Skip to main content
. 2022 Mar 5;34(12):9511–9536. doi: 10.1007/s00521-022-07104-9

Table 2.

Different object-based crop/plant classification methods

Ref. Method Backbone Plant types Sensor GSD (cm) Altitude (m) Average Precision (%) Precision (%) Recall (%) F1-Score (%) Inference time (ms) FPS
[76] Faster R-CNN Inception-v2 Banana plant RGB 1.78 40 99.3 96.4 97.82
2.03 50 97.9 85.1 91.05
2.54 60 98.5 75.8 85.67
40 + 50 98.3 99 98.64
40 + 50 + 60 97.9 98.6 98.24
[9] RetinaNet ResNet Ornamental plants RGB 73.41
YOLOv3 DarkNet-53 79.85
[116] YOLOv2 Mango fruits RGB 1.5 − 2 86.4 96.1 89 92.41 80 40
[54] MangoYOLO / Mango fruits RGB 2 98.3 96.8 15 14
YOLOv2 DarkNet-19 95.9 93.3 20
YOLOv2-tiny / 95.3 91.7 10
YOLOv3 DarkNet-53 96.7 95.1 25
SSD VGG-16 98.3 95.9 70
Faster R-CNN VGG 95.3 94.5 67
Faster R-CNN ZF 95 93.9 37
[97] Faster R-CNN ResNet-50 Trees RGB 0.82 20 − 40 82.48 163
YOLOv3 DarkNet-53 85.88 26
RetinaNet FPN 92.64 67
[39] YOLOv4 Wheatears RGB 0.01 − 0.06 1.2 − 3 62.75 88.23 57
Modified YOLOv4 77.81 96.71 72
[4] YOLOv3 DarkNet-53 Citrus trees Multi-spectral 75 99.9 99.7 99.79
[20] CNN + Classifier (with refinement) Citrus trees Multi-spectral 104 94.59 97.94 96.24
CNN + Classifier (without refinement) 65 98 78
[78] RetinaNet Citrus trees Multi-spectral 12.9 120 62 92 74
Faster R-CNN 86 39 54
Proposed approach VGG-16 95 96 95 40 (8 stages) 25
[112] Faster R-CNN Apple trees RGB 91.1 94.1 92.5