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Agent-based modeling and g-computation can both be used to estimate impacts of intervening on complex
systems. We explored each modeling approach within an applied example: interventions to reduce posttraumatic
stress disorder (PTSD). We used data from a cohort of 2,282 adults representative of the adult population of
the New York City metropolitan area from 2002–2006, of whom 16.3% developed PTSD over their lifetimes.
We built 4 models: g-computation, an agent-based model (ABM) with no between-agent interactions, an ABM
with violent-interaction dynamics, and an ABM with neighborhood dynamics. Three interventions were tested:
1) reducing violent victimization by 37.2% (real-world reduction); 2) reducing violent victimization by100%; and
3) supplementing the income of 20% of lower-income participants.The g-computation model estimated population-
level PTSD risk reductions of 0.12% (95% confidence interval (CI):−0.16, 0.29), 0.28% (95% CI:−0.30, 0.70), and
1.55% (95% CI: 0.40, 2.12), respectively. The ABM with no interactions replicated the findings from g-computation.
Introduction of interaction dynamics modestly decreased estimated intervention effects (income-supplement risk
reduction dropped to 1.47%), whereas introduction of neighborhood dynamics modestly increased effectiveness
(income-supplement risk reduction increased to 1.58%). Compared with g-computation, agent-based modeling
permitted deeper exploration of complex systems dynamics at the cost of further assumptions.

agent-based modeling; g-computation; mathematical models; posttraumatic stress disorder; social
epidemiology; violence

Abbreviations: ABM, agent-based model; CI, confidence interval; PTSD, posttraumatic stress disorder; WTC, World Trade Center.

Estimating the impacts of interventions on social condi-
tions such as poverty and violent victimization poses mod-
eling challenges, because these conditions intersect through
complex social forces (1, 2). Mechanistically, social forces
include both “feedback loops” (e.g., when violent victimiza-
tion induced by poverty affects future employment which in
turn affects future poverty), social interaction (e.g., violent
victimization requires a potential perpetrator to interact with
a potential victim) (3), and dynamic spatial processes (e.g.,
social and structural forces in neighborhoods that create
economic opportunities and give rise to patterns of migration
and social interaction) that cannot be easily incorporated in
regression models.

Simulation-based methods such as agent-based models
(ABMs) incorporate these dynamics within analyses (4–6)
but require numerous assumptions for inferences (5, 7).

Recently, Hernán (8) proposed that feedback loops as
conceptualized in simulation models are equivalent to time-
varying confounding as conceptualized in causal inference.
It follows that g-computation (9–11), a model-based stan-
dardization method that accounts for time-varying con-
founding affected by prior exposure, can be used to
investigate the impacts of social interventions, allowing
intervention effects to incorporate causal feedback loops
without diverging from established principles of statistical
inference (8). Such g-computation models are mathemati-
cally equivalent to a microsimulation (12), a form of ABM
that does not include spatial movement or between-agent
interactions (13).

However, feedback loops are not the only complex system
process for which researchers turn to simulation methods.
Spatial movements, interactions between agents, and
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neighborhood dynamics are often components of social
epidemiologic theories (14) that may be needed to accu-
rately estimate intervention effects, yet typically cannot
be incorporated into causal models rooted in indepen-
dence assumptions. By contrast, ABMs can include these
mechanisms explicitly. For example, agent-based social
epidemiology models frequently include a simulated space
for agents to move through, and trigger events such as violent
victimization only when 2 agents come into proximity in
that simulated space (15, 16). However, any mechanisms
incorporated into a model must be explicitly specified, and
that specification typically cannot be verified empirically
(17). Accordingly, although an ABM can be specified to
be mathematically equivalent to g-computation, in practice,
ABMs frequently require stronger modeling assumptions
than g-computation (12). Table 1 summarizes the sources
that g-computation and ABMs can draw on, contrasted
with sources of data a projection based on a conventional
regression could draw on. (Note that as of 2021, we are not
aware of any g-computation model that incorporates group-
level variables aggregated from individual-level variables
during the simulation; nonetheless, it could be done.)

In sum, agent-based modeling can be used to estimate
potential intervention effects for outcomes that are dynamic,
social, and spatial; when constrained to exclude some of these
dynamics, agent-based modeling reduces to g-computation.
To explore the potential g-computation may hold as a com-
plement to agent-based modeling in research on complex
social systems, we compared results from a demonstration
g-computation analysis with those from a comparable ABM
exploring population prevention strategies for posttraumatic
stress disorder (PTSD). We then expanded that ABM to
incorporate violence-perpetration dynamics and neighbor-
hood effects.

PTSD is a common and debilitating condition that affects
approximately 3.5% of US adults in a given year (18).
Population prevention strategies for PTSD have the potential
to focus on distal or proximal risk factors (19, 20). Distal
risk factors such as poverty are strongly correlated with
PTSD incidence, both because poverty increases exposure to

traumatic events and because wealth can buffer individuals
from the consequences of experiencing a traumatic event
(21), and so intervening to prevent poverty may prevent
PTSD. Alternately, preventing exposure to traumatic events
themselves—for example, by directly preventing violent
victimization—may also prevent PTSD cases. Policy makers
considering violence-reduction or poverty-prevention pro-
grams can benefit from quantitative estimates of the impacts
of such programs on outcomes such as PTSD. To account
for complexities within social systems when estimating such
impacts, researchers use modeling strategies such as agent-
based modeling or g-computation.

Our work builds on prior work comparing effect trans-
portability using g-computation and ABM (13) by focusing
on the impact of modeling choices. We first modeled pre-
vention of interpersonal violence, defined as the intentional
use of physical force to harm another person, representing
the direct cause of some PTSD incidence. We next modeled
a reduction of poverty levels among study participants, rep-
resenting a modifiable social condition that might influence
PTSD risk indirectly (22). We explored these interventions
in a g-computation model as well as a series of ABMs with
and without accounting for agent interactions and neighbor-
hood effects. Our work thus serves not only as an exploration
of 2 potential PTSD-prevention interventions, but also as a
case study of the modeling and analytical issues that arise
when using methods such as g-computation and agent-based
modeling to answer a social epidemiologic question using
survey data with complex analytical techniques.

METHODS

Subjects and setting

We used data from a prospective, population-based cohort
study of the adult population of the New York metropolitan
area, including New York City itself and 14 surrounding
counties. The survey was conducted to assess the mental
health of the New York metropolitan area population 6
months following the World Trade Center (WTC) disaster on

Table 1. Sources of Data Leveraged to Model Impacts of Population Interventions

Modeling Strategy

Data Sources for Models
Conventional
Regression G-Computation

Agent-Based
Modeling

Individual and group-level observations from primary data set X X X

Potentially counterfactual time-varying variables simulated from
models fit to primary data set

X X

Potentially counterfactual group-level variables aggregated from
individual-level simulated variables

X X

Potentially counterfactual time-varying variables simulated from
models fit to other data sets

X

Potentially counterfactual time-varying variables simulated from
hypothesized mechanisms for interactions between units

X
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September 11, 2001 (23). Study recruitment, which began
with contact through an area-probability random-digit dial
procedure wherein 1 adult (age 18 or older) member of each
successfully contacted household was randomly selected for
the study, has been described in detail elsewhere (24). The
baseline cooperation rate was 56%.

Respondents were surveyed at baseline (about 6 months
after the WTC disaster), and 6, 18, and 33 months after
baseline, for 4 total waves. Subjects who were never rein-
terviewed after baseline were excluded from this analysis
(n = 470; 17%), leaving 2,282 participants who completed
at least 1 follow-up survey. Phone interviews were con-
ducted with computer assistance by trained interviewers in
one of 4 languages (English, Spanish, Mandarin, and Can-
tonese) using translated and back-translated questionnaires.
Informed consent was obtained verbally at each interview.
The New York Academy of Medicine institutional review
board approved the data collection protocol.

Measures

At baseline, study participants self-reported age, race,
and ethnicity (White, Asian, Black, Hispanic, or other), sex,
marital status (married or unmarried couple; divorced, sepa-
rated, or widowed; or never married), educational attainment
(graduate degree; college degree; some college; high school
graduate or General Educational Development equivalent;
or less than high school), household income ($: <50,000,
50,000–99,999, ≥100,000 or more), frequency of drinking
alcohol (number of past 30 days with any alcohol con-
sumption and average number of drinks per day on which
drinking occurred), both lifetime and past-year history of
traumatic events including violent victimization, and history
of stressful life events (death in the family, change in marital
status, problems at work, etc.) in the 12 months prior to
the WTC disaster. We considered the following traumatic
events to constitute violent victimization: being the target
of an attack or the threat of an attack with a weapon; being
the target of an attack with the intent to seriously injure or
kill without a weapon; forced sexual contact; being in any
other situation inciting fear of being seriously injured or
killed; and witnessing someone else being seriously injured
or killed. At each follow-up interview, participants reported
their exposure to traumatic and stressful life events since
the previous interview as well as any changes in household
income, marital status, and alcohol use.

At each wave including baseline, interviewers assessed
PTSD symptoms using a module adapted from the National
Women’s Study (25). Consistent with prior work and Diag-
nostic and Statistical Manual of Mental Disorders, Fourth
Edition, criteria, we considered the presence of at least 1
reexperiencing symptom, at least 3 avoidance symptoms,
and at least 2 arousal symptoms to constitute PTSD (23).
Because the WTC disaster occurred prior to baseline, we
focused on PTSD unrelated to the WTC disaster.

Missing data

As is typical in longitudinal surveys, we were missing data
both due to survey nonresponse and due to item nonresponse

among those who completed surveys. Survey nonresponse
ranged from approximately 15% to approximately 30% at
each wave. We accounted for survey nonresponse using
inverse probability of observation weights among subjects
who did complete the survey for that wave, using age, sex,
race/ethnicity, baseline marital status, education, baseline
income, baseline traumatic event exposure, baseline stressor
exposure, baseline drinking status, and lifetime history of
PTSD and violent victimization to construct the weights.

Within survey responses, item nonresponse was low. All
covariates for which data were missing were imputed using
k-nearest neighbors (KNN) imputation (26) implemented in
R, version 3.5.1 (R Foundation for Statistical Computing,
Vienna, Austria). The KNN algorithm used all other avail-
able covariates for imputation. We chose to bootstrap before
imputing in order to focus on accurate point estimates;
however, some empirical evidence suggests that deferring
resampling until after imputation results in very similar
estimates (27) at substantially lower computational costs.

Statistical analysis

We used 2 approaches to estimate population-level deter-
minants of PTSD. The first approach used parametric g-
computation to estimate the average causal effect of our
hypothetical interventions in our observed population. Para-
metric g-computation involves fitting a series of paramet-
ric models that predict not only the primary outcome of
interest but also any time-varying covariates affected by
prior exposures. Using these models, the observed baseline
data, and any hypothetical interventions to reset parameters,
the g-computation algorithm sequentially simulates obser-
vations at each time point for each time-varying variable.
The difference between estimates of the outcome of inter-
est under a hypothetical intervention and the outcome of
interest under the “natural course” intervention—wherein all
variables supplied to the algorithm take on their observed
values—constitutes the estimated causal effect of the hypo-
thetical intervention.

Our second approach was to use the same parametric mod-
els to build an ABM that could simulate the same counterfac-
tuals. ABM building consists of specifying a population of
agents (in this case, people), a set of attributes of those agents
(in this case, characteristics reflecting subject covariates),
and a set of rules through which agents interact, including
updating those attributes. When the set of rules that update
the attributes are parametric models fitted to a particular data
set, the ABM is mathematically equivalent to g-computation
(8). After developing an ABM that simulated each agent’s
updates using the parameters derived from the parametric
models included within our g-computation approach, we
extended that ABM to explore whether incorporating agent
interactions and neighborhood effects provided additional
insight into mechanisms shaping the population distribution
of violence and PTSD.

Model specification

Our analysis followed the conventional g-computation
algorithm (28), such that we modeled the distribution of
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each time-varying variable conditional on each other time-
varying variable. Our update order was violent victimization,
marital status, drinking status, traumatic events, stressful
events, and income—that is, for each wave, we first simu-
lated violent victimization status from time-fixed covariates
and past-wave time-varying covariates. We then used the
simulated value for violent victimization status when sim-
ulating marital status, and so on. The prevalence of PTSD at
the end of the final simulation wave thus represented the out-
come expected under a hypothetical intervention (as spec-
ified below). A diagram of this causal model is displayed
in Web Figure 1 (available at https://doi.org/10.1093/aje/
kwab219), and an overall walk-through of the g-computation
algorithm in conjunction with imputation is documented in
Web Appendix 1. We used different parametric models for
each wave to account for differing elapsed calendar time
between waves and different wording for traumatic life-
event and life-stressor questions at baseline, and used non-
parametric bootstrapping to compute confidence intervals
(since influence function–based confidence intervals are not
valid for g-computation (29)). As part of our model cali-
bration, we compared the difference between the observed
rate of PTSD in the original data and the (estimated) rate
of PTSD under the natural-course intervention. Following
prior work, we considered a 95% confidence interval for the
difference including zero to constitute evidence that model
calibration was adequate (10).

The baseline ABM used a similar approach—we simu-
lated 806,203 agents representing 10% of the adult popula-
tion of New York City (we chose 10% as a balance between
the computational cost of simulating the full population and
the between-simulation variability of a smaller proportion)
and then updated each agent’s violent victimization sta-
tus, marital status, drinking status, traumatic events history,
stressful events history, income, and PTSD status, in that
order. We added 2 extensions to the ABM to explicitly model
mechanisms of violence and space: First, we modified the
victimization code such that agents were embedded in a
400 × 625 grid roughly resembling New York City (so each
grid cell represents a square of ground roughly 50 m × 50 m)
and allowed victimization only when a potential perpetrator
was in proximity (within a 20-cell radius) of a potential
victim, directly modeling social interactions that could affect
violent victimization risk. To enable this mechanism, which
has been used in prior ABMs simulating violence in the
NYC population (15, 30, 31), each agent had a probability
of becoming a potential perpetrator determined as a function
of sex, age, income, education, and history of violence expo-
sure as drawn from the National Epidemiologic Survey on
Alcohol and Related Conditions (32). Second, again drawing
on prior New York City ABMs (15, 30, 31), we defined 59
neighborhood areas representing New York City community
districts and assigned each agent to a neighborhood. We then
assigned several characteristics to each community district,
taken from 2000 US Census data: 1) proportion unemployed,
2) proportion foreign-born, 3) proportion in managerial or
professional occupations, and 4) proportion female-headed
households. We refitted models for updating time-varying
covariates and PTSD to include these neighborhood factors.
In contrast to prior models, for simplicity, we did not allow

agents to move between neighborhoods. Violence between
agents was predicted by neighborhood characteristics based
on previous studies and allowed to arise as a result of
individual and neighborhood characteristics; neighborhood
associations with violence were weighted to contribute 10%
of the agents’ probabilities of victimization and perpetration.
No quantitative estimates were available to parameterize this
partitioning of risk, so we picked 10% to be consistent with
previous ABM studies of neighborhoods and violence (30).

Incorporating this spatial mechanism into the ABM
allowed us to explore the implications of neighborhood
crime clustering in the model. For example, because history
of violence exposure affects each agent’s risk for victim-
ization, the cumulative impact of a violence-prevention
intervention could result in a greater PTSD-reduction impact
in locations where more potential victims were present at
baseline. However, such mechanistic explorations, which
are typically a component of ABMs, come at the cost of
the strong assumption that we specified the neighborhood
contributions to risk correctly.

Validation, calibration, and the natural course

Uncertainty surrounding mechanistic relationships leads
to misspecification, and such uncertainty is often amplified
in social epidemiology models, either because the social
process is not fully understood or because important vari-
ables are mismeasured or missing. ABM building there-
fore typically includes validation and calibration steps (in
which selected model parameters are adjusted to ensure that
simulated macro-scale outcomes show face validity) as a
part of the modeling process (33). G-computation typically
includes a validation step wherein an analyst tests that the
natural-course outcome (i.e., the potential outcomes pre-
dicted by the model when the pattern of exposure matches
what was observed in reality) is comparable to the actually
observed outcome (10), but analysts do not typically adjust
parameters in response to this step. To avoid developing
a calibration step for g-computation while ensuring direct
comparison between our g-computation and our ABM, we
did not include a parameter adjustment step in any models.

However, for both modeling approaches, we performed
simulations in which each simulated participant’s income
group remained what it was in the observed data and each
participant was exposed to violence in a given wave if, in
the observed data, the participant was exposed to violence in
that wave. These simulations represent the “natural course,”
which provides a baseline against which interventions can
be compared. We compared natural-course estimates against
observed PTSD prevalence as a loose test for misspecifica-
tion (10).

Hypothetical interventions

Both ABM and g-computation approaches require explicit
definition regarding specification of hypothetical interven-
tions (34). Our interventions affected violence or income
directly and had no effects that were not mediated by the
variable intervened on (35), an unrealistic but simplifying
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assumption. All interventions were imposed at baseline and
remained in place through 4 waves of simulation, represent-
ing the years from 2002 through 2006.

We assessed 2 hypothetical violence-reduction interven-
tions: one that reduced violence exposure subsequent to
baseline by 37.2% and one that removed all violence in that
period. This initial reduction percentage matches the reduc-
tion in violent crime reported in New York City between
2001 and 2016 (36) and can be conceptualized as what
might have happened had the observed reduction between
the WTC disaster and the present occurred all at once in
2001. We chose the 100% reduction to represent an estimate
of the PTSD that would be eliminated in a hypothetical
world without violence (i.e., the numerator of the population
attributable fraction) (37).

In contrast to the more proximal violence intervention,
we also assessed a hypothetical intervention on income. We
assumed a random 20% of study participants whose income
was in the lowest group (less than $50,000) at baseline
moved to the second group ($50,000–$99,999) through-
out follow-up. We selected 20% as representing spreading
the roughly $2.1 billion/year increase in the New York
City Police Budget between 2001 and 2016 (38, 39) into
$20,000/year income supplements, which would support
approximately 100,000 households.

Software

The g-computation analyses were conducted in R for
Windows, version 3.5.1 (The R Project for Statistical Com-
puting, Vienna, Austria). Practical hurdles in g-computation
implementation are documented in Web Appendix 2. The
ABM was developed using Recursive Porous Agent Sim-
ulation Toolkit for Java (RepastJ, version 3.0; University
of Chicago, Chicago, Illinois) and Java Standard Edition
(JavaSE, version 1.8; Oracle, Redwood Shores, California).
Code for these analyses is available at GitHub (40).

RESULTS

Table 2 displays selected characteristics of the study
sample by PTSD history prior to imputation. Of the 2,282
respondents in the analytical sample, 82% (n = 1,865)
reported no history of PTSD at baseline. Respondents with
a history of PTSD had lower income and were more likely
to report a history of violent victimization, female sex,
and Hispanic ethnicity. At baseline, 9.8% of respondents
reported ever having been the victim of a violent event.
During the course of follow-up, approximately 5% of
subjects reported violent victimization for the first time.
Onset of violent victimization declined over the course of

Table 2. Selected Characteristics at Baseline for the Participants in the World Trade Center Study (n = 2,282), New York, New York, 2002–2006

Total (n = 2,282) No History of PTSD (n = 1,865) History of PTSD (n = 417)

Characteristic
No. % No. % No. %

Sex

Male 1,034 45.3 874 46.9 160 38.4

Female 1,248 54.7 991 53.1 257 61.6

Race

White 1,363 59.7 1,133 61.7 230 55.7

Black 317 13.9 257 14.0 60 14.5

Hispanic 364 16.0 276 15.0 88 21.3

Other 204 9.1 169 9.2 35 8.5

Age, yearsa 44.7 (16.2) 45.3 (16.6) 42.4 (13.8)

Income, $

<50,000 924 48.5 726 47.1 198 54.4

50,000—99,999 569 29.9 462 30.0 107 29.4

≥100,000 412 21.6 353 22.9 59 16.2

Alcohol consumption

Abstinent 1139 51.3 938 51.7 201 49.6

Light Drinker 834 37.6 689 38.0 145 35.8

Heavy Drinker 247 11.1 188 10.4 59 14.6

Any lifetime violent victimization 118 10.5 81 9.7 37 12.8

Abbreviation: PTSD, posttraumatic stress disorder.
a Values are expressed as mean (standard deviation).
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Table 3. Victimization and New-Onset of Posttraumatic Stress Disorder Unrelated to the World Trade Center Disaster Since Baseline at Each
Wave for Participants With No Prior History of Posttraumatic Stress Disorder in the World Trade Center Study Using Imputed Data

Wave 1 (n = 2,282) Wave 2 (n = 1,939) Wave 3 (n = 1,832) Wave 4 (n = 1,610)

Outcome
No. % No. % No. % No. %

Violent victimizationa 224 9.8 70 3.6 53 2.9 45 2.8

New onset of PTSD 57 2.5 88 4.5 120 6.6 120 7.5

New onset of PTSD (cumulative) 57 2.5 119 6.1 217 11.8 263 16.3

Abbreviation: PTSD, posttraumatic stress disorder
a Wave 1 figures for violent victimization represent reported lifetime history of victimization. Based on data from New York, New York, 2002.

the study even as time between waves increased (Table 3).
New onset of PTSD declined as well; a total of 16% of
the cohort (n = 263) reported new onset of PTSD during at
least 1 wave of follow-up among those who had reported no
history of PTSD at baseline.

Under the “natural course” intervention, the g-computation
analysis estimated a prevalence of new onset of non-WTC
PTSD slightly lower than the observed prevalence (15.1%,
95% confidence interval (CI): 14.4, 18.5, compared with
16.3% in observed data). In this analysis, all 3 hypo-

thetical interventions reduced PTSD incidence (Table 4).
The violence-reduction interventions were somewhat less
effective than the income intervention. Specifically, in
g-computation models, the 37.2% reduction in violence
reduced the estimated PTSD incidence rate by 0.12 percent-
age points (95% CI: –0.16, 0.29), preventing approximately
600 new PTSD cases in the simulated population of 500,000
adults. The 100% reduction in violence reduced estimated
PTSD incidence by 0.28 percentage points (95% CI: –0.30,
0.70), or approximately 1,400 new PTSD cases. By contrast,

Table 4. Risk of New Onset Posttraumatic Stress Disorder Under 3 Hypothetical Scenarios as Estimated Using G-Computation and Agent-
Based Modelinga

Model and Simulation Scenario Absolute Risk, % 95% CI RD, % 95% CI

G-computation

Natural course 15.1 14.4, 18.5

Reduce violence 37.2% 15.0 14.4, 18.4 −0.12 −0.29, 0.16

Reduce violence 100% 14.9 14.2, 18.3 −0.28 −0.70, 0.30

Increase income for the lowest quintile 13.6 13.1, 17.3 −1.55 −2.12, −0.40

Agent-based model

Natural course 14.9 14.4, 15.5

Reduce violence 37.2% 14.8 14.3, 15.5 −0.07 −0.10, 0.05

Reduce violence 100% 14.7 14.1, 15.3 −0.26 −0.34, −0.15

Increase income for the lowest quintile 13.4 12.9, 14.1 −1.53 −1.65, −1.41

Agent-based model with perpetration

Natural course 14.9 14.3, 15.5

Reduce violence 37.2% 14.9 14.2, 15.4 0.00 −0.09, 0.10

Reduce violence 100% 14.6 14.1, 15.3 −0.25 −0.32, −0.09

Increase income for the lowest quintile 13.4 12.9, 14.1 −1.47 −1.54, −1.31

Agent-based model with perpetration and
neighborhood effects

Natural course 15.0 14.5, 15.8

Reduce violence 37.2% 15.0 14.5, 15.8 0.00 −0.11, 0.09

Reduce violence 100% 14.7 14.1, 15.3 −0.36 −0.47, −0.26

Increase income for the lowest quintile 13.5 12.8, 14.0 −1.58 −1.75, −1.51

Abbreviations: CI, confidence interval; RD, risk difference.
a Simulated population of 500,000 adults representative of the New York City metropolitan area, 2002–2006.
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Figure 1. Prevalence of posttraumatic stress disorder (PTSD) specified interventions, stratified by simulation type. A) The natural course (no
intervention); B) 37% violence reduction; C) 100% violence reduction; D) increasing income for those in the lowest income quintile. ABM, agent-
based model.

increasing income for 20% of those in the lowest income
bracket prevented non-WTC PTSD in 1.6% of the simulated
cohort (95% CI: 0.40, 2.12), reducing estimated incident
PTSD cases by approximately 6,000. Coefficients for the all
models are shown in Web Tables 1–7.

As expected, results from the basic ABM replicated the
g-computation algorithm results nearly exactly (Figure 1),
with the partial reduction in violence decreasing estimated
PTSD prevalence by 0.07 percentage points (95% CI: −0.05,
0.10) and the complete removal of violence decreasing esti-
mated prevalence by 0.26 percentage points (95% CI: 0.15,
0.34). Adding a violence-perpetration mechanism to the
ABM only modestly affected the estimated average impact
of the interventions (Table 4), whereas adding the neighbor-
hood mechanism made the impact of complete violence-
reduction somewhat more substantial (risk reduction with
the neighborhood mechanism was 0.36 percentage points
(95% CI: 0.26, 0.47) compared with 0.25 percentage points
(95% CI: 0.09, 0.32) without it), likely because the neigh-
borhood mechanism enabled the model to account for clus-
tering of perpetrators and victims, effectively targeting the
violence-reduction intervention to the population most likely
to develop PTSD and allowing the impact of violence reduc-
tion to be enhanced over the course of the simulation.

The impact of the violence-perpetration mechanism on the
magnitude of the income intervention effect was negligi-
ble, but the violence-perpetration and mechanism neigh-
borhood effects resulted in a slightly greater effect size
(1.58-percentage-point change, compared with 1.53), again
potentially due to the intervention disproportionately pro-
tecting agents clustered near potential violence perpetrators.

DISCUSSION

We used g-computation and agent-based modeling with
population-based survey data to explore the reductions in
the risk of PTSD that might arise as a result of several
potential interventions: 2 to reduce violence and one to
increase income. Our results indicate that all interventions
could modestly decrease incident PTSD, although the
impact of the intervention increasing income was larger.
Results from the g-computation model and the ABM
without dynamic mechanisms were comparable. Adding a
violence-perpetration mechanism and neighborhood effects
to the ABM led to modest increases in the effectiveness
of the simulated full violence-reduction and income-
supplementation interventions.
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The magnitude of the violence intervention’s effect was
modest in comparison with that of the income increase.
Prior work suggests that interventions that affect multiple
pathways toward an outcome, such as those that are earlier
in the life course or broader in scope, may be more impactful
than targeted interventions (31), in part because causes such
as socioeconomic status affect multiple risk factors that may
interact to affect health (21). Alternatively, it may be that
most of the PTSD in this population occurred due to nonvi-
olent traumatic events that are related to low incomes. While
we cannot verify this speculation because the survey items
did not distinguish violence-related from violence-unrelated
PTSD, prior research has shown that violence-related events
are common and associated with a higher increased risk of
PTSD than nonviolent events (41–43). This is consistent
with our finding that intervening on income, a cause that
has both violent and nonviolent pathways and mechanisms
to influence PTSD through the life course, achieved a greater
PTSD reduction benefit than intervening on violence, a more
proximal cause of PTSD in our model.

Adding a violence-perpetration mechanism alone did not
affect intervention effectiveness but adding both a violence-
perpetration and a neighborhood-effect mechanism to the
ABM modestly increased the effectiveness of both violence-
reduction and income-supplementation interventions. These
changes in estimated effect are consistent with the notion
that accounting for spillover effects may be important for
social exposures such as violent victimization (44). In par-
ticular, the perpetration mechanism alone may not have
affected PTSD incidence because prevented violence was
not clustered in areas where agents were already at ele-
vated risk, whereas including perpetration and neighborhood
together did cluster reductions. While we do not have a
gold standard to validate against and cannot conclude that
the ABM results match what would be found in the real
world, the potential for the ABM to both replicate the g-
computation finding and shed light on mechanisms through
which interventions operate is intriguing.

More broadly, our investigation highlights that there can
be substantial overlap between g-computation and ABM
computational approaches. Both use statistical models to
simulate hypothetical interventions. Some features typically
considered part of the complex systems domain, including
changes to group-level variables emerging from individual-
level changes, can be modeled statistically and thus could
be incorporated into g-computation analyses. A formal ap-
proach to exploring such models in a g-computation frame-
work to explore emergent phenomena while incorporating
statistical robustness would be a promising approach to
address social epidemiology questions.

Our results should also be considered in light of several
limitations. First, as discussed throughout, both the ABM
and g-computation approaches are simplified models of
complex social processes, and some amount of model mis-
specification is nearly certain in this context. This limitation
is intrinsic to quantitative exploration of complex processes
and not limited to our methodological approach, although
both g-computation and ABMs may be more vulnerable to
misspecification error than doubly-robust statistical mod-
els (45). Second, although not all study participants were

directly exposed to the World Trade Center disaster, and our
outcome of interest was PTSD that was not related to the
WTC, the cohort was recruited in the greater New York City
area in the early 2000s and may not represent the experience
of people in other time and place settings. Third, the method-
ological concerns addressed by the approaches explored
here—time-varying confounding and spatial clustering of
risk—likely do not represent the greatest quantitative risks
to validity for this study. For example, if people affected by
WTC-related PTSD were less likely to agree to participate in
the study, there would be residual collider bias. Fourth, our
conclusions are limited by potential violations of the con-
sistency assumption—for example, intervening to increase
income to a moderate level may have different effects than
having had a sustained moderate income. This violation of
the counterfactual consistency assumption (34) would apply
to both the g-computation and ABM results. The target
trial framework, which focuses researcher attention on coun-
terfactual consistency, could improve ABMs (46). Fifth,
the use of multiple imputation for missing item responses
while resampling to implement g-computation remains an
area of active research. If these methods together fail to
appropriately capture statistical uncertainty, our confidence
intervals may be optimistic. Sixth, the 1.2% gap between our
simulated PTSD prevalence and the observed PTSD preva-
lence, although present in both the g-computation model
and the ABM, suggests that there are real-world aspects
to the development of PTSD that are not incorporated in
our models. Finally, our choice to forego model calibra-
tion implicitly assumes that differences between prevalence
observed under the natural-course simulation and the truly
observed prevalence of PTSD are negligible.

In conclusion, when specified equivalently, effects esti-
mated using ABMs and g-computation were nearly iden-
tical. Substantively, we found that both violence prevention
and income supplementation could prevent PTSD, with
income supplementation showing greater effectiveness,
albeit under sizeable assumptions. Methodologically, our
results empirically demonstrate the mathematical equiv-
alence of g-computation with a special case of agent-
based modeling, while also showing how, by incorporating
assumptions, ABMs may also shed light into complex
effects of specific mechanisms. Ultimately, epidemiologists
seeking the greater flexibility of the ABM approach must
decide if this flexibility is worth the uncertainty of the more
extensive assumptions it carries.
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