Skip to main content
. 2022 Feb 26;2022:8168750. doi: 10.1155/2022/8168750

Table 1.

Characteristics of used antibiotics in NTM infections based on action and resistance mechanisms.

Antibiotic Action mechanism Resistance mechanism Highest activity against Lowest activity against
Suppression of cell wall synthesis Ethambutol Suppression of arabinogalactan biosynthesis Mutation in embCAB and inhibition of mycobacterial arabinosyl transferase translation Rapid growers of NTM
MAC1
M. kansasii
M. kansasii
M. avium
M. smegmatis
Beta-lactams (imipenem) Suppression of enzymatic activity of PBPs2 and peptidoglycan synthesis Enhance cell wall permeability, the affinity of PBP, and the activity of β-lactamases Rapid growers of NTM M. fortuitum
M. chelonae
M. smegmatis
M. abscessus
M. avium
Isoniazid Suppression of mycolic acid synthesis Lack of catalase-peroxidase KatG and isoniazid efflux pump M. kansasii
M. xenopi
Most species of NTM
Vancomycin Suppression of mature peptidoglycan assembly Enhance cell wall permeability Most species of NTM Most species of NTM
Delamanid Suppression of keto- and methoxy-mycolic acid synthesis Not determined for NTM species MDR-TB3
M. intracellulare
M. avium
M. kansasii

Suppression of DNA synthesis Fluoroquinolones Suppression of topoisomerase IV and DNA gyrase Mutations in gyrA and gyrB genes
LfrA efflux pump
The main mechanism is not clear
Macrolide-resistant MAC
M. abscessus
MAC
M. abscessus
M. smegmatis
M. vanbaalenii
Sulfamethoxazole Suppression of microbial folate metabolism and nucleic acid synthesis Activity of reductase Most species of NTM M. avium
M. smegmatis
SPR719 and SPR720 Suppression of ATPase activity gyrase and topoisomerase IV Not determined for NTM species M. tuberculosis
MAC
M. abscessus
M. kansasii
Not determined for NTM species

Suppression of protein synthesis Macrolides (clarithromycin and azithromycin) Suppression of peptide chain elongation by binding to the exited peptide from ribosome Activity of ribosomal methyltransferase (erm)
Mutation in 23SrRNA
Most species of NTM M. bolletii
M. goodie
M. kansasii
M. chelonae
M. abscessus
M. wolinskyi
M. boenickei
M. fortuitum
M. porcinum
M. smegmatis
M. massiliense
M. houstonense
M. mageritense
M. neworleansense
Oxazolidinones (linezolid, tedizolid, and LCB01-0371) Binding to the 23SrRNA and suppression of protein synthesis Mutation in rplC and 23SrRNA Most species of NTM (linezolid for MAC and M. abscessus) M. tuberculosis
Not determined for NTM species
Aminoglycosides Irreversible binding to the 30S ribosomal subunit and suppression of translation process Mutation in 16SrRNA (rpsL)
Activity of phosphotransferases and acetyltransferase
Most species of NTM MAC
M. chelonae
M. massiliense
M. abscessus
M. fortuitum
M. avium
Tetracyclines Reversibly bind to the 30S ribosomal subunit and suppression of binding of tRNA and mRNA-ribosome complex Activity of ribosome protection proteins (otrA and tetM)
Activity of efflux pumps (Tet, Otr, and Tap)
Most species of NTM Most species of NTM
Tigecycline Binding to 30S ribosomal subunit and suppression of acyltRNA binding Tet(X) enzyme M. abscessus
M. chelonae
Not determined for NTM species
Rifampin Suppression of DNA-dependent RNA polymerase of bacteria Mutation in rpoB
Expression of arr
MAC
M. kansasii
MAC
M. kansasii
M. ulcerans
M. smegmatis
M. abscessus

Suppression of respiratory chain Bedaquiline Suppression of atpE gene, a mycobacterial ATP synthase, and lack of ATP production Mutations in atpE, mmpT5, and pepQ MDR-TB
MAC
M. leprae
M. avium
M. abscessus
M. massiliense
M. avium
M. kansasii
M. abscessus
M. fortuitum
M. flavescens
M. massiliense
M. intracellulare
Clofazimine Suppression of bacterial proliferation by blocking the intracellular redox cycling Mutation in mmpR5 and pepQ Most species of NTM M. tuberculosis
M. abscessus
M. intracellulare

1 M. avium complex; 2penicillin-binding proteins; 3multidrug-resistant tuberculosis.