Table 3.
Different pixel-based crop/plant classification methods
| Ref. | Data types | GSD (cm) | Altitude (m) | Method | Backbone | Target crops | Overall Accuracy (%) | Precision (%) | Recall (%) | Kappa | F1-Score (%) | Time (s) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| [118] | RGB | 5.3 | 230 | SegNet | VGG-16 | Rice paddy, Rice lodging | 83.10 | 69.06 | 75.43 | 101 | ||
| RGB+ExG | 71.03 | 89.64 | 79.26 | 108 | ||||||||
| RGB+ExGR | 73.96 | 83.36 | 78.38 | 109 | ||||||||
| RGB+ExG+ExGR | 87.66 | 57.38 | 69.36 | 106 | ||||||||
| RGB | FCN | AlexNet | 84.73 | 82.43 | 83.56 | 59 | ||||||
| RGB+ExG | 84.92 | 80.85 | 82.84 | 65 | ||||||||
| RGB+ExGR | 77.02 | 88.80 | 82.49 | 66 | ||||||||
| RGB+ExG+ExGR | 82.02 | 84.44 | 83.21 | 72 | ||||||||
| RGB | 5.7 | 200 | SegNet | VGG-16 | Rice paddy, Rice lodging | 87.55 | 38.65 | 53.63 | 99 | |||
| RGB+ExG | 57.06 | 67.50 | 61.84 | 109 | ||||||||
| RGB+ExGR | 81.35 | 58.59 | 68.12 | 107 | ||||||||
| RGB+ExG+ExGR | 82.47 | 29.07 | 42.99 | 113 | ||||||||
| RGB | FCN | AlexNet | 99.12 | 39.59 | 56.58 | 57 | ||||||
| RGB+ExG | 95.03 | 59.18 | 72.94 | 67 | ||||||||
| RGB+ExGR | 95.32 | 66.39 | 78.27 | 68 | ||||||||
| RGB+ExG+ExGR | 93.19 | 67.03 | 77.97 | 71 | ||||||||
| [102] | RGB | 6.4 | 150 | FCN | Sunflower | 78 | ||||||
| SegNet | 79 | |||||||||||
| Improved SegNet | VGG-16 | 81.95 | ||||||||||
| Multispectral | 8.1 | FCN | 77.45 | |||||||||
| SegNet | 78.25 | |||||||||||
| Improved SegNet | VGG-16 | 80.5 | ||||||||||
| Fusion (RGB + FNIR) | 9.5 | FCN | 81.55 | |||||||||
| SegNet | 82.65 | |||||||||||
| Improved SegNet | VGG-16 | 86.55 | ||||||||||
| [57] | RGB | 9.5 | FCRN-MTL | Full-grown citrus trees | 98.8 | 99.2 | 98.4 | 98.8 | ||||
| Citrus tree seedlings | 56.6 | 47.8 | 65.4 | 55.23 | ||||||||
| [27] | RGB | 20 | Deep convolutional Encoder-decoder network | Fig Plant | 93.84 | 92 | 95.05 | 93.50 | ||||
| SegNet-basic | 93.82 | 93.49 | 93.22 | 93.35 | ||||||||
| [53] | RGB | 20 | U-Net | Corn | 99.4 | |||||||
| [8] | RGB | 10 | FCN | Beet | 49.69 | 26.25 | 32.15 | |||||
| SegNet | 80.24 | 67.4 | 71.79 | |||||||||
| CR-Hough-SLIC | 86.58 | 85.67 | 85.40 | |||||||||
| CRowNet | 90.37 | 90.56 | 90.39 | |||||||||
| CR-Hough-SLIC | Maize | 85.14 | 97.74 | 82.13 | ||||||||
| CRowNet | 84.57 | 80.93 | 82.5 | |||||||||
| [21] | RGB | 2.21 | SegNet | VGG-16 | Rice, Corn | 89.44 | ||||||
| FCN | AlexNet | 88.48 | ||||||||||
| [23] | Multispectral | U-Net | VGG-16 | Sugar beet | 99 | |||||||
| SegNet | 98 | |||||||||||
| [112] | RGB | U-Net | Apple tree crown | 97.1 | 84.2 | 84.5 | 84.2 | |||||
| [123] | RGB | 0.37, 0.56, 0.74 | 20 | U-Net | Purple rapeseed leaves | 94 | 90 | 91.56 | ||||
| [52] | RGB | 3 | 100 | U-Net | Pinus radiata, Ulex europaeus | 85.5 | ||||||
| [66] | RGB | 1.7–2 | Mask R-CNN | Potato | 99.72 | 82.50 | 90.3 | |||||
| Lettuce | 100 | 95.43 | 97.7 | |||||||||
| [81] | RGB | 1 | 40–60 | Mask Scoring R-CNN | Maize V5 growth stage | 95.8 | 82.8 | |||||
| Multispectral | 2.5 | Maize V4 growth stage | 82.7 | 79.9 | ||||||||
| [25] | RGB | 4 | 120 | DeepLabv3+ | ResNet-18 | Amazonian palms | 86 | 88 | 87 | |||
| [74] | RGB | DeepLabv3+ | Mauritia flexuosa | 98.036 | 96.688 | 95.616 | 96.14 | |||||
| U-Net1 | 95.973 | 91.381 | 92.632 | 92 | ||||||||
| U-Net2 | 97.682 | 94.858 | 95.953 | 95.4 | ||||||||
| U-Net3 | 96.843 | 92.534 | 94.886 | 93.7 | ||||||||
| U-Net4 | 97.512 | 95.166 | 95.028 | 95.1 | ||||||||
| [128] | Hyperspectral | 46.3 | 500 | CNN-CRF | WHU-Hi-LongKou: 6 crop types | 98.91 | 0.9857 | |||||
| 10.9 | 250 | WHU-Hi-HanChuan: 7 crop types | 93.95 | 0.9290 | ||||||||
| 4.3 | 100 | WHU-Hi-HongHu: 17 crop types | 93.74 | 0.9217 | ||||||||
| [60] | RGB | 0.47, 0.90, 1.43, and 1.76 | FDN-92 | 12 plants | 87 | |||||||
| FDN-29 | 84 | |||||||||||
| FDN-17 | 86 | |||||||||||
| Inception-V1 | 80 | |||||||||||
| Inception-V2 | 79 | |||||||||||
| Inception-V3 | 77 | |||||||||||
| ResNet-17 | 73 | |||||||||||
| ResNet-50 | 74 | |||||||||||
| ResNet-101 | 76 | |||||||||||
| DenseNet-21 | 82 | |||||||||||
| DenseNet-36 | 80 | |||||||||||
| DenseNet-121 | 82 | |||||||||||
| [43] | Hyperspectral | CNN | 19 crop types | 88.62 | 0.8557 | |||||||
| CNN-CRF | 91.79 | 0.8957 | ||||||||||
| [82] | RGB | 25 | 2D-CNN | Highland Kimchi cabbage, Cabbage, Potato | 86.56 | |||||||
| [18] | RGB | 3 | DNN | VGG-16 | Maize, Bananas, Legumes | 86 | 86 | 86 | 0.82 | 86 | ||
| [109] | RGB + Multi-spectral | 100 | LeNet | LeNet | Corn | 67.7 | 46.4 | |||||
| 180 | 86.8 | 81.8 | ||||||||||
| 100-180 | 72.6 | 54.5 | ||||||||||
| 100 | 47.7 | 12.8 | ||||||||||
| [85] | RGB | 5 | Hybrid CNN-HistNN | 22 crops | 90 | |||||||
| [129] | UAV | ANN | Peanut, Maize, Honeysuckle, Tree | 78.53 | 0.73 | |||||||
| Fused | 85.72 | 0.81 |