the lateral intraparietal (LIP) cortex. This area receives anatomical input from MSTd and 

VIP (Boussaoud et al., 1990), two areas heavily implicated in the coding of self-motion 

(Gu et al., 2006, 2008; Chen et al., 2011, 2013). However, while a majority of neurons 

in LIP are in fact tuned to visual motion direction, this selectivity is very broad (>120°; 

Fanini & Assad, 2009). Thus, in keeping with the general thought of LIP as an area 

reflecting evidence accumulation (but see Huk et al., 2017; Katz et al., 2016; Zhou & 

Freedman, 2019 for recent controversy), recording in LIP (as opposed to earlier areas) 

likely allowed Hou et al., 2019, to examine a neural node that is a good candidate for one 

performing a computation akin to integration in the multisensory DDM (Drugowitsch et 

al., 2014). Further, recording from LIP implicitly supports the hypothesis that multisensory 

integration occurs at a decisional stage (see Bizley et al., 2016). Hou and colleagues, 

2019, demonstrated that LIP indeed harbors heading discrimination choice signals that 

peak in accordance with vestibular acceleration and visual speed. Moreover, the authors 

demonstrated that a network performing decisions by summing spikes across time and cues 

via an invariant linear PPC (Beck et al., 2008) was able to perform optimal multisensory 

decisions. Finally, a linear approximation of the optimal model showed responses similar 

to LIP, while decreasing its time-constant of integration did not. In other words, this report 

suggests that i) PPCs is the algorithm supporting optimal cue combination even for time-

varying reliabilities, ii) this algorithm is housed (at least partially) in LIP, and iii) a defining 

characteristic of LIP vs. its neighbors is its time constant of integration.

Novel path integration studies employing optic flow alone (Lakshminarasimhan et al., 2018, 

2020; Noel et al., 2020, 2021) or visuo-vestibular signals (Stavropoulos et al., 2020) during 

protracted timelines (~ 2–4 seconds) will be ideally suited to further examine the circuit 

motifs sustaining long vs. short integration time constants. Initial results within this domain 

suggest there is no “leak” in the integration of self-motion information into a position 

estimate, and instead errors in path integration may be due to initial mis-estimations of 

velocity (Lakshminarasimhan et al., 2018; Noel et al., 2020).

3.5 Causal Inference

In addition to the reliability of different sensory signals, the world around us and the objects 

and events in our surrounding change dynamically over time. That is, the approach of 

optimal cue combination (Ernst & Banks, 2002) outlined above is sometimes referred to 

as a “forced fusion” model, given that its main limitation is that it can only consider one 
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alternative; the signals must be combined. However, in the real world there are instances 

when multiple signals refer to the same source (e.g., auditory and visual signals conveying 

speech and mouthing of an interlocutor) and thus should be combined, and instances when 

these signals relate to difference sources (e.g., an unskillful ventriloquist) and should be 

separated. To appropriately perceive and act in the world, therefore, we must first use the 

samples we draw from our environment, observations, to build an internal model specifying 

the likely causal structure of the environment (“building” the generative model, Fig. 2). 

Then, we can use this deduced generative model in perceiving. This process is referred to as 

Bayesian Causal Inference (Fig. 2, Kording et al., 2007), and is again based on Bayes Rule;

p C ∣ xvis, xvest = p xvis, xvest ∣ C p(c)
p xvis, xvest

(Eq.5)

where xvis and xvest refer to sensory measurements, and C is categorical variable whose 

value depends on the state of the world. In an example where visual and vestibular signals 

either index the same (C=1) or separate causes (C=2),

p C = 1 ∣ xvis, xvest

= p xvis, xvest ∣ C = 1 p c = 1
p xvis, xvest ∣ C = 1 p(c = 1) + p xvis, xvest ∣ C = 2 (1 − p(c = 1))

(Eq.6).

Solving p(xvis, xvest|C = 1) and p(xvis, xvest|C = 2) allows establishing the likelihood 

of signals emanating from a single cause, p(C = 1|xvis, xvest), and these have closed 

form analytical solutions assuming measurement distributions and priors are Gaussian or 

uninformative (see Kording et al., 2007 for mathematical detail). In turn, the maximum-a-

posteriori estimate of the different signals θvis and θvest can be computed under the different 

hypotheses, C = 1 or C = 2 (“inverting” the generative model, Fig. 2). Now, exactly how 

these estimates and the inferred causal structure are used in generating actions depends on 

the loss function, and this one is largely dependent on the specific task. The three decision 

strategies that are routinely considered are; model averaging, probability matching, and 

model selection (e.g., Wozny et al., 2010; Cao et al, 2019). The former linearly combines 

estimates derived from integration and segregation, each weighted by the inferred posterior 

probability over the respective causal structure. On the other hand, probability matching 

and model selection commit to a certain world-view for a given trial. The final estimate 

is sampled from, say, θvis, c = 1 or θvis, c = 2, with a proportion that is either stochastic 

(probability matching) or fixed (model selection; Fig. 2)

Causal inference has been shown to account well for a number of empirical observations, 

from low-level audio-visual localization (Odegaard et al., 2015) to speech perception 

(Magnotti et al., 2017; Noel et al., 2018), and heading discrimination (Acerbi et al., 2018; 

Dokka et al., 2019), among many others (see French & DeAngelis, 2020, for a recent 

review, and below for further examples). However, the precise neural underpinning of this 

computation is less well established.

To tackle this gap in our knowledge, recent human neuroimaging studied based on 

functional Magnetic Resonance Imaging (Rohe & Noppeney, 2015, 2016) or time-resolved 
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M/EEG (Rohe et al., 2019; Aller & Noppeney, 2019; Cao et al., 2019) are starting to 

delineate the general principles putatively guiding the neural implementation of causal 

inference. By and large these reports all agree in describing causal inference as a 

hierarchical process, where early sensory areas (e.g., V1 or A1; Rohe & Noppeney, 2015) 

and early neural latencies (e.g., <100ms; Aller & Noppeney, 2019) encode their preferred 

sensory modality independently. Intermediate areas (e.g., posterior parietal cortex) and 

latencies (<250ms) show patterns most consistent with “forced-fusion” (Ernst & Banks, 

2002), and finally more anterior regions (anterior parietal cortex; Rohe & Noppeney, 2015) 

and latter neural latencies (>250ms) flexibly vary their response patterns in accordance with 

causal inference. An existing discrepancy is whether groups emphasize anterior aspects of 

the parietal cortex (Rohe & Noppeney, 2015) or the inferior frontal lobe (Cao et al., 2019) as 

the primary seat of causal inference.

Broadly, these neuroimaging studies are conceptually consistent with initial efforts to 

implement causal inference in biologically plausible neural networks. Early work in this 

area suggested that a decentralized and interconnected network (e.g., MSTd and VIP) 

receiving input from pools encoding unisensory stimuli (e.g., MT and PIVC, respectively) 

could perform optimal cue combination (Zhang et al., 2016). This type of redundant 

encoding, not only of stimuli but also across neural areas, is robust to local failure (vs. e.g., 

postulating LIP as the sole region of multisensory integration), and seemingly consistent 

with the observation that while disrupting one area may alter unisensory encoding, optimal 

cue combination is preserved (see Hou & Gu, 2020 for a review). More recently, this 

architecture has been updated to include known properties of areas computing visuo-

vestibular heading. That is, in addition to cells with overlapping visual and vestibular 

tuning functions (“congruent cells”), there is a large fraction of neurons showing opposite 

tuning functions (offset by ~180°; opposite cells; Gu et al., 2008). Opposite cells have been 

postulated to be involved in dissociating object motion during self-motion (e.g., Sasaki et 

al., 2017, 2019, see also Sasaki et al., 2020) and recent neural network models suggest they 

may more generally compute Bayes factors (Zhang et al., 2019a; ratio between a segregation 

and integration model of the world) and retaining access to unisensory likelihoods even after 

fusion (Zhang et al., 2019b, also see Hillis et al., 2002).

Ultimately, the precise detailing of the neural implementation of Bayesian causal inference 

will depend on invasive neurophysiology, and thus on the development of behavioral 

paradigms capable of indexing causal inference in animal models. In this line, Dokka and 

colleagues (2019) recently demonstrated that non-human primates perform causal inference 

in determining heading direction in the presence of independent object motion (i.e., object 

motion must be parsed from optic flow caused by self-location for appropriate heading 

perception). Mohl and colleagues (2019) similarly showed that both humans and rhesus 

monkeys make either a single or multiple saccade(s) to audio-visual targets depending 

on their disparity and in line with causal inference. Interestingly, however, while human 

behavior was best explained by model averaging, non-human primate behavior was most 

consistent with model selection. Whether this latter effect is a true difference between 

humans and non-human primates, or whether It is a corollary of the fact that the monkeys 

were trained on the specific task – and during training animals are rewarded for committing 

to a single (and correct) word-view – will be an interesting area for future study (see Noel 
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et al., 2021, for an example experimental ecosystem that should allow the study of causal 

inference without explicit training, and thus without putatively shaping task strategies).

Lastly, Fang and colleagues (2019) had non-human primates reach toward a target 

during different levels of visuo-proprioceptive disparities (i.e., real hand position vs. 

visual rendering of a dummy hand). Results suggested no bias during congruent visuo-

proprioceptive presentations, and a saturating level of reaching end-point error as the 

visuo-proprioceptive conflict grew. Moreover, these researchers recorded single units in 

the premotor cortex and neural activity in this area was similarly modulated by visuo-

proprioceptive conflict. Overall, therefore, Fang et al., 2019, showed behavior and neural 

activity consistent with causal inference. Further, these results imply that not only visuo-

vestibular self-motion perception may be rooted in causal inference – the example par 

excellence in the study of cue combination and probabilistic coding (Gu et al., 2006, 2008; 

Fetsch et al., 2009, 2012, 2013; Dokka et al., 2019; Ma et al., 2006; Hou et al., 2019) – 

but also aspects more personal to the self, such as body ownership, may be rooted in this 

computation. Below we further explore the “self” in “self-motion”.

4. Self-Location as an Initial Condition

As described so far, successful navigation via path integration depends on both the visual 

and vestibular sense, and on the integration of these to generate accurate and precise 

self-motion and heading estimates. In turn, it is thought that the continual integration 

of self-motion velocity estimates generates a dynamic sense of self-location (although 

this process is generally less studied, particularly within a computational framework; see 

Lakshminarasimhan et al., 2018; Noel et al., 2020a for recent exceptions). These processes 

are routinely considered to be central in the study of spatial navigation. However, there is 

another critical condition that is seldom considered within the spatial navigation literature; 

an initial condition. Our initial sense of self-location must be correct to enable successful 

navigation.

Note, where “I” am, and where my body is, are typically one and the same, but need not be, 

as demonstrated by neurological conditions such as heautoscopy, autoscopic hallucinations, 

and out-of-body experiences (see Blanke & Metzinger, 2009). The study of static (i.e., 

prior to movement) and egocentric self-location is typically considered within the broader 

study of bodily self-consciousness (Blanke, 2012) and in conjunction with our subjective 

experience of body ownership and having a first-person perspective on the environment 

(Blanke & Metzinger, 2009; the study of the location of the body is also widely considered 

in the rodent literature, but mostly from an allocentric encoding point of view, see Barry 

& Burgess 2014 for a review, and the dissociation between body and self-position is 

hard in rodents). Philosophically, it has been argued that these three together – a sense 

of being encapsulated within a body that belongs to ‘me’ (body ownership), that is 

located at a specific location within the external environment (self-location), and from 

where ‘I’ perceive (first-person perspective) – constitute the minimal requirement for a pre-

reflective phenomenal selfhood (Damasio, 2000; Legrand, 2006; Carruthers, 2008; Blanke & 

Metzinger, 2009).
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Empirically, this area of investigation was jumpstarted by a seminal contribution from 

Botvinick & Cohen (1998) who demonstrated that by providing touch on participants’ 

real hand while synchronously showing touch on a dummy hand, they could elicit hand 

ownership over a rubber hand (i.e., the “rubber-hand illusion”). Further, when subjects 

were asked to close their eyes and indicate the location of their real hand, they were 

systematically biased toward the rubber hand (i.e., “proprioceptive drift”). Over the 

following 20 years a number of similar illusions have been developed (e.g., faces, legs, 

tongue, and even tails, in rodents; Wada et al., 2016, 2019) and most importantly, the 

computational and neural correlates of the rubber-hand illusion are being established. 

Interestingly, recent models have casted the process of limb-ownership as a process of 

Bayesian causal inference (Samad et al., 2015) and have postulated that neural networks 

dedicated to encoding the space near our bodies (see below) act as a coupling prior between 

our body and what is near us (Noel et al., 2018a). As such, the computational principles 

(e.g., Bayesian observer with particular priors and performing causal inference) underlying 

inferences of the world around us and of ourselves within it may largely overlap. The 

recent neurophysiology recordings from Fang and colleagues (2019) equally support this 

speculation by demonstrating that reaches during visuo-proprioceptive conflicts were in 

line with causal inference and that firing patterns in the premotor cortex reflected this 

computation.

Now, empirical results (Rohde et al., 2011) have shown that the subjective sense of 

embodiment over a limb and the sense of where it is located in external space do not 

necessarily co-vary. And more importantly, while studies derived from the rubber-hand 

illusion are interesting in and of themselves, a change in the subjective location of one’s 

hand is still described from an unmoved egocentric location and perspective. That is, it 

does not involve a manipulation of our reference frame as a whole, a global translation 

in space. To tackle this more general question – and one that ought to impact the initial 

conditions during self-motion guided navigation – Blanke and colleagues, as well as Ehrsson 

and colleagues, devised a manipulation similar to the rubber hand illusion but applied to 

the whole body. These researchers administered touch either on the back (Lenggenhager 

et al., 2007) or chest (Ehrsson, 2007) of participants who equally viewed synchronous (or 

asynchronous, control) touch being applied far from their location (i.e., ~ 2 meters in front). 

In both studies participants reported subjective experiences somewhat akin to that of out-of-

body experiences (Blanke et al., 2004; De Ridder et al, 2007). Further, in Lenggenhager 

and colleagues’ (2007) protocol subjects were blindfolded and moved backward from their 

original location. When asked to return to their initial spatial location via path integration, 

they overshot their target, as if returning to a location in between their initial physical 

location and that of the avatar they felt body ownership over. That is, a visuo-tactile 

manipulation was able to induce a subjective sense of embodiment over a virtual avatar 

and to perturb the subjective sense of self-location.

To the best of our knowledge, single unit recordings during full-body illusions such as 

those described above have not been performed. This would be particularly interesting, 

not only for the full body (vs. body part) ownership piece, but more so for the corollary 

that these illusions have on what has been denominated the “spatial aspects” of bodily 

self-consciousness; self-location and first-person perspective (Blanke, 2012). In this vein, 
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there is a well-established neural circuit that largely overlaps with that for optic flow and 

self-motion processing that is widely considered to play a fundamental role in bodily self-

consciousness generally, and in its spatial aspects in particular. Fang et al., 2019, recorded 

from ventral premotor and found correlates of arm reaching errors. Approximately 20 years 

early, Graziano et al., 2000, recorded single unit activity from parietal area 5 during a 

rubber hand illusion and found that the activity of these neurons was influenced by the 

location of the rubber hand after synchronous but not asynchronous (control) visuo-tactile 

stroking. Both these reports concern body-part (i.e., hand) ownership and not self-location. 

Remarkably, however, these areas house neurons encoding for peripersonal space (PPS), and 

there seems to be a strong association between PPS and self-location.

Peripersonal space (PPS) is the space immediately adjacent to and surrounding one’s 

body (Serino, 2019). This space is encoded by a fronto-parietal network composed of 

multisensory neurons in ventral pre-motor cortex (areas F4 and F5; Fogassi et al., 1996), 

VIP (Colby et al., 1993), and 7b (Hyvärinen, 1981) among other areas (see Clery et al., 

2015a for a recent and extensive review). These neurons respond both to touch on the 

body, and to visual or auditory stimuli when these are presented near, but not far, from 

one’s body. That is, they map the body and the space near it (~30cm in depth, but this 

is body-part specific and highly heterogeneous). The receptive fields of these neurons are 

anchored to the body, in that visual responses are largely independent of gaze position 

(particularly true in pre-motor areas) and instead follow the movement of specific body parts 

or the body as a whole (Graziano et al., 1997). These areas receive projections from earlier 

motion processing regions such as MSTd, and as a consequence it is no surprise that they 

are velocity (Fogassi et al., 1996; Noel et al., 2018b) and motion direction (Duhamel et 

al., 1998) selective (particularly sensitive to looming stimuli). Similarly, both the premotor 

areas and VIP are activated by large field optic flow stimulation and by vestibular input 

(Chen et al., 2011; Bremmer et al., 2001, 2002). Finally, the pre-motor neurons in this 

network seem to preferentially respond during voluntary as opposed to passive head rotation 

(Graziano et al., 1997). As a whole, therefore, there is a spatial code that specifically maps 

the body and the space near it (and seems involved in body ownership; Graziano et al., 

2000; Fang et al., 2019), and this code is largely overlapping and interdependent with the 

areas highlighted earlier as encoding self-motion and heading perception (e.g., optic flow 

and vestibular translation responses, differentiating between active and passive movement).

Psychophysical methods have been developed to study PPS in humans, and many of 

these rely on indexing tactile detection facilitation when exteroceptive sensory signals 

(audition or vision) are presented near as opposed to far from the body (Serino et al., 

2015, 2018). In addition to replicating in humans many of the earlier findings from 

the monkey electrophysiology literature, these methods have advanced our understanding 

of PPS and self-location in two aspects. First, Noel et al., 2015, behaviorally mapped 

peri-trunk encoding in the front and backspace during a full-body illusion. As expected, 

participants reported feeling ownership over a virtual avatar placed in front of them, and 

more importantly, their PPS shrank in the back while it expanded in the front – as if 

translating forward to encode not the location of their physical body, but their subjective 

self-location. This finding mimics that of neural responses during the rubber-hand illusion 

(Graziano et al., 2000) and has been replicated while rendering subliminal both the stimuli 
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eliciting the full-body illusion and the stimuli used for mapping PPS (Salomon et al., 2017). 

Second, a plethora of results have highlighted the incredible plasticity of PPS (Noel et al., 

2020b), remapping due to personality traits and the perceived danger of our surrounding 

environment (e.g., Sambo & Iannetti, 2013), our social context (e.g., Teneggi et al., 2013; 

Noel et al., 2020c), and the state space of potential actions (see Bufacchi & Iannetti, 2018, 

Serino, 2019 for reviews). Given these observations, the general agreement is that PPS 

serves as an interface between self and environment, is involved in defensive behaviors (see 

Graziano & Cooke, 2006), and likely computes time-to-contact or impact prediction (Clery 

et al., 2015b).

The latest interpretation of PPS as involved in impact prediction may be colored by the 

fact that PPS is most sensitive to looming stimuli and often studied in static individuals. 

In a more active setting, however, we would attribute cause to the agent and not to the 

external environment, and thus we may re-phrase this interpretation as PPS predicting the 

future location of the body (and not the future location of objects in the environment). 

In fact, PPS remapping has been shown to anticipate arm movement (Brozzoli et al., 

2010; Patane et al., 2018) and its size to enlarge during full-body actions such as walking 

(Noel et al., 2014). This emphasis on PPS as encoding i) subjective self-location, and ii) 

anticipating future self-locations may be particularly fruitful in imbedding the study of the 

bodily self within the study of self-motion, and conversely, in furthering our understanding 

of path integration. That is, incoming sensory evidence is by definition egocentric, and the 

parietal cortex seems outfitted to process this information; from edge detection to motion 

detection to a multisensory estimate of self-motion. However, eventually this egocentric 

information must converge with the spatial codes of the hippocampal formation (e.g., grid 

and place cells). Thus, just as clear spatial codes exist in the limbic system (e.g., place, 

grid, border, and speed cells), it is useful to define and identify spatial codes that exist in 

the parietal cortex. Via PPS we have one - we have an egocentric encoding of self-location 

and future potential locations (see Moon et al., 2020, for recent evidence suggesting that 

bodily self-consciousness impacts the tuning of spatial codes in the hippocampal formation). 

Relatedly, reinforcement learning models have emphasized that codes that represent future 

relations may be particularly useful in navigating state spaces (Dayan, 1993; Gershman, 

2018) and within this framework some (Stachenfeld et al., 2017; Behrens et al., 2018) 

have reinterpreted place cells as encoding an animals best estimate of where it will be 

in the immediate future, one step ahead, as opposed to its current location. Arguably, 

this desideratum is accomplished in parietal cortex by the PPS network. While subjective 

self-location may be encoded by a population of place cells (Robinson et al., 2020), it may 

be encoded in individual PPS neurons.

A last aspect worth briefly mentioning related to the study of self-location is that of first-

person perspective. This can broadly be defined as one’s outlook on the environment, 

an outlook that is directed at external components of the environment (see Blanke & 

Metzinger, 2009, for more detail). Most often one navigates in their heading direction, and 

thus first-person perspective is thought to be an important component to self-location (but 

see autoscopic hallucinations vs. Out-of-body experiences as two neurological conditions 

defined by a differential relationship between self-location and first-person perspective; 

Blanke & Metzinger, 2009). Importantly, however, first-person perspective is not exclusively 
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defined by one’s visual viewpoint. To demonstrate this, Ionta and colleagues (2011) had 

participants experience a full-body illusion while lying in a supine position. Subjects 

viewed an avatar in virtual reality that provided conflicting information; while gravity on 

participant’s real body suggested a vector pointing downward, the visual image presented 

suggested that gravity was pointing upward for the seen body. During the synchronous 

visuo-tactile condition participants reported feeling ownership over the virtual avatar. Most 

interestingly, approximately half the subjects perceived themselves to be lying under the 

seen avatar, and thus during the illusion moved upward. The other half of subjects were 

more influenced by observed rather than felt gravity, and thus in seeing the back of an avatar 

in front of them, felt as if they were viewing this subject from above. During the illusory 

condition, they felt their self-location to be closer to the ground than in the asynchronous 

control condition (Ionta et al., 2011). Together, these data show that subjective self-location 

can generally be fooled by visuo-tactile stimulation, and further that experienced direction 

of first-person perspective depends on a balance between visual and vestibular cues, and this 

outlook may affect the perceived direction of self-motion.

5. Outlook and Concluding Remarks

Admittedly, our review on the state of knowledge regarding the neural underpinning and 

computation of self-motion is broad in scope. Importantly, we find this to be an imperative 

toward building true knowledge, and consider that the ability to leverage implementation, 

algorithmic, and computational (maybe even philosophical!) insights to reciprocally inform 

one another is a true asset. Maybe even the envy of other fields of study.

We have detailed the known cortical circuit involved in visual optic flow processing, as 

well as the subcortical and cortical networks involved in vestibular processing. Perhaps 

more importantly, we have highlighted that visuo-vestibular integration is a necessity for 

accurate and precise self-motion guided navigation. Gratifyingly, studying how these senses 

are combined for the purpose of self-motion estimation has allowed to more generally sketch 

the common principles underlying cue combination as a whole, and has hopefully informed 

the study of probabilistic coding.

Of course, however, for as much as we have learned, there is so much more we do not 

yet understand. As underlined in previous sections, the exact role of different elements 

in the neural circuitry are not yet clear. Similarly, there seem to be an inherent tension 

between information converging in certain areas for or prior to integration (e.g., LIP) 

versus more distributed schemes. The neural underpinning of causal inference, a general 

computation for attributing likely causes to observations – particularly relevant for path 

integration during independent object motion, but applicable to all sorts of problems – 

is not understood. Further, our understanding of basic elements such as how self-motion 

velocity estimates get accumulated over protracted periods of time, or how are initial 

conditions set (i.e., self-location), are only in their infancy and not always considered. In 

fact, a recent psychophysical study in humans has suggested that only optic flow with time-

varying velocity (i.e., evolving sequence of flow) is informative vis-à-vis heading direction 

(Burlingham & Heeger, 2020). This example highlights that we do not yet quite understand 

even what particular elements of visual signals guide self-motion. Thus, the challenges 
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moving forward are numerous and will be important in furthering our understanding of brain 

function. The next decades should see major advances, and we couldn’t be more excited to 

go along for the ride.
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BOX 1.

Neural Instantiation of Probabilistic Inference

The central tenet of the Bayesian framework is that the brain represents uncertainty 

about the environment in the form of probability distributions. In the main text we 

have emphasized probabilistic population codes (PPCs; Ma et al., 2006; Beck et al., 

2008; Hou et al., 2019) as a putative neural implementation of probabilistic inference, 

given that these have a strong history of accounting for cue combination, and in turn 

their application to this problem has supposed the bulk of their empirical support. 

Walker et al., 2020, have also recently shown strong support for this framework in 

demonstrating that trial-to-trial changes in the shape of likelihood functions as derived 

from a population of V1 neurons can account for fluctuations in behavior.

PPCs essentially suggest that the response of a neural population is proportional to 

parameters of probability distributions. Given this distributed format (i.e., a spatial code), 

this framework is thought to represent probabilities almost instantaneously, a great 

strength. However, this code has also been criticized, most commonly for only being 

able to represent a restrictive class of distributions and for its prohibitive computational 

cost in performing exact inference (e.g., Savin & Deneve, 2014). On the other end 

of the theoretical spectrum lie sampling models suggesting that the activity of each 

neuron within a population encodes a different random variable, and that neural activity 

represents samples drawn from a latent probability distribution (Hoyer & Hyvarinen, 

2003). This second framework, relying on a temporal code, is slower than PPCs, 

but said to allow for easier marginalization, and accounts for trial-to-trial variability 

in single-unit neural variability (Fiser et al., 2010). Strong empirical support for the 

sampling framework comes from spontaneous and evoked V1 activity of developing 

ferrets showing a progressive adaptation of internal models (i.e., spontaneous activity) 

to the statistic of natural stimuli with age (Berkes et al., 2011). Relatedly, Sohn et al., 

2019, recently argued that Bayesian computations depend on the shape (i.e., curvature) of 

cortical dynamics within a latent low dimensional space, thus also suggesting that neural 

activity defines a latent space where Bayesian computations occur.

More broadly, it must be noted that PPCs are a theory of statistical inference that occurs 

at the population level, while sampling puts the burden on single neurons. As such, 

these may not be mutually exclusive. In fact, Festa et al., 2020, recently suggested that 

sampling in V1 might account for poisson-like variability of single neurons. The outset of 

PPCs is exactly this form of variability, and thus we may conjecture that certain statistical 

inferences occur at the single neuron level and via sampling, while others occur at the 

population level via PPCs and poisson-like variability, the latter being inherited from the 

individual neurons and sampling.
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Figure 1. Visual and vestibular pathways leading to allocentric coding in parahippocampal 
formation.
Vestibular-only (VO) cells in the vestibular nuclei project via the anterior vestibulo-thalamic 

pathway to hippocampal formation, first reflecting an egocentric code – given the idiothetic 

nature of the vestibular system – and ending in an allocentric code (e.g., place fields). Via 

the posterior vestibulo-thalamic pathway, vestibular signals permeate much of the posterior 

parietal cortex. The exact nature and strength of the message-passing across much of this 

schematic network remain to be fully described, and this schematic coalesces evidence 

from a number of species; macaques, rodents, and fruit-flies. Thus, there are likely species-

specific variations (e.g., head-direction cells exist in retrospenial cortex (RSC) in rodents, 

Keshavarzi et al., 2021, yet this is unknown in macaque). Nonetheless, overall area 7a and 

RSC seem to be strong points of contact between egocentric coding in cortex and allocentric 

coding in the hippocampal formation (e.g., Whitlock et al., 2008; Keshavarzi et al., 2021).
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Figure 2. Causal Inference.
Our sensory periphery redundantly samples from the environment (empty circles, step 1). 

Based on these samples, we build an internal model of the potential causal structure of 

the world that may have given rise to the observed sensory data (Eq. 5, step 2). In the 

first hypothesis illustrated here (Hypothesis 1), the two senses index a common object in 

the environment (purple). As such, the samples that best reflect the state of affairs is the 

middle sample for sense 1, and the right-most for sense 2 (color-coded, darker = sample 

falling closer to the mean of the inferred distribution). Since signals from both sense 1 and 

2 are taken to come from the same source, we may integrate this information, together 

with a prior, according to maximum-likelihood estimation, Eq. 2, step 3). Conversely, we 

may hypothesize that the two senses reflect different objects in the external environment 

(a red one and a blue one). If this were the case, the central sample, both for sense 1 

and 2 (darkest red and blue respectively), is best aligned with the mean of the inferred 
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distribution (again, stronger hue indicating the sample closest to the mean of its distribution). 

Under this hypothesis, we would not integrate the different signals (step 3). Lastly, we may 

combine (or not) world views (i.e., hypotheses) in acting on the external world (step 4). Two 

potential solutions are illustrated here. In a model selection strategy (left), we would commit 

to the most likely hypothesis. In this example, we assume hypothesis 1 is most likely, and 

thus the final estimates correspond to the estimates from this model. In a model averaging 

strategy (right), observers may weigh estimates according to the relative certainty of the 

hypothesis. Again, hypothesis 1 is most likely in this example. Thus, the final estimates 

(empty triangles) will fall somewhere in between the estimates derived from hypothesis 1 

(purple) and hypothesis 2 (blue and red), but closer to the former.
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