Table 1.
Antibiotic | Action mechanism | Resistance mechanism | Highest activity against | Lowest activity against | |
---|---|---|---|---|---|
Suppression of cell wall synthesis | Ethambutol | Suppression of arabinogalactan biosynthesis | Mutation in embCAB and inhibition of mycobacterial arabinosyl transferase translation | Rapid growers of NTM MAC1 M. kansasii |
M. kansasii
M. avium M. smegmatis |
Beta-lactams (imipenem) | Suppression of enzymatic activity of PBPs2 and peptidoglycan synthesis | Enhance cell wall permeability, the affinity of PBP, and the activity of β-lactamases | Rapid growers of NTM |
M. fortuitum
M. chelonae M. smegmatis M. abscessus M. avium |
|
Isoniazid | Suppression of mycolic acid synthesis | Lack of catalase-peroxidase KatG and isoniazid efflux pump |
M. kansasii
M. xenopi |
Most species of NTM | |
Vancomycin | Suppression of mature peptidoglycan assembly | Enhance cell wall permeability | Most species of NTM | Most species of NTM | |
Delamanid | Suppression of keto- and methoxy-mycolic acid synthesis | Not determined for NTM species | MDR-TB3 M. intracellulare M. avium |
M. kansasii | |
| |||||
Suppression of DNA synthesis | Fluoroquinolones | Suppression of topoisomerase IV and DNA gyrase | Mutations in gyrA and gyrB genes LfrA efflux pump The main mechanism is not clear |
Macrolide-resistant MAC M. abscessus |
MAC M. abscessus M. smegmatis M. vanbaalenii |
Sulfamethoxazole | Suppression of microbial folate metabolism and nucleic acid synthesis | Activity of reductase | Most species of NTM |
M. avium
M. smegmatis |
|
SPR719 and SPR720 | Suppression of ATPase activity gyrase and topoisomerase IV | Not determined for NTM species |
M. tuberculosis
MAC M. abscessus M. kansasii |
Not determined for NTM species | |
| |||||
Suppression of protein synthesis | Macrolides (clarithromycin and azithromycin) | Suppression of peptide chain elongation by binding to the exited peptide from ribosome | Activity of ribosomal methyltransferase (erm) Mutation in 23SrRNA |
Most species of NTM |
M. bolletii
M. goodie M. kansasii M. chelonae M. abscessus M. wolinskyi M. boenickei M. fortuitum M. porcinum M. smegmatis M. massiliense M. houstonense M. mageritense M. neworleansense |
Oxazolidinones (linezolid, tedizolid, and LCB01-0371) | Binding to the 23SrRNA and suppression of protein synthesis | Mutation in rplC and 23SrRNA | Most species of NTM (linezolid for MAC and M. abscessus) |
M. tuberculosis
Not determined for NTM species |
|
Aminoglycosides | Irreversible binding to the 30S ribosomal subunit and suppression of translation process | Mutation in 16SrRNA (rpsL) Activity of phosphotransferases and acetyltransferase |
Most species of NTM | MAC M. chelonae M. massiliense M. abscessus M. fortuitum M. avium |
|
Tetracyclines | Reversibly bind to the 30S ribosomal subunit and suppression of binding of tRNA and mRNA-ribosome complex | Activity of ribosome protection proteins (otrA and tetM) Activity of efflux pumps (Tet, Otr, and Tap) |
Most species of NTM | Most species of NTM | |
Tigecycline | Binding to 30S ribosomal subunit and suppression of acyltRNA binding | Tet(X) enzyme |
M. abscessus
M. chelonae |
Not determined for NTM species | |
Rifampin | Suppression of DNA-dependent RNA polymerase of bacteria | Mutation in rpoB Expression of arr |
MAC M. kansasii |
MAC M. kansasii M. ulcerans M. smegmatis M. abscessus |
|
| |||||
Suppression of respiratory chain | Bedaquiline | Suppression of atpE gene, a mycobacterial ATP synthase, and lack of ATP production | Mutations in atpE, mmpT5, and pepQ | MDR-TB MAC M. leprae M. avium M. abscessus M. massiliense |
M. avium
M. kansasii M. abscessus M. fortuitum M. flavescens M. massiliense M. intracellulare |
Clofazimine | Suppression of bacterial proliferation by blocking the intracellular redox cycling | Mutation in mmpR5 and pepQ | Most species of NTM |
M. tuberculosis
M. abscessus M. intracellulare |
1 M. avium complex; 2penicillin-binding proteins; 3multidrug-resistant tuberculosis.