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Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of
interventions. Ascertaining which interventions will be most effective and when they should be implemented is
challenging because social conditions vary across the life course and are subject to time-varying confounding.
Marginal structural models (MSMs) may be useful but can present unique challenges when studying social
epidemiologic exposures over the life course. We describe selected MSMs corresponding to common theoretical
life-course models and identify key issues for consideration related to time-varying confounding and late study
enrollment. Using simulated data mimicking a cohort study evaluating the effects of depression in early, mid-,
and late life on late-life stroke risk, we examined whether and when specific study characteristics and analytical
strategies may induce bias. In the context of time-varying confounding, inverse-probability–weighted estimation
of correctly specified MSMs accurately estimated the target causal effects, while conventional regression models
showed significant bias. When no measure of early-life depression was available, neither MSMs nor conventional
models were unbiased, due to confounding by early-life depression. To inform interventions, researchers need to
identify timing of effects and consider whether missing data regarding exposures earlier in life may lead to biased
estimates.

bias; confounding; inverse probability weighting; life course; marginal structural models; simulation; social
epidemiology

Abbreviations: AUD, alcohol use disorder; CI, confidence interval; IPW, inverse probability weighting; IPWs, inverse probability
weights; MSM, marginal structural model.

While there is conclusive evidence that social exposures
are associated with health outcomes, causal inference re-
mains a central challenge in social epidemiology (1–3). It
is typically infeasible and/or unethical to randomize many
social or psychological exposures, which often present early
in life and persist for decades. Therefore, many studies in
life-course epidemiology rely on observational data from
longitudinal cohorts. Though cohort studies often enroll
participants in mid- or late life, many investigators are
interested in the lifetime effects of a given exposure—that
is, contrasting the anticipated adult health outcome under
exposure from conception to adulthood with that of no expo-
sure or a shorter exposure period. For example, numerous
studies have examined stroke risk in relation to depression

or social support, and while most investigators acknowledge
that these exposures do not appear de novo in midlife, often
studies cannot directly account for earlier exposures (4, 5).

In the context of marginal structural models (MSMs),
inverse probability weights were initially proposed as a
method of estimating causal effects of time-dependent expo-
sures in the presence of time-dependent covariates that could
simultaneously be confounders and intermediate variables
(6–8). MSMs have been adopted by researchers investigat-
ing the effects of social or psychological exposures on health
(9–21), but data commonly used to assess such exposures
may be insufficient to identify causal effects. Here, we
provide a systematic consideration of MSMs to evaluate
whether and when they improve causal inference for social
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epidemiologic research. First, we describe how MSMs can
be used to encode standard life-course conceptual mod-
els. We then discuss methodological challenges related to
1) adjustment for time-varying confounders that also medi-
ate effects of prior social exposures, 2) “late–study-start con-
founding” (where early-life exposures are not assessed), and
3) situations in which both scenarios occur simultaneously.
Second, we illustrate how well MSMs and conventional
models account for these challenges through simulations,
which provide the “true” effects of an exposure on an out-
come. Our simulations are designed to ensure that bias is due
only to structural biases and not to model misspecification.

The well-studied relationship between depression and
stroke across the life course serves as a motivating example
(5, 9, 10, 22). The onset of depression typically occurs by
adolescence (23), and the illness can follow a remitting-
recurring pattern (24). We draw on commonly used con-
ceptual frameworks and corresponding models to examine
the relationship between depression and stroke risk. We
adopt a counterfactual approach to causation assuming a
well-defined outcome value under every possible exposure
history for each individual. In the case of a point exposure
D, Yd=0 denotes the outcome the individual would have if,
possibly contrary to fact, the exposure were set to 0 (i.e.,
unexposed), and Yd=1 denotes the outcome the individual
would have if, possibly contrary to fact, the exposure were
set to 1 (i.e., exposed). Under the consistency assumption,
only the outcome corresponding to the individual’s actual
exposure is observed (25). See Web Appendix 1 (available
at https://doi.org/10.1093/aje/kwab253) for details on MSM
definitions and identifying assumptions.

In this paper, we evaluate bias induced or mitigated by
use of conventional models versus MSMs to assess the
role of social exposures in health. We also demonstrate
problems that can occur due to late–study-start confounding.
By discussing these issues, we aim to provide investiga-
tors with a clearer picture of the trade-offs involved when
choosing one analytical method over another or in making
opportunistic use of existing data. Armed with this informa-
tion, researchers will be better positioned to interpret and
extrapolate their results in the most rigorous possible way.

BACKGROUND

Encoding causal effects using MSMs

A mean MSM is a parametric model for the marginal (i.e.,
population-wide) mean of a counterfactual outcome corre-
sponding to a joint intervention on a time-varying exposure
(i.e., if the exposure was intervened upon at multiple time
points), possibly conditional on a subset of baseline covari-
ates (6, 7, 26, 27). It is important to distinguish between the
causal model (MSM) and the estimation procedure (inverse
probability weighting (IPW)). To the extent that the joint
intervention is well-defined, MSM parameters have specific
causal interpretations as the joint effects of exposure over
time on a given outcome. A point in time is represented
by t, and we focus on the following time points: early life
(t = e), midlife (t = m), and late life (t = l). An individual’s
observed binary exposure status at time t is represented by

Dt, while history of exposure is represented by D. In our
example, D encompasses depression status in early life (De),
midlife (Dm), and late life (Dl). d represents a hypothetical
depression history that identifies depression at specific times
(i.e., d = (de, dm, dl)). Yd is the potential stroke outcome in
late life if, possibly contrary to fact, a person experienced
depression history d. For simplicity, we assume no dropout
or death. The causal relationship between depression history
and late-life stroke risk (given that one has not experienced
stroke in early or midlife) is specified by the following
MSM:

log
[

Pr
(
Yd = 1

)] = �0+�1dl+�2dm+�3de. (model 1)

Here, �1 represents the effect (expressed as the log of the
risk ratio) of late-life depression on stroke risk under an
intervention that sets depression in early life (de) and midlife
(dm) to specific values. Similarly, �2 and �3 represent
the controlled direct effect of depression in mid- and early
life on late-life stroke risk, respectively, setting the other
depression exposures to a specific value. MSM parameters
do not capture the indirect effect of the given exposure
mediated by another exposure at a later occasion when the
latter exposure is included in the model. For example, �3
captures only the effect of de on Y not mediated by dm
or dl, even though such effects may be present. Model 1
assumes that the effects of dl, dm, and de are additive on the
log scale. This assumption could be relaxed by including
interactions (e.g., dl × dm or dl × dm × de). By imposing
certain constraints on possible values of �, incorporating
versus omitting interactions, MSMs can represent the main
life-course models used in social epidemiology.

Estimating effects encoded in MSMs

MSMs define marginal effects, contrasting the population
outcomes under 2 distinct hypothetical joint interventions
(e.g., when all individuals are exposed vs. when no individ-
uals are exposed). For example, under the model 1 MSM,
stroke risk under a joint intervention in which all individuals
are exposed to depression at all 3 life stages versus none of
the life stages would be

log
[

Pr
(
Ydl=dm=de=1 = 1

)] − log
[
Pr

(
Ydl=dm=de=0 = 1

)]
= �3 + �2 + �1.

In the context of time-varying confounding, MSM parame-
ters will generally differ from the corresponding parameters
estimated in conventional conditional mean models, which
contrast people within a particular covariate stratum with
and without the exposure of interest in each life-course
period. Conventional models are biased away from the
causal effects specified in the MSM regardless of whether
they adjust for the time-varying confounders (6, 7). MSMs
can be estimated by means of inverse probability weights
(IPWs) through the joint probability law of a person’s
observed exposure history. Provided that exposure models
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DepressionEarly Life DepressionMidlife DepressionLate Life Stroke

Figure 1. Causal diagrams ref lecting the application of life-course theories (in the absence of time-varying confounding) to the example of
depression in early, mid-, and late life and subsequent stroke risk (in the absence of time-varying confounding). A) The accumulation model, in
which each exposure to depression has a direct effect on stroke; B) the early-life critical period model, in which only early-life depression affects
stroke; C) the pathway model, in which early- and midlife depression inf luence stroke only via their impact on late-life depression. Note that all 3
panels show early-life depression being associated with late-life depression only through midlife depression; the plausibility of this assumption
must be considered on a case-by-case basis.

are correctly specified, IPWs appropriately account for
observed time-varying confounders, eliminating the need
for covariate adjustment in the outcome regression model
(6, 28). In our example, each observation would be
weighted by the inverse of the probability of an individual’s
observed depression history up to that time point, given
the individual’s time-constant and time-varying covariates.
Reweighting renders time-varying confounders and expo-
sure history statistically independent, eliminating potential
confounding bias by observed confounders (7, 28). The
MSM estimate calculated in the weighted sample provides
an unbiased (i.e., consistent) estimate of the average causal
effect of depression on stroke risk when time-varying
confounders are also mediators of the exposure-outcome
relationship, assuming no unmeasured confounding or
model misspecification. More formally, an MSM can be
viewed as a parametric model for the g-formula, and
therefore IPWs provide an alternative to the g-computation
algorithm (29). Although time-varying confounding is a
common concern in social and psychosocial epidemiology,
use of this approach is still somewhat infrequent (but see
references 9–15 for examples). In many settings, MSMs are
clearly preferable to conventional models. However, we will
illustrate situations in which standard assumptions required
to identify MSMs may be hard to meet due to confounding
biases common to life-course epidemiology.

Common life-course models described as MSMs

Conceptual models commonly used to describe how expo-
sures across the life course may affect late-life outcomes
include the accumulation model, the early-life critical period
model, and the pathway model (12, 30–33). Some aspects

of these models can be represented graphically using causal
directed acyclic graphs and algebraically as MSMs. In
our example, the accumulation model is a special case of
Figure 1A which posits that each exposure to depression
has a separate direct effect on stroke, with all effects being
nonzero and in the same direction. Model 2 is an example
of the accumulation model with separate, direct, and equal
effects of depression on stroke, with �1 = �2 = �3 �= 0.

log
[
Pr

(
Yd = 1

)] = �0 + �1dl + �1dm + �1de

=�0 + �

3∑
k=1

dk. (model 2)

According to the early-life critical period model (Figure 1B),
only early-life exposures affect outcomes later in life, with
effects occurring regardless of later exposures. Under this
model’s assumptions, neither depression in midlife (dm)
nor depression in late life (dl) will affect stroke risk; thus,
coefficients representing mid- (�2) and late life (�1) are 0
(model 3).

log
[

Pr
(
Yd = 1

)] = �0 + �3de. (model 3)

Lastly, the pathway model posits that only late-life exposures
have direct effects on outcomes, with effects of any early-
and midlife exposures being fully mediated by late-life
exposure. This model is represented by Figure 1C and the
following MSM:

log
[

Pr
(
Yd = 1

)] = �0 + �1dl. (model 4)
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The pathway model entails that only depression in late life
(dl) directly influences the probability of stroke, and �3 =
�2 =0. The effects of early- and midlife depression on late-
life depression are not specified in model 4, so a full repre-
sentation of the pathway model would need to additionally
include a model for the effect of early- and midlife depres-
sion on late-life depression.

Regardless of which model is true, under certain assump-
tions researchers could estimate the effect of depression
throughout the life course (henceforth called the lifetime
effect) if they were provided information regarding depres-
sion at all 3 time points. While models 2–4 are structural
models representing different life-course models, model 5
is a statistical regression model, and the coefficients of this
model might be estimated in observed data, ignoring any
potential confounders:

log[Pr (Y = 1|De = de, Dm = dm, Dl = dl)]

= λ0 + λ1dl + λ2dm + λ3de. (model 5)

In model 5, log[Pr(Y = 1|Dl = dl, Dm = dm, De = de)]
is the observed log risk of stroke conditional on depression
status in late, middle, and early life. Specifically, λ1 captures
the log risk ratio comparing average stroke risk observed in
the subset of people who were depressed in late life with the
stroke risk observed in people who were not depressed in
late life, assuming both groups shared the same early- and
midlife depression history. Without additional adjustment
for confounders, these groups are not necessarily compara-
ble; thus, these regression coefficients are merely descriptive
of observed associations that may not be causal. Model 5
implies a statistical (not causal) accumulation model with
equal effects at each exposure time point if λ3 = λ2 = λ1 �=
0; an early-life critical period statistical model is implicated
if λ2 = λ1 = 0 but λ3 �= 0; and a pathway model may be
implicated if λ2 = λ3 = 0 but λ1 �= 0. It is also possible
that none of these 3 archetypal models will fit perfectly (e.g.,
there is an early-life sensitive (as opposed to critical) period
(λ3 > λ2, λ2 = λ1, and λ1 > 0)). Even when correctly
specified, the parameters of simple regression models such
as model 5 can only be interpreted as an MSM in the
absence of confounding. An alternative approach is needed
for estimating MSMs in the likely context of time-varying
confounders.

METHODOLOGICAL CHALLENGES

Appropriate adjustment for time-varying confounding

If all confounders occurred prior to depression onset,
researchers could estimate causal effects by directly includ-
ing these variables in standard statistical regression mod-
els. However, many confounders vary over time and may
partially mediate effects of prior exposures on outcome.
For example, alcohol use disorder (AUD) often develops
after depression onset, has been associated with subsequent
depression (34), and is a well-established risk factor for
stroke (Figure 2A). Adjusting for confounding effects of
AUD through inclusion of AUD in a conventional regres-

Stroke

AUD

W

D

U

e

e m

m

m DlDe

AUD

A)

Stroke

AUD
B)

Dm Dl

Figure 2. Possible causal structures for the associations of depres-
sion status in early life (De), midlife (Dm), and late life (Dl) with risk
of stroke, assuming that depression has cumulative effects on stroke
risk and that alcohol use disorder (AUD) is a time-varying confounder
that partially mediates the effect of time-varying depression on stroke.
AUD status in early life (AUDe) and midlife (AUDm) is depicted in
panel A, which shows associations as captured by a cohort followed
since early life. We represents an unmeasured common cause of
AUD in early life and stroke. Panel B shows a directed acyclic graph
(DAG) consistent with panel A but representing all early-life variables
as unknown (U), as they would be for a cohort study beginning in
midlife (the vertical line represents study initiation). In this setting,
both depression in early life and AUD in early life would behave as
confounders of the mid- and late-life depression-stroke associations.
In the modified DAG, we represent early-life AUD and depression
with a single “U,” since these variables have the same structural
associations with measured variables represented in the DAG.

sion model (i.e., conditioning on AUD) blocks the indirect
effect of depression on stroke mediated by AUD, thereby
underestimating the total effect of depression. Adjusting for
a confounder that also behaves as a mediator may also induce
collider bias when there is an unmeasured common cause
of the confounder and the outcome (i.e., conditioning on
We); the net bias induced by adjustment for a mediating
confounder could be in either direction.

Late–study-start bias

In the majority of cohort studies examining diseases in
mid- to late adulthood, researchers begin capturing prospec-
tive data on social and psychological exposures and potential
confounders at a somewhat arbitrary time in midadulthood
or later. Capturing only mid- or late-life measures of depres-
sion restricts us to estimating the coefficients of model 6, an
abbreviated version of model 1:

log
[

Pr
(
Ydl,dm = 1

)] = η0 + η1dl + η2dm. (model 6)

This MSM represents the causal effects of hypothetical
interventions on mid- and late-life depression on late-life
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stroke risk. This differs from model 1 because it does not
represent any causal effect of early-life depression. Correct
specification of model 1 requires that there be no effect
modification of mid- or late-life depression by early-life
depression on the risk ratio scale; however, model 6 is com-
pletely agnostic to such an assumption. Model 6 is a well-
defined counterfactual model even if early-life depression
has a nonnull controlled direct effect on stroke after con-
trolling for mid- and late-life depression. However, without
collecting data on early-life depression, it may not be possi-
ble to correctly estimate the parameters in model 6, because
early-life depression predicts mid- or late-life depression
and therefore may confound the joint effects of mid- or late-
life depression on stroke risk.

Combined effects of time-varying exposures and
unmeasured confounders under late–study-start
conditions

Often researchers encounter issues of both late–study-
start and time-varying confounding within a single project.
In a late–study-start setting, exposure history prior to study
start often operates as an unobserved confounder (Figure 2B).
Estimating MSMs with IPWs will not fully address poten-
tial biases in these situations, since IPWs can only adjust
for time-varying confounders when those confounders are
measured.

Below we present simulations demonstrating the potential
magnitude, direction, and type of biases that can occur and
consider how commonly used methods may or may not
adequately address these concerns.

METHODS FOR SIMULATION STUDY

Data-generation

Time-varying confounding simulation. We mimicked a birth
cohort with all relevant measures of exposures and con-
founders to assess possible differences in estimates obtained
from conventional models versus MSM modeling of the
effect of depression under the accumulation model. We as-
sumed the following (details are provided in Web Appendix
2 and Web Appendix 3):

• In each exposure period (early, mid-, or late life), depres-
sion had a direct effect that doubled stroke risk.

• At each time point, having depression increased the odds
of having depression at the subsequent time point by
50%.

AUD was a time-varying confounder that also behaved as a
mediator. We assumed that depression approximately tripled
the odds of AUD, and we varied the association between
AUD and stroke. We generated stroke risk under the follow-
ing model, where Lk represents AUD at time k (model 7;
additional details are provided in Web Appendix 2):

log Pr[stroke = 1|Dl, Lm, Dm, Le, De]
}

= θ0 + θ1Dl + θ2Lm + θ3Dm + θ4Le + θ5De.

(model 7)

We considered the following 6 scenarios:

1. No confounding (risk ratio (RR) for the association
between AUD and stroke (RRAUD-stroke) = exp(θ4) =
exp(θ2) = 1.0)

2. Moderate positive confounding (RRAUD-stroke =
exp(θ4) = exp(θ2) = 1.5)

3. Strong positive confounding (RRAUD-stroke exp(θ4) =
exp(θ2) = 2)

4. Negative confounding (RRAUD-stroke exp(θ4) =
exp(θ2) = 0.67)

5. Strong positive confounding in early life
(RRAUD-stroke = exp(θ4) = 2) and moderate confounding
in midlife (RRAUD-stroke = exp(θ2) = 1.5)

6. Moderate positive confounding in early life
(RRAUD-stroke = exp(θ4) = 1.5) and strong confounding
in midlife (RRAUD-stroke = exp(θ2) = 2)

We modified scenario 2 (moderate positive confounding)
such that the time-varying confounder was unaffected by
prior exposure (i.e., depression did not affect AUD; scenario
7). Lastly, we modified scenario 2 by adding an unmea-
sured confounder that was strongly positively associated
with both AUD in early life (RRWe-AUD = 1.65) and stroke
(RRWe-stroke = 0.22) (scenario 8; details are provided in
Web Appendix 4). In our example of depression and stroke
confounded by AUD, US state of early-life residence is an
example of such an unmeasured confounder, since state of
early-life residence is associated with binge drinking and
stroke (35). We generated stroke risk under model 8, where
We represents state of residence in early life.

log Pr[stroke = 1|Dl, Lm, Dm, Le, De, We]

= θ0 + θ1Dl + θ2Lm + θ3Dm + θ4Le + θ5De + θ6We.

(model 8)

For all models, we generated 10,000 data sets (n = 100,000
people per data set).

Late–study-start bias simulation. We generated data to
illustrate the effect of a late study start in the absence of
time-varying confounding. We assessed how the estimated
midlife, late-life, and total effect of depression differed
from the true effects according to the 3 life-course models
outlined above. We also considered 2 hybrid models: 1) an
accumulation model incorporating an increasing effect
of depression with age and 2) an accumulation model
incorporating a decreasing effect with age. Data were
generated using early-, mid-, and late-life depression and
assumed no confounders of the effect of depression on
stroke. For each life-course model, we generated 10,000 data
sets (n = 100,000 people per data set; details are provided
in Web Appendices 2 and 3). For all scenarios, depression
at each time point increased the odds of depression in the
subsequent period by 50%.

1. Accumulation model: The direct effect of early-, mid-,
and late-life depression each doubled stroke risk.

2. Critical period during early life model: The direct
effect of early-life depression tripled stroke risk, and
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depression during the remaining periods had no direct
effect on stroke.

3. Pathway model: The direct effect of late-life depres-
sion tripled stroke risk, and depression during the
remaining periods had no direct effect on stroke.

We also conducted simulations under the hybrid models
described above.

Late–study-start scenario with time-varying confounding sim-
ulation. Under the accumulation model described above, we
generated data to assess possible differences in estimates
obtained from conventional models versus MSM coef-
ficients fitted with IPW when information on early-life
depression was not available (details are provided in Web
Appendix 3). We assumed that depression approximately
tripled the odds of AUD; that AUD increased the odds of
depression at the subsequent time point by 50%; and that
AUD also doubled stroke risk.

Statistical analysis

Time-varying confounding simulation. Effect estimates for
early-, mid-, and late-life depression were calculated using
conventional logistic regression to approximate log-linear
models under the rare disease assumption with regression
adjustment for AUD. Next, the coefficients of the MSMs
were estimated using IPW. Stabilized IPWs were created for
depression, with depression at each time point being condi-
tional on depression and AUD at the prior time point (e.g.,
the probability of depression at midlife was conditional on
depression and AUD in early life). We calculated the percent
bias of the estimates, the standard error of the estimated bias
(i.e., the standard deviation of the estimates across iterations
of the simulation), the mean squared error, and the 95%
confidence interval (CI) coverage (SAS code (SAS Institute,
Inc., Cary, North Carolina) is provided in Web Appendix 5).

Late–study-start bias simulation. For each scenario, we
approximated log-linear models with conventional logistic
models under under the rare disease assumption to estimate
the lifetime effect of depression on stroke, contrasting
“depressed throughout life”with“notdepressedat anypoint.”
We then reestimated the lifetime effect using information
only from mid- and late life to mimic a real-world setting
where follow-up started in midlife. The percent bias was
calculated comparing the estimated effects with the “true”
effects on the log odds scale. We also calculated the standard
error of estimated bias, the mean squared error, and the 95%
CI coverage (SAS code is provided in Web Appendix 5).

Late–study-start scenario with time-varying confounding
simulation. Effect estimates for mid- and late-life depres-
sion were calculated with conventional logistic regression
to approximate log-linear models under the rare disease
assumption and MSMs using information only from mid-
and late life. Conventional models adjusted for AUD by
directly including it in the regression model, and the MSM
coefficients were estimated using IPW methods. Stabilized
IPWs were created for depression, with depression at each
time point being conditional on depression and AUD at

the prior time point. The percent bias was calculated for the
midlife, late-life, and lifetime effects for each set of analyses.
We also calculated the standard error of the estimated bias,
the mean squared error, and the 95% CI coverage (SAS code
is provided in Web Appendix 5).

RESULTS

Time-varying confounding simulation results

Under the accumulation model, effect estimates for early-,
mid-, and late-life depression provided by the conventional
model versus the MSM were the same if no confounding was
present (Table 1, scenario 1) or if the confounder was unaf-
fected by prior depression (scenario 7). After introducing
time-varying mediating confounders (Figure 2A; Table 1,
scenarios 2 and 3), effects for early life and midlife estimated
in conventional models were closer to the null than the true
effect. Conversely, the estimate of late-life effects from the
conventional model and all of the estimates from the MSMs
closely approximated the true effect of depression at the
corresponding time points. A similar pattern was shown in
the context of negative confounding (scenario 4) but with
conventional model estimates for early- and midlife being
further from the null than the true effect. When greater time-
varying confounding occurred in early life (scenario 5), con-
ventional regression underestimated the effect of early-life
versus midlife depression more severely. The opposite was
true when time-varying confounding was greatest later in life
(scenario 6). In the presence of an unmeasured confounder of
AUD and stroke (scenario 8), conventional estimates of the
effect of early- and midlife depression were underestimated
while late-life estimates were unbiased.

Late–study-start bias simulation results

With a late study start, under the 3 accumulation models
and the early-life critical period models, the estimated mid-
and late-life effects were inflated compared with the true
mid- and late-life effects (Table 2). Under these theoretical
models, individuals with early-life depression had elevated
risks of mid- and late-life depression and of stroke, so
early-life depression was a confounder that was positively
associated with the measured exposure and the outcome.
However, under these theoretical models, the effects of
early-life depression were not completely mediated by later
depression; thus, the mid- and late-life estimates only par-
tially captured the effects of early-life depression. As a
result, the accumulation and early-life critical period mod-
els underestimated the lifetime effect by 27% and 82%,
respectively. Under the pathway model, the direct effects
of mid- and late life were estimated correctly even in a
model without information on early-life depression, and the
estimated lifetime effect was minimally biased.

Late–study-start scenario with time-varying
confounding simulation under the accumulation model

When time-varying confounding occurred in the context
of a late study start under the accumulation model, neither
conventional models nor MSMs could recover true effects
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Table 3. Estimated Effects of Depression on Stroke Risk Under an Accumulation Model (Expressed on the Log Odds Scale) Comparing
Conventional Regression and Inverse Probability Weighting to Estimate Marginal Structural Model Parameters in the Presence of a Late Study
Start and Time-Varying Confoundersa

Estimated Effect (Log RR) of Depression on Stroke Risk

Depression in Midlife Depression in Late Life Lifetime Effect of DepressionAnalytical Method

Log RR (δ2) % Biasb Log RR (δ3) % Biasb Method of
Calculation

Log RR % Biasb

True effects 0.69 0.69 δ1 + δ2 + δ3 2.07

Conventional regression 0.56 −19 0.69 0 δ2 + δ3 1.25 −40

IPW estimation of MSM 0.74 7 0.69 0 δ2 + δ3 1.43 −31

Abbreviations: AUD, alcohol use disorder; IPW, inverse probability weighting; MSM, marginal structural model; RR, risk ratio.
a Data were generated to mimic the effect of depression on stroke under the accumulation model: The true direct effect of depression at each

time point doubled the odds of stroke, and depression increased the odds of depression at the subsequent time point by 50%. We assumed
that depression approximately tripled the odds of AUD, that AUD increased the odds of depression at the subsequent time point by 50%, and
that AUD doubled the odds of stroke. Data were generated with 10,000 replications and 100,000 people in each sample.

b Percent bias = [(average of 10,000 estimated effect − true effect of 0.69)/true effect of 0.69] × 100.

for all parameters of interest (Table 3). While the conven-
tional model ignoring early-life depression provided an
almost unbiased estimate of late-life depression effects on
stroke, it underestimated the effect of midlife depression.
Thus, it underestimated the lifetime effect of depression,
which was based on unbiased estimates of late-life depres-
sion and underestimated midlife depression. In contrast,
the MSM overestimated the midlife effect of depression,
correctly estimated the late-life effect, and underestimated
the lifetime effect.

Accuracy and precision of estimates across simulations

Web Tables 1–3 present the standard error of estimated
bias, the mean squared error, and the 95% CI coverage
of effect estimates obtained under the 3 sets of scenarios
described above. In general, the larger the percent bias, the
lower was the 95% CI coverage and the greater the mean
squared error. There did not appear to be an association
between the percent bias and the standard error. The dif-
ference in standard errors between estimates obtained from
conventional models versus MSMs varied by simulation.

DISCUSSION

We examined whether MSMs can provide unbiased esti-
mates of the association between depression and stroke
risk under different life-course models and in the context
of 2 often co-occurring methodological challenges: time-
varying confounding and initiation of data collection in
midlife. Bias introduced by time-varying confounding can
be appropriately addressed using MSMs, but the extent of
bias due to a late study start depends on the true under-
lying life-course model. In our simulations, conventional
models and MSMs provided unbiased estimates when time-

varying confounders were not present or when time-varying
confounders were unaffected by prior levels of depression.
When a time-varying confounder was affected by prior
depression levels, regression adjustment of the confounder
resulted in underestimation of depression’s effect on stroke.
MSM estimates using IPW provided unbiased estimates
in the context of time-varying confounding but not in the
scenario with a late study start.

When cohort studies begin in mid- to late life, researchers
are only able to estimate effects of observed mid- to late-
life exposures rather than lifetime effects. In simulations
assuming no confounders, the estimated effect of late-life
depression from conventional models provided an unbiased
estimate of the true lifetime effect of depression only under
the pathway model (i.e., when early- and midlife depression
had no direct effects on stroke). Under the accumulation
and early-life critical periods models, early-life depression
acted as a positive confounder, resulting in overestimation of
the relationships between mid- and late-life depression and
stroke. Moreover, the lifetime effects were underestimated,
since the effects of early-life depression on stroke were not
completely mediated by mid- and late life.

In real-world research on psychosocial factors, often time-
varying exposures and a late study start co-occur. When
simulated concurrently, MSM estimates were generally
less biased than those from conventional models, though
both underestimated the lifetime effect of depression on
stroke. The correlation of exposures over time implies that
midlife exposures may serve as a good proxy for early-
life exposures. However, it also means that effect estimates
of midlife exposures could be confounded by the effects
of early-life exposures. Disentangling the time-specific
exposure effect from potentially confounding effects of
prior exposure becomes critical when trying to inform the
timing of potential interventions. When conducting research
in which exposures are measured only in mid- to late life,
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researchers should acknowledge that omitting early-life
exposures could bias estimates and should describe how
the estimated late-life effect may differ from the lifetime
effect (8). In these cases, it may be useful to include
estimates of the plausible direction and magnitude of bias
using sensitivity analyses. Although, in principle, we expect
IPW of exposures to increase the variance of the estimates,
whether conventional models or MSMs had more precise
estimates varied by simulation. The optimal choice when
balancing bias and variance will be specific to the scientific
question at hand.

Conventional epidemiologic methods are often inappro-
priate for estimating effects of psychosocial factors on life-
course health because these effects may accumulate across
the life course, differ depending on age of exposure, or
are subject to complex, time-varying confounding by other
exposures. While MSMs can ameliorate some bias due to
these methodological challenges, they cannot completely
account for bias induced by late study entry, a common
complication in this field. The best time to handle missing
early-life exposure data is during the study design phase. Our
findings reinforce the importance of supporting birth cohort
studies and other types of studies that capture information
on exposures across the life course. For example, cohort
data could be linked to preexisting data sources such as US
Census data, Social Security claims, vital records, military
veterans’ records, and other government records. Retrospec-
tive collection of data on prior exposures may help mitigate
confounding of later-life exposures, but misclassification
and recall bias become concerns.

During the analytical phase, methods such as the use
of negative controls can be implemented to detect bias in
observational studies (36, 37). Other sources of information
regarding the likely distribution of the exposure within the
population of interest could be used to estimate a weighted
average of the different exposure categories in late life.
Mendelian randomization uses genetic variants as instru-
mental variables and under certain assumptions provides
causal estimates. Such estimates may be useful but should
not be misinterpreted as providing precise estimates for
effects of exposure at a specific age. In principle, instru-
mental variables with age-specific effects on exposure could
be used to ameliorate this problem. For example, policy
changes are often used as instrumental variables in social
epidemiology if the policy alters access or exposure to spe-
cific social resources or adversities. Such policy changes will
occur at different ages for different individuals and could—
with sufficient data and strong assumptions—be used to
estimate age-specific effects of social determinants of health.

Left-truncation of outcomes is another possible source of
bias if people who have already experienced an outcome
are excluded from the cohort. In the presented scenarios,
it is unlikely that left-truncation of the outcomes was a
serious concern, since the outcome (stroke) rarely occurs
before the start of follow-up in midlife. However, researchers
should consider the possible effects of left-truncation of
the outcome if relevant to their studies, since it may result
in selection bias (38, 39). Though the causal structures
we present are oversimplifications of a series of complex
relationships occurring across the life course, our scenarios

highlight the importance of addressing these methodological
challenges, since biases illustrated in simplified scenarios
will likely be evident in more complicated scenarios.

Our findings underscore the importance of clearly iden-
tifying and discussing what effects can and cannot be esti-
mated without bias. A more refined understanding of each
study’s results will provide the clearest possible indication
of what future studies are needed to advance the field and
what important questions remain.
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