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Abstract

Genetic influences on cortical thickness (CT) and surface area (SA) are known to vary across the life span. Little is known
about the extent to which genetic factors influence CT and SA in infancy and toddlerhood. We performed the first
longitudinal assessment of genetic influences on variation in CT and SA in 501 twins who were aged 0–2 years. We
observed substantial additive genetic influences on both average CT (0.48 in neonates, 0.37 in 1-year-olds, and 0.44 in
2-year-olds) and total SA (0.59 in neonates, 0.74 in 1-year-olds, and 0.73 in 2-year-olds). In addition, we found strong
heritability of the change in average CT (0.49) from neonates to 1-year-olds, but not from 1- to 2–year-olds. Moreover, we
found strong genetic correlations for average CT (rG = 0.92) between 1- and 2-year-olds and strong genetic correlations for
total SA across all timepoints (rG = 0.96 between neonates and 1-year-olds, rG = 1 between 1- and 2-year-olds). In addition,
we found CT and SA are strongly genetic correlated at birth, but weaken over time. Overall, results suggest a dynamic
genetic relationship between CT and SA during first 2 years of life and provide novel insights into how genetic influences
shape the cortical structure during early brain development.
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Introduction

Recent neuroimaging studies demonstrate that environmental
and genetic factors both play an important role in explaining
the individual variation in early childhood cortical structure. Sex
and birth weight are central to individual differences in neonatal
brain volumes and surface area (SA), while variation in neonatal
cortical thickness (CT) is largely explained by environmental
factors, such as paternal education and maternal ethnicity early
in life (Knickmeyer et al. 2017; Jha et al. 2019). Twin studies reveal

high heritability of regional gray and white matter (WM) vol-
umes (Gilmore et al. 2010) and large genetic influences on total
SA at 2 weeks of age (Jha et al. 2018). To date, our understand-
ing of the genetics of brain structure in neonates is based on
cross-sectional designs. An important next step is to establish
how genetic and environmental factors drive the developmental
trajectories of CT and SA in the first years of life, a period of
rapid growth in brain structure and cognitive abilities (Gilmore
et al. 2018). Given compelling evidence that complex psychi-
atric diseases, such as autism and schizophrenia, are the result
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of altered neurodevelopmental trajectories that commence in
prenatal and early postnatal life, our limited understanding of
the genetics of early childhood brain development represents a
critical knowledge gap (Meyer et al. 2011).

Previous studies have shown CT and SA in adults to be
genetically, evolutionarily, and phenotypically distinct (Grasby
et al. 2020). However, recent studies in neonates (Jha et al. 2018)
and older children (Schmitt et al. 2019) find that CT and SA share
significant genetic correlations, suggesting that this relationship
may change with age. CT is thought to be driven by the number
of neurons arranged in vertical proliferative columns, while SA is
determined by the number of columns present in the developing
cortex (Rakic 1995; Rakic et al. 2009). Global and regional trajecto-
ries of CT and SA in the first 2 years of life show distinct patterns
of development (Li et al. 2013, 2015). Specifically, from birth to
2 years of age, CT increases 36% (reaching 97% of adult values),
while SA increases an extraordinary 114% (reaching 68% of adult
values; Lyall et al. 2015). Dramatic growth in the first 2 years is
followed by gradual changes during childhood and adolescence
(Wierenga et al. 2014; Remer et al. 2017; Wang et al. 2019; Gilmore
et al. 2020). This is echoed by a recent longitudinal magnetic
resonance imaging (MRI) study from infancy through school-
age, reporting that the vast majority (80%) of individual variation
in cortical structure measured in childhood is explained by
the same morphological features measured at the end of the
first year of life (Gilmore et al. 2020). Understanding genetic
influences on early postnatal brain structure during the first
years of life has the potential to substantially increase our
understanding of the mechanisms and developmental cascades
that give rise to complex neuropsychiatric disorders that emerge
later in ontogeny.

Thus, the objective of this study was to investigate the
genetic underpinnings of CT and SA growth during early
postnatal development via longitudinal quantitative genetic
analysis. Based on prior studies of CT and SA in children,
adolescents, and adults, we expected to find significant genetic
influences on both CT and SA growth during this time period.

Materials and Methods
Subjects

Our sample consists of 1597 high-quality MRI scans from
928 children, including 782 neonates, 462 1-year-olds, and
353 2-year-olds drawn, from the Early Brain Development
Study (Knickmeyer et al. 2008, 2017; Gilmore et al. 2010). The
study was approved by the Institutional Review Boards of the
University of North Carolina (UNC) at the Chapel Hill and
Duke University Medical Center (DUMC). Pregnant mothers
were recruited from prenatal diagnostic clinics at the UNC
Hospitals and DUMC. Women with major medical illnesses
or abnormal fetal ultrasounds were excluded at enrollment.
Exclusion criteria for this analysis included any abnormal MRI
or major medical illness in the child. Maternal reports and
medical records were used to determine demographic, obstetric,
and socioeconomic variables (Jha et al. 2018). A total of 501
twins and singletons (n = 425 with neonatal scans, n = 279 with
1-year scans, and n = 197 with 2-year scans) were included
in our analysis, and the distribution of usable MRI data and
detailed demographic information are available in Table 1 and
Supplementary Figure S1. We have previously reported results
from the cross-sectional quantitative genetic analysis of CT and
SA in neonates in this sample (Jha et al. 2018, 2019).

Image Acquisition

MRIs were obtained using either a Siemens Allegra head-
only 3T scanner or a Siemens TIM Trio 3T scanner (Siemens
Medical System Inc.) during unsedated natural sleep. Subjects
were fitted with earplugs and were secured into a vacuum-
fixed immobilization device prior to the scan. For neonates,
structural T2-weighted scans were used to generate CT and
SA measures. Images were acquired on the Allegra using a
turbo-spin echo sequence (TSE, time repetition [TR] = 6200 ms,
TE1 = 20 ms, TE2 = 119 ms, flip angle = 150◦, spatial resolu-
tion = 1.25 × 1.25 × 1.95 mm, N = 282, sequence name = Type
1). For neonates who were deemed unlikely to sleep through
the scan session, a “fast” turbo-spin echo sequence was
collected on the Allegra using a decreased TR, a smaller image
matrix, and fewer slices (TSE, TR range = 5270–5690 ms, TE1
range = 20–21 ms, TE2 range = 119–124 ms, flip angle = 150◦,
spatial resolution = 1.25 × 1.25 × 1.95 mm, N = 378, sequence
name = Type 2). For the Trio, subjects were initially scanned
using a TSE protocol (TR = 6200 ms, TE1 = 17, TE2 = 116 ms, flip
angle = 150◦, spatial resolution = 1.25 × 1.25 × 1.95 mm, N = 12,
sequence name = Type 3), while the rest were scanned using a
3-D T2 SPACE protocol (TR = 3200 ms, TE = 406, flip angle = 120◦,
spatial resolution = 1 × 1 × 1 mm, N = 110, sequence name = Type
4). Because scan sequence parameters were deemed to have a
significant influence on cortical measures, T2 sequence (Type
1—Type 4) was used as a covariate for neonate CT and SA,
where Type 1—Type 4 include 140, 206, 12, and 67 subjects,
respectively. For 1- and 2-year-olds, structural T1-weighted
scans were used to generate CT and SA measures. The T1-
weighted images were acquired using a 3D magnetization-
prepared rapid gradient echo sequence on both the Allegra
(MP-RAGE TR = 1880–1900 ms, time echo [TE] = 4.38 ms, flip
angle = 7◦, spatial resolution = 1 × 1 × 1 mm, N = 387 at age 1 and
281 at age 2) and Trio (MP-RAGE TR = 1860–1900 ms, TE = 3.74 ms,
flip angle = 7◦, spatial resolution = 1 × 1 × 1 mm, N = 75 at age 1
and 72 at age 2). Scanner type was used as a covariate for all CT
and SA analyses in 1- and 2-year-olds.

All neonatal T2 images and 1- and 2-year T1 images were
evaluated for subject motion during the scan session. Two
independent researchers inspected and rated the motion of
each image using a four-point scale, where 1 indicated little
to no visible motion and 4 indicated severe motion artifacts.
Images (35 at neonate, 5 at 1 year and 2 at 2 years) that were
deemed unusable due to excessive levels of motion were not
analyzed.

Image Analysis

To generate CT and SA measures, all MRIs were processed by
an infant-specific computational pipeline previously detailed
(Li et al. 2012, 2014). Briefly, it contains the following major
steps: 1) removal of skull, nonbrain tissue, cerebellum, and brain
stem; 2) correction of intensity inhomogeneity; 3) segmentation
of brain tissue into WM, gray matter (GM), and cerebrospinal
fluid (CSF) using an infant-dedicated, patch-driven, coupled
level-set method (Wang et al. 2014); and 4) masking of non-
cortical structures and separation of each brain into left and
right hemispheres. For each hemisphere of each image, the
inner and outer cortical surfaces were reconstructed using a
topology-preserving deformable surface method (Li et al. 2012).
This method involved a topological correction of WM volume to
ensure spherical topology, a tessellation of the corrected WM to

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab213#supplementary-data


Genetic Influences on the Infant to 2-Year Cortex Xia et al. 369

Table 1 Demographic characteristics of the sample with MRI data

Neonates (n = 425) 1-year-olds (n = 279) 2-year-olds (n = 197) Adjusted P value#

Birth weight (g) 2405 (530) 2387 (533) 2323 (496) 0.782 (1.67)
Gestational age at birth (days) 249.7 (16.7) 249.1 (17.0) 248.1 (16.6) 0.718 (1.77)
Postnatal age at MRI (days) 37.5 (17.4) 405.5 (26.7) 774.0 (30.7) >0.999 (−0.50)
5-min Apgar (scales) 8.6 (0.7) 8.5 (0.8) 8.5 (0.8) 0.171 (2.52)
Maternal education (years) 15.0 (3.4) 14.7 (3.4) 14.1 (3.5) 0.210 (2.39)
Paternal education (years) 14.8 (3.5) 14.2 (3.5) 13.6 (3.5) 0.000∗∗ (4.96)
Maternal age (years) 30.6 (5.6) 29.6 (6.1) 29.7 (6.4) 0.015∗ (3.34)
Paternal age (years) 33.0 (6.6) 32.3 (7.1) 32.3 (7.2) 0.563 (1.91)
MZ 153 (36%) 115 (41%) 91 (46%) 0.030∗ (1.85)
DZ 272 (64%) 164 (59%) 106 (54%)
Complete twins

MZM 68 (16%) 38 (14%) 34 (17%)
MZF 58 (14%) 50 (18%) 38 (19%)
DZM 110 (26%) 66 (24%) 50 (25%)
DZF 74 (17%) 48 (17%) 32 (16%)
DOS 50 (12%) 18 (6%) 4 (2%)

NICU stay > 24 h 0.782 (1.39)
No 146 (34%) 107 (38%) 79 (40%)
Yes 279 (66%) 172 (62%) 118 (60%)

Male 233 (55%) 146 (52%) 103 (52%) >0.999 (1.14)
Female 192 (45%) 133 (48%) 94 (48%)
Delivery method >0.999 (0.87)

Vaginal 115 (27%) 83 (30%) 58 (29%)
C-section 310 (73%) 196 (70%) 139 (71%)

Household income 0.242 (n/a)
High 122 (29%) 68 (24%) 46 (23%)
Mid 116 (27%) 69 (25%) 46 (23%)
Low 162 (38%) 129 (46%) 100 (51%)
Missing 25 (6%) 13 (5%) 5 (3%)

Maternal ethnicity 0.206 (n/a)
Caucasian 320 (75%) 197 (71%) 125 (63%)
African American 95 (22%) 76 (27%) 67 (34%)
Asian 7 (2%) 3 (1%) 3 (2%)
Native American 3 (1%) 3 (1%) 2 (1%)

Paternal ethnicity 0.001 (n/a)
Caucasian 310 (73%) 178 (64%) 118 (60%)
African American 97 (23%) 89 (32%) 73 (37%)
Asian 15 (3.53%) 10 (4%) 5 (3%)
Native American 3 (1%) 2 (1%) 1 (1%)

Maternal psychiatric history 0.782 (1.41)
No 289 (68%) 180 (65%) 131 (66%)
Yes 136 (32%) 99 (35%) 66 (34%)

Paternal psychiatric history >0.999 (0.89)
No 381 (90%) 249 (89%) 183 (93%)
Yes 44 (10%) 30 (11%) 14 (7%)

Maternal smoking >0.999 (1.26)
No 393 (92%) 259 (93%) 178 (90%)
Yes 32 (8%) 20 (7%) 19 (10%)

Notes: #P values were adjusted by Bonferroni correction and the values in bracket are either t-statistic (continuous variables) or odds ratio (categorical variables, only
available for 2-by-2 table).∗

adjusted P-value is less than 0.05;∗∗
adjusted P-value is less than 0.01; n/a: the hypothesis test is not available due to sample size.

generate a triangular mesh, and the deformation of the inner
mesh toward the reconstruction of each cortical surface.

The inner surface was defined as the boundary between gray
and WM and the outer surface was defined as the boundary
between the gray matter and CSF. A third, middle cortical surface
was generated as the layer lying in the geometric center of
the inner and outer surfaces of the cortex. CT was computed

for each vertex as the average value of the minimum distance
from the inner to the outer surfaces and the minimum distance
from the outer to the inner surfaces. SA was computed based
on the middle cortical surface. In order to generate a regional
parcellation, all inner cortical surfaces were smoothed, inflated,
and mapped to the unit sphere (Fischl et al. 1999). All cortical
surfaces were visually examined for accurate mapping. The
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cortical surface was parcellated into 78 regions of interest (ROIs)
based on an infant-specific 90-region parcellation atlas (Tzouri-
o-Mazoyer et al. 2002; Gilmore et al. 2012; Jha et al. 2019). Twelve
regions represent subcortical structures and were therefore not
examined. The average CT and total SA were calculated for each
ROI based on the corresponding values at each vertex.

Statistical Analysis

Each subject’s neuroanatomic measures were imported into
the R statistical environment for analysis (R Core Team 2020).
Phenotypes of interest included: 1) global mean CT, 2) total SA,
3) regional CT for 78 ROIs, and 4) regional SA for 78 ROIs. All
brain measures were adjusted for gestational age at birth, age
at MRI, gender, and scan parameters, including motion at scan
time, T2 type for neonate, and scanner model for 1 year or
2 years via regression. Covariates were chosen based on the
output from variable selection and linear mixed effects model
results for CT and SA in a large sample of neonates (Jha et al.
2018). The residuals derived from linear models were used in
subsequent structural equation models. The data were refor-
matted such that each record represented family-wise (rather
than individual-wise) data.

Genetic modeling was performed in OpenMx, a structural
equation modeling package fully integrated into the R environ-
ment (Boker et al. 2011; Neale et al. 2016). Univariate, pairwise
bivariate, and three-timepoint longitudinal models for all phe-
notypes of interest were then constructed; specific details of
each model are provided below. For all models, the isolation of
genetic variance (and covariance) was possible due to known
differences in the genetic relatedness between monozygotic
(MZ) and dizygotic (DZ) twins; while MZ twins are genetically
identical, DZ twins share, on average, only one-half of their
genes identical by descent. In the simplest case (the univariate
additive genetic variance (A), common environmental factors
(C), and unique environmental factors (E) (ACE) model), phe-
notypic variance is decomposed into components attributable
to additive genetic (A), shared environmental (C), and unique
environmental factors (E) (Neale and Cardon 1992; Lenroot et al.
2009). Mathematically:

VP = A + C + E,

CovMZ = A + C,

CovDZ = 1
2

A + C,

where VP represents the observed phenotypic variance, CovMZ

represents the MZ–MZ phenotypic covariance, and CovDZ rep-
resents the DZ–DZ phenotypic covariance. From these three
linear equations, estimates for each variance component can
be generated. Optimum model fit was determined using maxi-
mum likelihood (Edwards 1972). From the subsequent maximum
likelihood estimates, the heritability (e.g., A/VP, or a2) as well as
other proportional variance components can be calculated. 95%
confidence intervals (CIs) can also be determined via maximum
likelihood (Neale and Miller 1997). Intervals excluding zero were
considered to be statistically significant (Prel et al. 2009).

Similar to prior studies on this sample (Jha et al. 2018), we
then examined the pairwise bivariate relationships between all
phenotypic measures of interest via serial Cholesky decomposi-
tion (Neale and Cardon 1992). Briefly, Cholesky decomposition
factors any symmetric positive definite matrix into a lower

triangular matrix postmultiplied by its transpose. In the bivari-
ate case (e.g., between two ROIs), 2 × 2 phenotypic variance–
covariance (P) and cross-twin covariance matrices (TMZ, TDZ) can
be expressed as follows:

P = (
A ∗ A′) + (

C ∗ C′) + (
E ∗ E′) ,

TMZ = (
A ∗ A′) + (

C ∗ C′) ,

TDZ = 1
2

(
A ∗ A′) + (

C ∗ C′) ,

where A, C, and E each represent a 2 × 2 lower triangular matrix,
each with three free parameters:

A =
[ a11 0

a21 a22

]
, C =

[ c11 0
c21 c22

]
, and E =

[ e11 0
e21 e22

]
.

From these 2 × 2 element building blocks, 4 × 4 expected vari-
ance–covariance matrices for MZ and DZ twin pairs can then be
generated:

EMZ =
[

P TMZ

TMZ P

]
, and EDZ =

[
P TDZ

TDZ P

]
,

where diagonal values (P) contain within-individual cross-trait
correlations, and the off-diagonals (TMZ, TDZ) represent cross-
twin correlations. Following numeric optimization, the genetic
variance for each ROI (1, 2) as well as the between-ROI genetic
covariance can be calculated:

Var1 = a2
11,Var2 = a2

21 + a2
22, Cov1,2 = a11 ∗ a21.

Other variance and covariance components can be estimated
similarly. Genetic (rG) and environmental (rC, rE)correlations can
be subsequently calculated, for example:

rGi = Cov1,2√
Var1 ∗ Var2

.

In order to examine our data longitudinally, we first adapted
the framework described by Teeuw et al. to analyze the brain
structure in a sample of pediatric twins (Teeuw et al. 2019); simi-
lar to the current study, measures were assessed at three distinct
timepoints (specifically 9, 12, and 17 years). In this model, vari-
ance decomposition is accomplished using trivariate Cholesky
decomposition (Fig. 1); note that this model is a direct mathe-
matical extension of the bivariate analysis described above. Our
model differed from Teeuw et al. in that we included parameters
to account for shared environmental effects (i.e., ACE rather
than additive genetic variance (A) and unique environmental
factors (E) (AE)), similar in structure to our bivariate analysis. The
more parameterized ACE model was used because the role of
the shared environment in the perinatal period is stronger than
what has been observed in older children.

From the subsequent parameter estimates, genetic vari-
ances, proportional variances, covariances, and correlations
between timepoints could be calculated using a similar
approach to that described above. The effect of genetic factors on
“changes” in variance between timepoints could be calculated
as:

A�i,j = Ai,i + Aj,j − 2 ∗ Ai,j,
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Figure 1. Simplified path diagram for longitudinal models. Rectangles represent an observed neuroanatomic measure for each twin at each timepoint. Changes between

timepoints are shown as triangles. Additive genetic (A, Grey), shared environmental, (C, Grey), and unique environmental (E, Grey) latent factors decompose the observed
phenotypic covariance matrix. Grey arrows represent freely estimated parameters, with each twin having the same factor structure. The covariance between genetic
factors (α) is dependent on zygosity (1 for MZ and 0.5 for DZ twin pairs). Latent variables (circles) are standardized to unit variance.

where A�i,j represents the change in genetic variance between
two timepoints, Ai,iand Aj,j represent the genetic variance, and
Ai,j represents the genetic covariance (van Soelen et al. 2012).
Univariate variance components (e.g., heritability) can also
be calculated from these longitudinal models; estimates were
similar to those obtained from simpler ACE models.

As an alternative approach, we reanalyzed our longitudinal
data using genetically informative linear latent growth curve
models (Neale and McArdle 2000; McArdle et al. 2004). A
nongenetic longitudinal growth curve (LGC) model uses
repeated measures to estimate the changes in means and
variances with time (Duncan and Duncan 2004). With genetically
informative data, the latent variances of ROI growth curves can
be simultaneously decomposed into genetic and nongenetic
sources of variance (Supplementary Fig. S2) (Schmitt et al. 2014).
The differences between the “longitudinal Cholesky” model
described above and LGC are analogous to the differences
between repeated measures ANOVA and regression; while

the former provides discrete estimates regarding differences
between timepoints (e.g., heritability of change), the latter uses
functional forms to estimate growth trajectories. In order to test
the statistical significance of changes with time, the original
LGC model was compared to submodels in which the free paths
allowing change due to specific variance components were
removed; differences in log-likelihood between these models
generally follow a χ2 distribution, with degrees of freedom equal
to number of parameters removed (Neale and Cardon 1992;
Visscher 2004; Dominicus et al. 2006).

Results
Heritability of CT and SA

We observed significant cortical expansion in the first year,
with total SA increasing 85% from neonate to age 1 and with
45% increase for the average CT (Supplementary Fig. S3). Table 2
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Table 2 Variance components estimates (± 95% CI) for global measures at each timepointa

Phenotype of interest Variance components

a2 c2 e2

Neonate
Average CT 0.48 (0.18–0.75) 0.21 (0.00–0.44) 0.32 (0.23–0.43)
Total SA 0.59 (0.38–0.81) 0.23 (0.03–0.41) 0.18 (0.13–0.25)

1 year
Average CT 0.37 (0.09–0.67) 0.34 (0.07–0.58) 0.29 (0.20–0.40)
Total SA 0.74 (0.52–0.91) 0.15 (0.00–0.36) 0.11 (0.08–0.16)

2 years
Average CT 0.44 (0.23–0.71) 0.45 (0.18–0.64) 0.11 (0.08–0.18)
Total SA 0.73 (0.52–0.92) 0.16 (0.00–0.38) 0.10 (0.07–0.15)

Note: aEstimates from the trivariate longitudinal model; heritability estimates from univariate models were similar.

presents global variance component estimates for both CT and
SA for all timepoints. For both CT and SA, shared environmental
effects accounted for a small proportion of phenotypic vari-
ance (∼0.26 on average). By contrast, additive genetic factors
accounted for a much larger proportion of global phenotypic
variance (on average, 0.56). The heritability of global CT was rel-
atively stable at all three timepoints (∼0.40), while we observed
an increase in the heritability of global SA between the neonatal
period and 1 year of age (from 0.59 to 0.74), with subsequent
stability between 1 and 2 years of age.

Variance components for regional CT and SA are shown
in Figure 2 (all ROIs), Supplementary Figure S4 (significant
ROIs), Supplementary Tables S1 and S2,while the intrapair
correlations between MZ/DZ twin pairs are also showed in
Supplementary Table S9 and S10. For CT, the regions with
highest heritability were the right insula (0.55 [0.33–0.67]) among
neonates, left medial superior frontal gyrus (0.72 [0.48–0.83]) at
age 1, and right posterior cingulate gyrus (0.67 [0.46–0.79]) at
age 2. In general, the heritability of regional CT increased with
age, with bilateral dorsal frontal, left lateral temporal, and peri-
calcarine regions showing the most dramatic changes. Similar
to global metrics, the importance of the shared environment on
phenotypic variance was relatively smaller than that of genetic
effect. Regions with highest shared environmental influences
included left superior parietal gyrus among neonates (0.35
[0.10–0.49]), right postcentral gyrus at age 1 (0.40 [0.10–0.59]),
and right middle temporal gyrus at age 2 (0.53 [0.23–0.66]).

Regional SA heritability was generally stronger than that of
CT. The regions with highest heritability included left orbital
inferior frontal gyrus among neonates (0.72 [0.57–0.79]), right
calcarine fissure and surrounding cortex at age 1 (0.80 [0.66–
0.87]), and left insula at age 2 (0.72 [0.45–0.86]). As with CT,
the role of the shared environment on SA phenotypic variance
was lower than that of genetic effects. The regions with high-
est shared environmental variance included dorsolateral right
superior frontal gyrus among neonates (0.40 [0.14–0.58]), right
superior gyrus at age 1 (0.40 [0.15–0.54]), and right supplemen-
tary motor area at age 2 (0.43 [0.14–0.61]).

To check the robustness of our findings of variance
components in regional CT and SA, we repeated our analyses
after including global measures of CT and SA as additional
covariates into the trivariate longitudinal model. We found
similar results, although heritability estimates were generally
decreased (Supplementary Tables S3 and S4) compared to
models without global measures. ROIs with the most decreased
estimates were more likely to be correlated with global

measures (Supplementary Fig. S5). To exclude the potential
bias introduced by different scanner, we repeated our analysis
including only the subjects from the major scanner. The point
estimates of variance component are very close to the results
from the analysis obtained using all samples adjusted by the
scanner or T2 type, with Pearson correlation coefficient >0.9 for
most of the estimates (Supplementary Fig. S6).

Bivariate Relationships between Measures

Phenotypic, genetic, and shared environmental correlations
between global measures for all timepoints are summarized
in Figure 3. For global CT, strong phenotypic (0.70 [0.72–0.84]),
genetic (0.92 [0.58–1.00]), and shared environmental (0.92 [0.50–
1.00]) correlations were observed at 1 and 2 years of age.
However, neonatal global CT was not phenotypically correlated
CT measured at age 1 (−0.01 [−0.15–0.12]) or age 2 (−0.17 [−0.32–
0.00]). Genetic correlations between neonatal global CT and older
ages were not significant, nor were environmental correlations.
By contrast, all three longitudinal measures of global SA had
strong phenotypic correlations (neo vs. 1 year: 0.75 [0.69–0.81],
neo vs. 2 years: 0.78 [0.71–0.83], 1 year vs. 2 years: 0.95 [0.93–0.96])
and genetic correlations (neo vs. 1 year: 0.96 [0.79–1.00], neo vs.
2 years: 0.90 [0.72–1.00], 1 year vs. 2 years: 1 [0.95–1.00]). Genetic
correlations between CT and SA were moderately positive in
neonates but were weak and negatively correlated at other
timepoints (Fig. 3). CT–SA shared environmental correlations
were negligible at all timepoints.

Bivariate CT–SA analyses for each ROI separately are shown
in Figure 4 and Supplementary Figure S7 for all and significant-
only estimates, respectively. Phenotypic correlations between
regional CT and SA were generally weak and often negative at
all three ages (Supplementary Fig. S8), as were unique environ-
mental correlations. By contrast, genetic correlations were very
strong in the neonatal period and subsequently decreased at
years 1 and 2 and were largely negative. A consistent pattern
of shared environmental correlations was observed at all three
timepoints, although given the small contributions of c2, their
contributions to the phenotypic correlation was relatively small.

Correlation between Regional and Global Cortical
Brain Measures

We further investigated the correlation patterns between
regional and global measures of CT and SA. Supplementary
Figures S9 and S10 provide correlations between global metrics
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Figure 2. Regional variance components of CT and SA using trivariate model. (a–c) Genetic variance component (i.e., heritability) of CT from neonate to age 2; (d–f )
shared environmental variance component of CT from neonate to age 2; (g–i) genetic variance component of SA from neonate to age 2; (j–l): shared environmental

variance component of SA from neonate to age 2. These estimates are derived from the trivariate model; results from serial univariate models at each timepoint were
similar.

and regional measures. For CT, most regions exhibited strong
positive phenotypic correlations with global measures across
all three timepoints. Genetic correlations were generally even

higher and approached unity throughout the cortex for both
CT and SA. The principal exceptions were relatively lower
genetic correlations in the peri-calcarine and peri-sagittal
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Figure 3. Global correlations from bivariate longitudinal models. Phenotypic (rP), genetic (rG), shared environmental (rC), and unique environmental (rE) correlations for
global CT and SA, as measured in neonates, 1-year-olds, and 2-year-olds. For the genetic and environmental correlation matrices, values along the diagonal represent
variance components estimates from univariate models (e.g., heritability), and the values in off-diagonal cells are correlations derived from bivariate models.

posterior temporal cortex both for CT and (to a lesser extent)
for SA. Regional differences between global CT/SA and regional
measures became less pronounced over time.

Longitudinal Changes in CT and SA

The heritability of change in mean global CT was 0.49 [0.17–
0.75] between the neonates and age of 1 year and was 0.19 [0–
0.53] between ages of 1 year and 2 years (Table 3). Heritabil-
ity of change in mean global SA was 0.14 [0–0.42] between
the neonates and age of 1 year and was 0.03 [0–0.46] between
ages of 1 year and 2 years. Regional heritability of change for
both CT and SAs is summarized in Supplementary Figures S11
and S12 and Supplementary Tables S5 and S6, while the intra-
pair correlations between MZ/DZ twin pairs are also shown
in Supplementary Table S11 and S12. For regional CT, the right
medial superior frontal gyrus had the highest heritability of
change (0.48 [0.06–0.62]) from neonate to 1 year, and the left

Rolandic operculum has the highest heritability of change (0.53
[0.05–0.74]) from 1 to 2 years. In general, the heritability of
change in CT was higher between 0 and 1 years of age than
between 1 and 2 years of age. Overall, the lateral frontal lobes
and superolateral temporal lobes had the most pronounced
heritability of changes. A similar but substantially attenuated
pattern was observed from 1 to 2 years.

For SA, the strongest regional changes were also observed in
the first year of postnatal life, with relatively weaker heritability
from 1 to 2 years. The right insula had the highest heritabil-
ity of change (0.74 [0.50–0.84]) from neonate to 1 year, and
the left olfactory cortex had the highest heritability of change
(0.43 [0.04–0.64]) from 1 to 2 years. In general, the strongest
changes from 0 to 1 year were in peri-Rolandic, peri-calcarine,
and peri-Sylvian regions. Similar, but less-pronounced patterns
were observed for changes in SA between 1 and 2 years. There
were minimal effects of global covariates on the heritability of
change estimates (Supplementary Tables S7 and S8).
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Figure 4. Bivariate phenotypic, genetic and environmental correlation between CT and SA for each ROI separately. Bivariate models were performed for each pair of

regional CT and regional SA at each timepoint. (a–c) Phenotypic correlation between regional CT and SA; (d–f ) genetic correlation between regional CT and SA; (g–i)
environmental correlation between regional CT and SA; (j–l) unique environmental correlation between regional CT and SA.

LGC models found statistically significant changes in
variance trajectories for both SA and CT for all ROIs (Supple-
mentary Table S13). Linear changes over the study interval were
largely owed to changes in familial (i.e., genetic and shared

environmental) variance. Shared environmental variance
decreased between ages 0 and 1 for nearly all ROIs, with genetic
variance generally (but not universally) increasing over this time.
Temporal changes in proportional variance components derived

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab213#supplementary-data
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Table 3 Heritability of change (± 95% CI) for CT and SA

Phenotype of interest Variance components

a 2
� c 2

� e 2
�

Neonate to 1 year
Average CT 0.49 (0.17–0.75) 0.22 (0.00–0.48) 0.29 (0.21–0.41)
Total SA 0.14 (0.00–0.42) 0.59 (0.34–0.74) 0.27 (0.18–0.38)

1 year to 2 years
Average CT 0.19 (0.00–0.53) 0.14 (0.00–0.45) 0.67 (0.45–0.91)
Total SA 0.03 (0.00–0.46) 0.45 (0.08–0.62) 0.52 (0.34–0.72)

from LGC are shown in Supplementary Figures S13 and S14. For
most ROIs, SA a2 increased slightly between ages 0 and 1, and c2

decreased sharply.

Discussion
To our knowledge, the current study represents the first longitu-
dinal quantitative genetic analysis of brain morphology in early
childhood, expanding on our previous work on neonatal CT and
SA (Jha et al. 2018) now to include timepoints at 1 and 2 years
of age. Our results reveal significant genetic influences on both
global CT and SA at all three ages, with SA having uniformly
greater heritability than CT at all timepoints. While the heri-
tability of global CT holds relatively steady from the neonatal
period (a2 = 0.48) to 1 year (a2 = 0.37) to 2 years of age (a2 = 0.44),
the current longitudinal analysis suggests that the heritability of
global SA increases slightly from the neonatal period (0.59 [0.38–
0.81]) and 1 year of age (0.74 [0.52–0.91]), subsequently stabilizing
by 2 years (0.73 [0.52–0.92]), as evidenced both by increasing
point estimates and 95% CIs. Prior imaging genetic studies in
pediatric populations have similarly found that the heritability
of global SA is very high (Lenroot et al. 2009; Jha et al. 2018;
Schmitt et al. 2019), with SA heritability previously estimated at
0.78 in neonates (mean age: 37.5 days) and 0.85 in older children
(mean age: 12.7 years) (Grasby et al. 2020). More modest genetic
effects on CT are also consistent with prior literature, although
global CT heritability in older children has been reported to
be somewhat higher than what we observe in the first years
of life (Teeuw et al. 2019). In the current study, we found rel-
atively weak, shared environmental influences on phenotypic
variance for most ROIs, which is a common observation in twin
studies of brain structural endophenotypes (Peper et al. 2007).
However, shared environmental influences were higher than
those observed in older children and were highest in neonates,
potentially reflecting residual in utero effects, or possibly a more
uniform household environment (e.g., greater similarity in diet,
routine) when compared to older twin pairs.

Regional patterns of heritability were also distinct between
CT and SA, mirroring substantial differences in neurodevelop-
mental trajectories. The heritability of regional CT increased
considerably in large areas of the frontal and lateral temporal
lobes, especially in the left hemisphere, during early childhood;
we also observed the largest heritability of “change” influencing
the CT trajectory in these regions. Prior longitudinal studies in
older children have similarly observed that the heritability of
CT is highly dynamic (Schmitt et al. 2014; Teeuw et al. 2019);
the current study indicates that these changes occur earlier in
life than previously reported. The heritability of change was

substantially attenuated between 1 and 2 years of postnatal
life for both CT and SA, suggesting a relative pause in geneti-
cally mediated cortical patterning over this interval. Prior work
on the temporal dynamics of gene transcription has found a
rapid decrease in gene expression in the brain from fetal life
through early childhood (Colantuoni et al. 2011); our findings are
consistent with these observations.

Similar to global SA, the heritability of regional SA measures
was generally higher than CT. Like other studies on the genetics
of SA in children (Jha et al. 2018; Schmitt et al. 2019), we observed
particularly high heritability of SA in peri-calcarine and peri-
Rolandic cortex. Patterns of genetic effects on SA were more
stable than CT. However, similar to CT, the observed heritability
of change was stronger between 0 and 1 years of age when com-
pared to 1–2 years. The strongest effects were observed in peri-
Rolandic and peri-Sylvian cortex. Prior research on preterm cor-
tical growth has found a migratory pattern of cortical expansion
beginning in peri-Rolandic cortex and subsequently expanding
into the peri-Sylvian and peri-calcarine cortex (Garcia et al.
2018); our observed genetic effects on early SA growth trajec-
tories may reflect the residual genetic influences on dispropor-
tionate growth in these regions.

In order to understand the relationships between global met-
rics and ROIs, we directly tested the global–local relationships
with bivariate models. Both regional CT and SA were strongly
correlated with global measures, with relative uniformity in
genetic correlations over the entire cerebrum. This finding, as
well as relatively high SA–SA and CT–CT regional correlations,
was suggestive of a strong global genetic factor influencing
individual differences in most brain regions for both CT and
SA. Similar strong global genetic effects on regional phenotypes
have been previously observed in older children for both CT
(Schmitt et al. 2008) and SA (Schmitt et al. 2019). The principal
exception was relatively weak correlations between global mea-
sures and peri-calcarine and posterior medial temporal cortex,
possibly due to relative genetic independence from other brain
regions. These areas of relatively weak correlations with the
global covariate largely correspond to regions with the least cor-
tical expansion over both neurodevelopmental and evolution-
ary timescales (Hill et al. 2010). Somewhat surprisingly, despite
the observed pronounced global effects on regional measures,
regional parameter estimates were relatively stable regardless of
whether a global covariate was included in the model. This may
indicate that the global genetic effects on brain morphology are
relatively uniform in the first few years of life when compared
to older children.

Additive genetic factors between CT and SA appear to
be orthogonal in adults (Panizzon et al. 2009), but there is
evidence of overlapping genetic influences in newborns (Jha
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et al. 2018). We observed that the shared genetic influences on
CT–SA subsequently weakened and became mildly negatively
correlated over the following 2 years (−0.35 and − 0.38 for 1
year and 2 years, respectively). These findings suggest that
these neuroanatomic measures share common genetic factors
in early life, and then subsequently diverge over time. CT and SA
are both believed to be largely dependent on the proliferation
rates of neuronal progenitor cells. While symmetric divisions
are thought to increase SA, asymmetric divisions are believed
to influence the number of cells per radial unit—subsequently
influencing CT (Rakic 1988; Rubenstein and Rakic 1999). It is
unclear what shared genetic factors are driving the observed
genetic correlations in newborns. Intermediate progenitor cells
may influence the expansion of both CT and SA, and therefore
potentially contribute to the observed genetic association in
neonates (Pontious et al. 2007). Other neurodevelopmental
processes may also contribute, including mechanical tension,
neuropil growth, and apoptosis (Van Essen 1997; Krubitzer and
Kahn 2003; Toro and Burnod 2005). Further longitudinal research
on CT–SA relationships later in childhood may be of value to
better understand the dynamic associations between these two
endophenotypes.

There are several limitations that must be considered when
interpreting the current findings. First, although relatively large
by neuroimaging standards, our sample size is modest when
compared to traditional population-based behavioral genetic
studies. Sample attrition also contributes to further reduction
in power at later timepoints. These issues result in relatively
wide CIs that often overlap. It is therefore reassuring that our
maximum likelihood parameter estimates tend to follow consis-
tent patterns. Second, several MRI scanners and sequences were
used for data acquisition, which could represent confounding
factors that cannot be easily adjusted for. In particular, despite
efforts to control for scanner effects, residual within-family
similarities could potentially upwardly bias estimates of shared
environmental variance. These effects are likely modest, as the
majority of scans were performed on the same scanner (80%
at age 0, 79% at age 1, and 71% at age 2). Third, maturational
changes in cerebral myelination and water content during early
development have a significant impact on the T1 and T2 relax-
ation properties of the brain (Barkovich et al. 1988; Jones et al.
2004), influencing image intensity, potentially complicating the
interpretation of results. Nevertheless, these effects are not arti-
factual but are rather based on underlying neurobiology. Thus,
the observed genetic effect driven by MZ > DZ similarities are
also likely in turn driven by underlying genetically influenced
neurobiological processes, even though the precise measured
endophenotype may differ slightly from that observed in older
populations. Lastly, the variance components of CT and SA could
also be related to the heritability of cortical volume (CV). A
genetically informative trivariate CT–SA–CV analysis in the lon-
gitudinal model setting could also be implemented as a natural
extension of this study in the future.

Given substantial methodological and sample differences,
regional heritability estimates in SA are remarkably similar to
those observed in older populations. It has been previously
observed that these patterns tend to mirror both evolution-
ary and neurodevelopmental SA expansions. Our findings on
CT differ to a greater extent when compared to other stud-
ies, but this is at least in part driven by generally lower a2

in younger children overall. Similar to studies on older chil-
dren, we do observe relatively higher regional heritability esti-
mates in superior frontal cortex and left superior temporal lobes.

In 2-year-olds, we observe that primary visual cortex has par-
ticularly low heritability, a finding which is also observed in
older children. In general, patterns in CT in the older NIH and
Dutch samples are most similar to our oldest timepoint (2 years).
Our regional patterns of heritability of change in CT are also
similar to those observed by Teeuw et al. (e.g., strongest in
parasagittal frontal lobe), although those changes were observed
near puberty (12 > 17 years), with relatively minimal changes
observed from 9 to 12 years. Unfortunately, given the paucity of
genetically informative data on subjects in the first decade of
life years, more direct comparisons are not currently possible.

In conclusion, we find evidence that the development of CT
and SA from neonates to 2 years is substantially controlled by
genetic factors. CT and SA appear to be driven by overlapping
genetic factors in neonates, which appears to diverge in later
ages. This change might suggest a shared origin from both
developmental and evolutionary perspectives.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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