Table 3.
Different pixel-based crop/plant classification methods
Ref. | Data types | GSD (cm) | Altitude (m) | Method | Backbone | Target crops | Overall Accuracy (%) | Precision (%) | Recall (%) | Kappa | F1-Score (%) | Time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[118] | RGB | 5.3 | 230 | SegNet | VGG-16 | Rice paddy, Rice lodging | 83.10 | 69.06 | 75.43 | 101 | ||
RGB+ExG | 71.03 | 89.64 | 79.26 | 108 | ||||||||
RGB+ExGR | 73.96 | 83.36 | 78.38 | 109 | ||||||||
RGB+ExG+ExGR | 87.66 | 57.38 | 69.36 | 106 | ||||||||
RGB | FCN | AlexNet | 84.73 | 82.43 | 83.56 | 59 | ||||||
RGB+ExG | 84.92 | 80.85 | 82.84 | 65 | ||||||||
RGB+ExGR | 77.02 | 88.80 | 82.49 | 66 | ||||||||
RGB+ExG+ExGR | 82.02 | 84.44 | 83.21 | 72 | ||||||||
RGB | 5.7 | 200 | SegNet | VGG-16 | Rice paddy, Rice lodging | 87.55 | 38.65 | 53.63 | 99 | |||
RGB+ExG | 57.06 | 67.50 | 61.84 | 109 | ||||||||
RGB+ExGR | 81.35 | 58.59 | 68.12 | 107 | ||||||||
RGB+ExG+ExGR | 82.47 | 29.07 | 42.99 | 113 | ||||||||
RGB | FCN | AlexNet | 99.12 | 39.59 | 56.58 | 57 | ||||||
RGB+ExG | 95.03 | 59.18 | 72.94 | 67 | ||||||||
RGB+ExGR | 95.32 | 66.39 | 78.27 | 68 | ||||||||
RGB+ExG+ExGR | 93.19 | 67.03 | 77.97 | 71 | ||||||||
[102] | RGB | 6.4 | 150 | FCN | Sunflower | 78 | ||||||
SegNet | 79 | |||||||||||
Improved SegNet | VGG-16 | 81.95 | ||||||||||
Multispectral | 8.1 | FCN | 77.45 | |||||||||
SegNet | 78.25 | |||||||||||
Improved SegNet | VGG-16 | 80.5 | ||||||||||
Fusion (RGB + FNIR) | 9.5 | FCN | 81.55 | |||||||||
SegNet | 82.65 | |||||||||||
Improved SegNet | VGG-16 | 86.55 | ||||||||||
[57] | RGB | 9.5 | FCRN-MTL | Full-grown citrus trees | 98.8 | 99.2 | 98.4 | 98.8 | ||||
Citrus tree seedlings | 56.6 | 47.8 | 65.4 | 55.23 | ||||||||
[27] | RGB | 20 | Deep convolutional Encoder-decoder network | Fig Plant | 93.84 | 92 | 95.05 | 93.50 | ||||
SegNet-basic | 93.82 | 93.49 | 93.22 | 93.35 | ||||||||
[53] | RGB | 20 | U-Net | Corn | 99.4 | |||||||
[8] | RGB | 10 | FCN | Beet | 49.69 | 26.25 | 32.15 | |||||
SegNet | 80.24 | 67.4 | 71.79 | |||||||||
CR-Hough-SLIC | 86.58 | 85.67 | 85.40 | |||||||||
CRowNet | 90.37 | 90.56 | 90.39 | |||||||||
CR-Hough-SLIC | Maize | 85.14 | 97.74 | 82.13 | ||||||||
CRowNet | 84.57 | 80.93 | 82.5 | |||||||||
[21] | RGB | 2.21 | SegNet | VGG-16 | Rice, Corn | 89.44 | ||||||
FCN | AlexNet | 88.48 | ||||||||||
[23] | Multispectral | U-Net | VGG-16 | Sugar beet | 99 | |||||||
SegNet | 98 | |||||||||||
[112] | RGB | U-Net | Apple tree crown | 97.1 | 84.2 | 84.5 | 84.2 | |||||
[123] | RGB | 0.37, 0.56, 0.74 | 20 | U-Net | Purple rapeseed leaves | 94 | 90 | 91.56 | ||||
[52] | RGB | 3 | 100 | U-Net | Pinus radiata, Ulex europaeus | 85.5 | ||||||
[66] | RGB | 1.7–2 | Mask R-CNN | Potato | 99.72 | 82.50 | 90.3 | |||||
Lettuce | 100 | 95.43 | 97.7 | |||||||||
[81] | RGB | 1 | 40–60 | Mask Scoring R-CNN | Maize V5 growth stage | 95.8 | 82.8 | |||||
Multispectral | 2.5 | Maize V4 growth stage | 82.7 | 79.9 | ||||||||
[25] | RGB | 4 | 120 | DeepLabv3+ | ResNet-18 | Amazonian palms | 86 | 88 | 87 | |||
[74] | RGB | DeepLabv3+ | Mauritia flexuosa | 98.036 | 96.688 | 95.616 | 96.14 | |||||
U-Net1 | 95.973 | 91.381 | 92.632 | 92 | ||||||||
U-Net2 | 97.682 | 94.858 | 95.953 | 95.4 | ||||||||
U-Net3 | 96.843 | 92.534 | 94.886 | 93.7 | ||||||||
U-Net4 | 97.512 | 95.166 | 95.028 | 95.1 | ||||||||
[128] | Hyperspectral | 46.3 | 500 | CNN-CRF | WHU-Hi-LongKou: 6 crop types | 98.91 | 0.9857 | |||||
10.9 | 250 | WHU-Hi-HanChuan: 7 crop types | 93.95 | 0.9290 | ||||||||
4.3 | 100 | WHU-Hi-HongHu: 17 crop types | 93.74 | 0.9217 | ||||||||
[60] | RGB | 0.47, 0.90, 1.43, and 1.76 | FDN-92 | 12 plants | 87 | |||||||
FDN-29 | 84 | |||||||||||
FDN-17 | 86 | |||||||||||
Inception-V1 | 80 | |||||||||||
Inception-V2 | 79 | |||||||||||
Inception-V3 | 77 | |||||||||||
ResNet-17 | 73 | |||||||||||
ResNet-50 | 74 | |||||||||||
ResNet-101 | 76 | |||||||||||
DenseNet-21 | 82 | |||||||||||
DenseNet-36 | 80 | |||||||||||
DenseNet-121 | 82 | |||||||||||
[43] | Hyperspectral | CNN | 19 crop types | 88.62 | 0.8557 | |||||||
CNN-CRF | 91.79 | 0.8957 | ||||||||||
[82] | RGB | 25 | 2D-CNN | Highland Kimchi cabbage, Cabbage, Potato | 86.56 | |||||||
[18] | RGB | 3 | DNN | VGG-16 | Maize, Bananas, Legumes | 86 | 86 | 86 | 0.82 | 86 | ||
[109] | RGB + Multi-spectral | 100 | LeNet | LeNet | Corn | 67.7 | 46.4 | |||||
180 | 86.8 | 81.8 | ||||||||||
100-180 | 72.6 | 54.5 | ||||||||||
100 | 47.7 | 12.8 | ||||||||||
[85] | RGB | 5 | Hybrid CNN-HistNN | 22 crops | 90 | |||||||
[129] | UAV | ANN | Peanut, Maize, Honeysuckle, Tree | 78.53 | 0.73 | |||||||
Fused | 85.72 | 0.81 |