Skip to main content
. 2022 Mar 5;34(12):9511–9536. doi: 10.1007/s00521-022-07104-9

Table 3.

Different pixel-based crop/plant classification methods

Ref. Data types GSD (cm) Altitude (m) Method Backbone Target crops Overall Accuracy (%) Precision (%) Recall (%) Kappa F1-Score (%) Time (s)
[118] RGB 5.3 230 SegNet VGG-16 Rice paddy, Rice lodging 83.10 69.06 75.43 101
RGB+ExG 71.03 89.64 79.26 108
RGB+ExGR 73.96 83.36 78.38 109
RGB+ExG+ExGR 87.66 57.38 69.36 106
RGB FCN AlexNet 84.73 82.43 83.56 59
RGB+ExG 84.92 80.85 82.84 65
RGB+ExGR 77.02 88.80 82.49 66
RGB+ExG+ExGR 82.02 84.44 83.21 72
RGB 5.7 200 SegNet VGG-16 Rice paddy, Rice lodging 87.55 38.65 53.63 99
RGB+ExG 57.06 67.50 61.84 109
RGB+ExGR 81.35 58.59 68.12 107
RGB+ExG+ExGR 82.47 29.07 42.99 113
RGB FCN AlexNet 99.12 39.59 56.58 57
RGB+ExG 95.03 59.18 72.94 67
RGB+ExGR 95.32 66.39 78.27 68
RGB+ExG+ExGR 93.19 67.03 77.97 71
[102] RGB 6.4 150 FCN Sunflower 78
SegNet 79
Improved SegNet VGG-16 81.95
Multispectral 8.1 FCN 77.45
SegNet 78.25
Improved SegNet VGG-16 80.5
Fusion (RGB + FNIR) 9.5 FCN 81.55
SegNet 82.65
Improved SegNet VGG-16 86.55
[57] RGB 9.5 FCRN-MTL Full-grown citrus trees 98.8 99.2 98.4 98.8
Citrus tree seedlings 56.6 47.8 65.4 55.23
[27] RGB 20 Deep convolutional Encoder-decoder network Fig Plant 93.84 92 95.05 93.50
SegNet-basic 93.82 93.49 93.22 93.35
[53] RGB 20 U-Net Corn 99.4
[8] RGB 10 FCN Beet 49.69 26.25 32.15
SegNet 80.24 67.4 71.79
CR-Hough-SLIC 86.58 85.67 85.40
CRowNet 90.37 90.56 90.39
CR-Hough-SLIC Maize 85.14 97.74 82.13
CRowNet 84.57 80.93 82.5
[21] RGB 2.21 SegNet VGG-16 Rice, Corn 89.44
FCN AlexNet 88.48
[23] Multispectral U-Net VGG-16 Sugar beet 99
SegNet 98
[112] RGB U-Net Apple tree crown 97.1 84.2 84.5 84.2
[123] RGB 0.37, 0.56, 0.74 20 U-Net Purple rapeseed leaves 94 90 91.56
[52] RGB 3 100 U-Net Pinus radiata, Ulex europaeus 85.5
[66] RGB 1.7–2 Mask R-CNN Potato 99.72 82.50 90.3
Lettuce 100 95.43 97.7
[81] RGB 1 40–60 Mask Scoring R-CNN Maize V5 growth stage 95.8 82.8
Multispectral 2.5 Maize V4 growth stage 82.7 79.9
[25] RGB 4 120 DeepLabv3+ ResNet-18 Amazonian palms 86 88 87
[74] RGB DeepLabv3+ Mauritia flexuosa 98.036 96.688 95.616 96.14
U-Net1 95.973 91.381 92.632 92
U-Net2 97.682 94.858 95.953 95.4
U-Net3 96.843 92.534 94.886 93.7
U-Net4 97.512 95.166 95.028 95.1
[128] Hyperspectral 46.3 500 CNN-CRF WHU-Hi-LongKou: 6 crop types 98.91 0.9857
10.9 250 WHU-Hi-HanChuan: 7 crop types 93.95 0.9290
4.3 100 WHU-Hi-HongHu: 17 crop types 93.74 0.9217
[60] RGB 0.47, 0.90, 1.43, and 1.76 FDN-92 12 plants 87
FDN-29 84
FDN-17 86
Inception-V1 80
Inception-V2 79
Inception-V3 77
ResNet-17 73
ResNet-50 74
ResNet-101 76
DenseNet-21 82
DenseNet-36 80
DenseNet-121 82
[43] Hyperspectral CNN 19 crop types 88.62 0.8557
CNN-CRF 91.79 0.8957
[82] RGB 25 2D-CNN Highland Kimchi cabbage, Cabbage, Potato 86.56
[18] RGB 3 DNN VGG-16 Maize, Bananas, Legumes 86 86 86 0.82 86
[109] RGB + Multi-spectral 100 LeNet LeNet Corn 67.7 46.4
180 86.8 81.8
100-180 72.6 54.5
100 47.7 12.8
[85] RGB 5 Hybrid CNN-HistNN 22 crops 90
[129] UAV ANN Peanut, Maize, Honeysuckle, Tree 78.53 0.73
Fused 85.72 0.81