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a b s t r a c t 

This article investigates the impacts of the COVID-19 pandemic and their proactive mediation by adap- 

tive operational decisions in different network design structures in anticipation of and during the pan- 

demic. In generalized terms, we contribute to the understanding of the effect of preparedness and re- 

covery decisions in a pandemic setting on supply chain operations and performance. In particular, we 

examine the impact of inventory pre-positioning in anticipation of a pandemic and the adaptation of 

production-ordering policy during the pandemic. Our model combines three levels, which is not often 

seen jointly in operations management literature, i.e., pandemic dynamics, supply chain design, and op- 

erational production-inventory control policies. The analysis is performed for both two- and three-stage 

supply chains and different scenarios for pandemic dynamics (i.e., uncontrolled propagation or controlled 

dispersal with lockdowns). Our findings suggest that two-stage supply chains exhibit a higher vulnera- 

bility in disruption cases. However, they are exposed to a lower system inertia and show positive effects 

at the recovery stage. Supply chain adaptation ahead of a pandemic is more advantageous than during 

the pandemic when specific operational recovery policies are deployed. We show that it is instructive to 

avoid simultaneous changes in structural network design and operational policies since that can destabi- 

lize the production-inventory system and result in higher product shortages. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Supply chain (SC) networks can be characterized by an in- 

reased complexity and an uncertainty about matching demand 

ith supply during severe disruptions [1–3] . SC resilience is the 

etwork’s ability to bounce back and recover to reach a desirable 

tate (i.e., a return to the original state, an equivalent state, or a 

ew one) of SC operations and performance [ 4 , 5 ]. SC resilience re-

earch has developed a profound body of knowledge to cope with 

isruptions [ 6–10 ]. 

In the pre-pandemic world, disruptions have usually been stud- 

ed as events that interrupt material flows in SCs and adversely 

mpact their performance [ 11 , 12 ]. Recent research has offered a 

ariety of useful methods and models to cope with such event- 

riven disruptions (which we term instantaneous disruptions, i.e. 

ingle-point-failure disruptive events of instant impact such as fire 

r tsunami) and to increase SC resilience [ 4 , 13–16 ]. During the
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OVID-19 pandemic, SC resilience has been stress-tested on a scale 

nlike any seen before [ 17–19 ]. 

The COVID-19 pandemic has unveiled a new and understudied 

rea of SC resilience, i.e., analysis of SC operations and performance 

nder extremal shocks of exogenous dynamics [ 1 , 20–23 ]. In par- 

icular, SC decision-makers were frequently lacking a guidance on 

ow to react to the pandemic. For example, in an interview we 

onducted with executives from a variety of industries, the Direc- 

or of Supply Chain Operations at a U.S. based global food manu- 

acturer discussed his company’s decision to invest in millions of 

ollars in inventory in anticipation of the havoc the pandemic was 

rojected to create. Conversely, the Director of Supply Chain Qual- 

ty at a U.S. based global aerospace and defense company discussed 

bout suppliers being unable to fulfill demand. Orders were can- 

elled while new suppliers were being vetted as quickly as pos- 

ible. In other words, firms had a common question to ask: keep 

alm or get going ? 

Despite the large body of knowledge, there is a gap in our un- 

erstanding of the exposure of different SC designs and associated 

daptation of operational policies in the COVID-19 pandemic set- 

ing. Should some inventory be pre-positioned to overcome the 

https://doi.org/10.1016/j.omega.2022.102635
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2022.102635&domain=pdf
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aterial shortages during the pandemic? Or would these ad-hoc 

ctions rather lead to some destabilization in the SC and associ- 

ted bullwhip and ripple effects [24] ? Should the SC sourcing and 

istribution strategies be changed for pandemic times, e.g., should 

e change from a multi-stage network design to direct deliver- 

es? If yes, when? Motivated by these questions, in this paper we 

tudy SC exposure to long-lasting disruptions such as COVID-19 

andemic and the impact of reactive operational strategies on op- 

rations dynamics and performance. In particular, by means of this 

tudy, we aim to answer the following research questions: 

How are different network design structures exposed to the impact 

of the pandemic and how these impacts can be mediated by 

adaptive operational reactive decisions in anticipation of and 

during the pandemic? 

We seek to understand how different network design structures 

re exposed to the impact of the pandemic, and we explore how 

hese impacts can be mediated by decisions aimed at operational 

reparedness and recovery. This research question is important for 

ultiple reasons. First, our analysis can help managers to under- 

tand what should be the lockdown/quarantine policy. Second, we 

laborate on the novel research perspective of what ultimately is 

he value (to business and/or society) of the information on dis- 

uption propagation (i.e., the ripple effect) being provided by the 

ropagation of an epidemic/pandemic. We combine in this study 

he conventional trade-off between ex ante inventory investment 

nd ex post lost demand by focusing on the value and implications 

f novel pandemic dynamics as encountered during the COVID-19 

imes. 

We considered three different SC structural designs to increase 

he validity of the results. The SC designs considered in this study 

ave been frequently used in literature. For example, Tirkolaee 

t al. [25] studied two-stage distribution network design with per- 

shable products. To extend the existing studies, we then assessed 

he impact of two operational reactive strategies. First, we analyze 

system reset at recovery stage” strategy which is the cancellation 

f all orders in the planning algorithm during the disruption period 

n order to avoid backlog accumulation. Many companies ended up 

acing this strategy as global supply chains shut down. This is cer- 

ainly not a strategy of choice but during a global pandemic where 

he world is facing the disruption to the supply chain, this was 

n action taken by many firms. Second, we examine the impact of 

uilding an excess inventory on SC performance in anticipation of 

 pandemic, and we explore associated inventory dynamics during 

 pandemic. These decision choices are in line with managers we 

poke with about SC decision making in the face of the COVID-19 

andemic in 2021. 

The remainder of this study is organized as follows. In 

ection 2 , we describe our problem context and simulation model 

ection 3 . is devoted to experiments and modeling results. In 

ection 4 , we collate major conceptual insights and offer several 

anagerial implications. We conclude the paper in Section 5 by 

ummarizing our major finding and discussing the limitations of 

ur study and the associated future research perspectives. 

. Background and literature review 

.1. Literature related to instantaneous disruptions 

Previous research has considered structural designs and process 

ecovery strategies (e.g., prepositioning extra inventory) to be ma- 

or drivers of SC resilience [ 13 , 26–31 ]. Surveys by Ho et al. (2015),

nyder et al. [32] , Hosseini et al. [5] , and Aldrighetti et al. [13] pro-

ide comprehensive overviews of different SC resilience capabili- 

ies and modeling techniques, and show that inventory reserva- 
2 
ions have been studied as one of the major preparedness mea- 

ures subject to two-stage and three-stage SC designs. 

For a two-echelon SC structure, Khalili et al. [33] studied an 

ntegrated production-distribution planning problem with vulner- 

ble paths and nodes. Through a two-stage scenario-based mixed 

tochastic-possibilistic programming model, the authors investi- 

ated the impact of some additional initial production capacity 

nd emergency inventory at the distribution center. Similar prob- 

em setting but with three echelons has been studied by Lücker 

t al. [34] . Considering risk mitigation inventory (RMI) and reserve 

apacity as preparedness strategies to manage disruption risks, 

hey found out that holding more RMI downstream than upstream 

an be more reasonable even when the upstream holding costs 

re lower while it is often optimal to hold more reserve capac- 

ty downstream than upstream. Their second interesting finding 

s that at each echelon RMI and reserve capacity can be consid- 

red substitutes while RMI complements reserve capacity at the 

djacent downstream stage. Rezapour et al. [35] analyzed the im- 

act of timing of post-warning and pre-disaster stock preposition- 

ng decisions in disasters with an advance warning, such as hurri- 

anes. Their results offer a stochastic optimization-based model for 

lanners to decide on the best trigger time to start the prepared- 

ess activities (i.e., prepositioning stocks of emergency goods). Lotfi

t al. [36] developed a two-stage robust stochastic multi-objective 

rogramming approach to identify risk-aware, resilient and sus- 

ainable closed-loop SC network design using Lagrange relaxation. 

Simulation has been proven to be a powerful and practice- 

riented technique for studying the dynamics of SC under disrup- 

ions [ 8 , 12 , 26 , 37–39 ]. Analysis of extant literature leads us to the

onclusion that structural dynamics and process system dynam- 

cs can cause a redundant system inertia that results in disrup- 

ion overlays (i.e., intersections of operational and disruption risks) 

nd disruption tails [ 7 , 40–44 ]. While the examination of structural 

esign exposure to disruptions is a useful and important anal- 

sis for successfully improving network resilience [ 32 , 39 , 45 ], ex- 

ant literature points to the importance of process adaptation (e.g., 

roduction-ordering policies in the SC). 

Process adaptation, while extensively used in practice, has re- 

eived much less research attention and has been studied using 

ifferent simulation methodologies [ 8 , 24 , 38 , 46 , 47 ] without an ex-

licit integration of different structural designs. However, the sys- 

em behavior depends not only on the structural configuration 

ut also on the operational processes (e.g., sourcing, production 

ontrol, inventory policies; Ivanov et al., 2016; [ 48–52 ]). Product 

pecifics are also important to consider — for example, product 

erishability in the case of food or healthcare SCs [ 53 , 43 ]. 

.2. Literature related to pandemic disruptions 

Triggered by the COVID-19 pandemic, SCs experienced a series 

f shocks and collapses on a scale unlike any seen before [ 54 , 55 ].

he research community has addressed this novel setting by at- 

empting to understand the antecedents and specifics of these new 

arge-scale disruptions with complex dynamics (which we term 

uper disruptions ) and how they affect SCs [ 21 , 45 , 56–59 ]. Queiroz

t al. [60] point to preparedness with a focus on pre-allocation 

f some resources and structural re-allocations of supply and de- 

and as two major strategies to cope with an upcoming pan- 

emic. Ivanov and Dolgui [57] showed that adaptation of networks 

tructures and associated production-inventory control policies at 

ndividual firms are important determinants of supply chain re- 

ilience under pandemic conditions. Hosseini and Ivanov [61] used 

ayesian networks to develop an approach for assessment of the 

andemic impacts on SC performance. 

We further deduce some key characteristics of a pandemic as 

 super disruption from our literature analysis following structures 
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roposed in various studies (e.g., Craighead et al. 2020, [ 21 , 62 , 63 ]).

nlike the instantaneous disruption, a pandemic is not an event 

hat strikes and disappears; the pandemic is a super disruption 

ith unknown timing and up/down scaling that is considered ex- 

genous to the SC network [ 64 , 65 ]. This uncertainty results in a

nique setting where recovery happens in the presence of the ex- 

genous dynamic of a disruption. As such, the pandemic dynam- 

cs can be considered as a separate system that interacts with the 

C system and simultaneously influences its network design struc- 

ures, capacities, supply, and demand [ 66 , 60 , 67 ]. 

Ivanov [21] simulated a four-stage global SC measuring the ser- 

ice level, lead time, and fulfilment rate as indicators to under- 

tand the impacts of the COVID-19 pandemic on SC performance. 

uilding upon three scenarios of the ripple effect (i.e., disruption 

ropagations) and assuming some variation in intensities of pan- 

emic control measures and pandemic dispersal across the con- 

inents, Ivanov [21] observed that the timing of the closing and 

pening of facilities at different echelons with some overlapping 

ime windows is one of the key factors influencing SC operations 

nd performance under pandemic conditions. Singh et al. [68] sim- 

lated a food SC resilience in the COVID-19 pandemic context. The 

uthors observed that SC service level can be improved by central- 

zation of sourcing under pandemic disruptions. A common out- 

ome of studies by Ivanov [21] , Ivanov and Das [69] , and Singh

t al. [68] was the observation that SC operations and performance 

ndergo drastic degradation under the pandemic conditions, thus 

ositing the need for operational policy adaptations in production- 

nventory control. 

Along with simulation, optimization approaches have been fre- 

uently used. For example, Tirkolaee et al. [70] developed a math- 

matical model to design a sustainable mask Closed-Loop Sup- 

ly Chain Network (CLSCN) during the COVID-19 outbreak. Their 

ulti-objective mixed-integer linear programming (MILP) model 

ddresses the locational, supply, production, distribution, collec- 

ion, quarantine, recycling, reuse, and disposal decisions within a 

ulti-period multi-echelon multi-product supply chain. A genetic 

lgorithm was used to solve the proposed model and to find Pareto 

ptimal solutions. Paul et al. [71] used optimization for analysis of 

ecovery policies under COVID-19 pandemic disruptions. 

Another important research stream has been focused on devel- 

ping methods for forecasting the pandemic dynamics with con- 

ideration of control measures (see e.g., [ 72–76 ]). Robust opti- 

ization methods have been frequently used in combination with 

ethods based on regression analysis, e.g., using non-parametric 

egression models like variations of MARS (multivariate adaptive 

egression splines) [77] for assessing the process dynamics and 

orecasting. The polynomial structure of MARS regression models 

elps to predict non-linear dynamics in a more precise way. There 

re a few research articles devoted to the application of these 

redictive models for COVID-19 propagation. Lotfi et al. [78] pro- 

osed a robust polynomial regression model for estimation of 

ew COVID-19 cases dynamics on a country level. The model is 

ested on statistics from Spring 2020 (at the early stage of the 

OVID-19 pandemic). The authors state that the model can be ap- 

lied to relatively small datasets because the model requires in- 

ensive calculations to achieve higher accuracy. Khalilpourazari and 

ashemi Doulabi [73] applied a robust modeling approach based 

n a stochastic fractal search algorithm. Similar to the basic epi- 

emic propagation models, they use contact rate as the main pa- 

ameter affecting propagation. Kapoor et al. [79] provide a system- 

tic review of COVID-19 influence on manufacturing. They empha- 

ize the importance of correct policies and operational strategies 

or SCs to withstand the pandemic impact. The general conclusion 

s that current manufacturing systems are rather fragile to the pan- 

emic disruption. The authors stress the importance of coordinated 

ctions and information exchange among stakeholders. 
3 
The findings from the analytical and simulation studies are 

choed and extended in extant empirical literature that ex- 

lores antecedents and consequences of the pandemic-induced 

C disruptions and suggest strategies to improve. Elbaz and Ruel 

55] utilised a resource-based view and organisational informa- 

ion processing theory to examine the mitigating role of SC risk 

anagement practices during the COVID-19 pandemic. They con- 

lude that recovery strategies are critical to ensure SC resilience 

t the pandemic times. Wieland [63] proposed a panarchy frame- 

ork that is organized around adaptive cycles linked on scales of 

ime, space, and meaning. Wieland points to the central role of 

C structure and process reconfigurability to survive at pandemic 

imes which is in line with the reconfigurable SC framework by 

olgui et al. [40] and viable SC framework by Ivanov [45] . 

One of the challenges for SC management at pandemic times 

s simultaneous consideration of disruption dynamics, operational 

olicies, and recovery planning. Nagurney [80] shows that pan- 

emic dynamics can induce labor constraints leading to reductions 

n SC productivity and capacity. Besides, consideration of some 

roduct specifics such as perishability can add additional complex- 

ty to the decisions on inventory pre-positioning in anticipation of 

 long-term crises [ 81,68 ]. However, reactive decision-making on 

C preparedness to an upcoming pandemic and guiding the SC 

hrough the pandemic by proactive adaptation of its network struc- 

ures and operational production-inventory control policies has not 

een studied so far with consideration of perishable products, and 

one of the existing studies examined how different network de- 

ign structures are exposed to the impact of the pandemic, and 

ow these impacts can be mediated by operational preparedness 

nd recovery decision-making – a distinct and substantial contri- 

ution made by our study. 

Our analysis shows that current literature lacks an understand- 

ng of SC dynamics and recovery behaviors as a reaction to the 

ynamics of an external system (i.e., a pandemic super disruption). 

ur study makes several important and distinctive contributions to 

nderstanding SC resilience to super-disruptions such as a COVID- 

9 pandemic. First, we consider the pandemic dynamics as a sep- 

rate system (and not as a singular disruptive event) that interacts 

ith the SC system and influences its capacities, supply, and de- 

and. In doing so, we explore, SC dynamics and behavior as a re- 

ction to disruptions caused by an epidemic outbreak. Second, we 

nvestigate SC reactions to the pandemic as subject to three dimen- 

ionalities: network design, process control policies, and the differ- 

nt scenarios of a pandemic. Thus, we triangulate the adaptation 

nalysis by integrating structure-process dynamics with exogenous 

nvironmental dynamics. Third, we assess the impact of two recov- 

ry strategies with regard to the disruption impact on inventory 

ynamics in the SC during the disruption and the recovery. 

. Problem context and simulation model 

In this section, we describe the problem context and simulation 

odel. 

.1. Problem context 

In our problem, a retailer needs to source various products from 

he suppliers using three possible sourcing systems, i.e., either di- 

ectly, through an intermediate warehouse, or through a cross- 

ocking system with consideration of the efficiency and service 

evel targets. The available capacities at different SC echelons de- 

end on the number of workers, which may vary due to the pan- 

emic dynamics - decreasing in the case of rising infections and 

ncreasing during recovery. The production and inventory are con- 

rolled dynamically based on demand and available capacity. 
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Fig. 1. Supply chain structures and sourcing strategies for analysis. 

Fig. 2. Problem setting. 
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From the standpoint of the SC managers, the problem consid- 

rs how three different SC network designs are exposed to the 

OVID-19 epidemic outbreak in light of pandemic control actions 

nd a firm’s reactive strategies. Our problem and the SC network 

re based on the real-life context and data of a food retail network 

perating about 80 0 0 stores spanning five different time zones. 

he network is managed using numerous distribution centers (DC). 

uring the outbreak of the COVID-19 virus and the associated pan- 

emic, the firm analyzed the exposure of their three major sourc- 

ng strategies to the pandemic ( Fig. 1 ). 

We consider two scenarios of governmental and company pan- 

emic control: (a) no action to control the epidemic propagation 

nd (b) monitoring the contacts of infected persons, lockdowns, 

nd quarantine measures. Such settings increase the complexity of 

C processes due to the uncertainty and dynamics of an exogenous 

ystem, that is, the pandemic control. As for SC reactive strategies, 

he following options have been considered: (a) a “system reset”

e.g., cancellation of all orders in the planning algorithm at the end 

f disruption) and (b) building excess inventory in anticipation of 

 pandemic. In Fig. 2 , we summarize our problem setting. 

Our study focuses on three aspects: (1) analyzing the exposure 

f three major structural SC designs to pandemic dynamics and its 

ontrol, (2) understanding how different network designs could be 

mpacted by pandemic disruption with and without deployment 

f some reactive strategies, and (3) providing recommendations 
4 
or associated structural changes and process recovery strategies in 

nticipation of an impending pandemic. In the pandemic dynam- 

cs system, governmental and firm’s control measures determine 

he intensity of contacts which is used in an agent-based infec- 

ion forecast model to predict number of available workers and the 

esulting available capacity for the operational process dynamics 

odel and sourcing strategies considered (see Figs 1 and 3 ). The 

rimary problem consists of revealing the operational and perfor- 

ance dynamics of different SC designs under COVID-19 pandemic 

ynamics and different operational recovery policies in order to 

ecide (i) if a SC design structure and associated sourcing strat- 

gy should be changed or not in the wake of a pandemic and (ii) 

hich operational recovery policies should be used based on its 

erformance impact measured by financial (e.g., costs), customer 

e.g., service level), and operational (e.g., inventory backlog) indi- 

ators. 

The following assumptions are considered: 

• SC design structure does not change during the modelling time 

horizon; 
• products have some expiration date and cannot be sold there- 

after 
• instantaneous disruptions are modelled as an immediate event 

that decreases system output by a given fraction 

• epidemic dynamics and forecast depend on the pandemic con- 

trol measures, i.e., stricter control measures result in lower con- 
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Fig. 3. Agent statechart. 
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tact intensity, which in turn influences the number of infected 

workers and the capacities 
• experiments are based on a synchronized profile of the infec- 

tions and productivity, i.e., the output rate is proportional to 

the number of workers. 

.2. Simulation model 

We designed a simulation model based on analytical models 

f perishable inventory control and using real company algorithms 

or inventory-production control. In this section, we operationalize 

he operational SC model and pandemic model, show their inter- 

ctions, and specifics for different structural network designs. 

To undertake the investigation, we view a SC network as a mul- 

ilayer system composed of structural designs and processes that 

re interacting with an exogenous, long-lasting super disruption 

see Fig. 2 ). Our model considers two interacting systems and their 

ynamics, i.e., SC operational processes and the pandemic dispersal 

or three SC structures and associated sourcing strategies. Disrup- 

ion propagation and the recovery are modeled under conditions 

f the operating operational system (i.e., SC network) and follow- 

ng the forecasts of epidemic dynamics in terms of the expected 

umber of infected people using an infection forecast model. This 

llows for observing inventory dynamics in the SC. 

The epidemic dynamics are modeled as a separate, parallel con- 

rol loop. This property makes it possible to model different situa- 

ions of an epidemic: when the outbreak happens simultaneously 

t all SC echelons, or when the outbreak happens sequentially with 

ifferent timing. This is an important modeling feature because re- 

ent studies recognized that the SC performance reaction to pan- 

emic disruptions depends on the timing and scale of disruption 

ropagation (i.e., the ripple effect) as well as the sequence of fa- 

ility closings and openings at different SC echelons [21] . Thus far, 

he combination of the velocity of pandemic propagation, the du- 

ation of quarantines and lock-downs of production, distribution, 

nd markets, and the degree of demand decline are important de- 

erminants when modeling SC networks under pandemic [69] . The 

andemic modeling results are fed into the SC model control loop 

etermining dynamic changes of the available capacity and inven- 

ory. 

.2.1. Operational SC dynamics model 

In this section, we describe analytical model which is used for 

imulations of SC dynamics. When modeling operational SC dy- 

amics, we build on and extend the simulation model offered by 

vanov and Rozhkov [43] and utilized by Ivanov [45] and Dolgui, 

vanov, and Rozhkov [24] . In particular, we extended the model 

rom a two-echelon setting to a three-echelon setting; next, we 

dded the external control loop, that is, the pandemic dynamics 

odeling; finally, we included the agent-based modeling of epi- 

emic dispersal. 

We utilize a specific production-inventory control policy with 

onsideration of perishability of products close to the generic 
5 
odel for periodic-review perishable inventory control from Nah- 

ias [ [82] , chapter 2]. To mimic this control policy, we developed 

 production-inventory control algorithm for simulations which is 

omposed of two parts, i.e., processing of actual customer orders 

nd planning future deliveries. Depending on the sourcing strategy, 

DCs are supplied either from the inventory batch i at the federal 

C (FDC) (modes 1 and 2 in Fig. 1 ) or by direct shipments from

anufacturer (mode 0). Demand d t may vary across t -periods with 

ome standard deviation δST 
t subject to uniform distribution which 

as been identified through the use of a descriptive analytics al- 

orithm for time-series analysis using past sales data. Lead time L 

s fixed. L = L RDC + L F DC for the three-echelon SC, and L = L RDC for 

he two-stage SC ( Eq. (1 )). 

 three stage = L RDC + L F DC ; L two stage = L RDC (1) 

Product shelf life is defined as η, and inventory freshness 

evel (in days) at supply chain echelon facing customer demand is 

. The λmax is calculated as shown in Eq. (2) : 

max = η − L. (2) 

Each SC echelon has a restriction on the minimum remaining 

reshness level ρ (i.e., shelf life threshold) that defines a minimum 

cceptable fractions of the remaining shelf life of a product. For 

xample, ρ = 0 . 4 means that the remaining shelf life threshold is 

0% as compared to η. If inventory batch freshness level λ does 

ot meet constraint (3), it will not be shipped downstream the SC. 

or three-echelon setup (mode 2): 

> ρRDC × η − ρF DC × η + L (3) 

On-hand inventory batches i are sorted in the simulation model 

ollowing FEFO (First Expired – First Out) policy and so forming a 

et I = { i 1 , i 2 , . . . , i λ} . Each inventory batch is characterized by two 

imensions, i.e., quantity i and freshness level λ [83] . 

When deciding on the order quantity planning, the model ex- 

ibits the well-celebrated order-up-to-level inventory control pol- 

cy [ 84 , 85 ] which is extended by constraints on the shelf life (1)

nd (2) following the Nahmias’s [ 82 , 86 ] approach. Order quantity 

lanning procedure is based on future shipments and inventory 

ynamics. Future shipments set J = { y t , y t+1 , . . . , y t+ β} consists 

f orders y t previously placed during order fulfilment cycle β . Note 

hat β = L for three-echelon SC and β = L + ε for shipments from 

anufacturer without inventory holding at FDC, where ε is pro- 

uction freeze time. In basic configuration orders can be placed 

very simulation period. 

Expected inventory future state set I p for each planning period 

, b ∈ ( t, t + β) is defined by iterative merging of sets I and J ac- 

ording to the rule that each future shipment y from the set J sat- 

sfies the constraints (1) and (2). Parameters S RDC and S F DC define 

arget inventory level (i.e., order-up-to levels) for RDC and FDC, re- 

pectively. Order y t+ β is placed if forecasted inventory on hand at 

eriod t + β meeting constraint (2) is below the target inventory 

evel [87] . Order size is a multiple of the minimum order size � 
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s shown in Eq. (4) . 

 β = � × ceil 

(
S − I P 

t+ β
� 

)
(4) 

Perishability is taken into account at manufacturer echelon, too. 

he allocated order y t+ β placed by the FDC or the RDC (depend- 

ng on the sourcing strategy) is forwarded into a manufacturing 

ueue at the manufacture. At each period t , z -production batches 

 z ∈ Z) , based on y t+ β order size are sorted upwards according to

roduction dates F z . For stabilization, the order is removed from 

hipments or the manufacturing queue if it cannot be processed 

t the period of planned order receipt/production subject to lim- 

ted transportation and production capacities and associated con- 

traints on the queue lengths. Orders from the regional DCs to fed- 

ral DCs are cancelled if the expected delay in their fulfillment ex- 

eeds the order fulfillment cycle time β to avoid the order backlog 

etween SC echelons. If the computed production period of a batch 

s reached, the orders enter the manufacturing system. Processing 

tart times are based upon the scheduled production period. Early 

roduction, i.e. schedule smoothing, is not allowed. 

For performance analysis, we consider two indicators, i.e. costs 

nd service level. Total costs are comprised of usual inventory 

olding costs, transportation costs, write-off costs, penalty (back- 

og) costs, and manufacturing costs. Inventory with expired dates 

nduces write-off costs which increase proportionally to the pur- 

hasing prices p. If the customer order size exceeds the inventory 

t DC, a penalty u is applied. Manufacturing costs include both 

ariable and fixed setup costs . Overtime capacity is not considered. 

ervice level is measured as a ratio of the on-time delivered orders 

o the total orders placed. 

Disruptions in the model affect manufacturer capacity. Denote 

he installed capacity at a manufacturer and its disruption coeffi- 

ient during the pandemic by K and ξ , respectively. As such, the 

aximum capacity during the pandemic K pan is constrained as 

 pan = K × ξ , (5) 

here ξ is dynamic. It results from the pandemic simulation 

odel and depends on the available workforce and severity of the 

andemic control measures imposed by governments and the com- 

any itself. In this way, we couple the pandemic and SC dynamics. 

In summary, the SC as considered for modeling is quite efficient 

n terms of inventory dynamics and order quantity planning. This 

s also in line with extensive literature results on the order-up-to 

evel policies and perishable inventory control in two- and three- 

tage SCs [ 85 , 88–91 ]. The planning algorithm considers product ex- 

iration dates when deciding on ordering and recovery strategy 

daptations. The constraints on perishability directly influence the 

nventory planning decisions, the selection of recovery strategies, 

nd the timing of recovery strategy deployment because building 

n inventory in anticipation of an epidemic dispersal might be 

omplicated by product expiration dates. 

.2.2. Pandemic dynamics model 

We model pandemic dynamics as a multi-agent system. An 

gent population is assigned to each object in the SC, which forms 

he epidemic dispersal process. Another key component of our 

odel is that depending on the agent population states (e.g., in- 

ected/quarantined), the process control logic of the SC object (e.g., 

 DC) and its structural interactions with other agents are adapted 

if needed). The pandemic is modeled in two modes: with and 

ithout epidemic control measures. Each SC node (e.g., DC) is as- 

ociated with a population of agents that are getting infected de- 

ending on the intensity of their contacts, which is determined 

y the epidemic control measures imposed by the governments 

e.g., quarantines and lockdowns) and the company’s own protec- 

ion measures (e.g., tracking the contacts of infected employees). 
6 
he lower the contact intensity, the lower the number of infected 

orkers, and the higher the available capacity. Using this logic, the 

umber of infected people is forecasted using an embedded infec- 

ion forecast model, so the varying capacity is included in the pro- 

ess adaptation through production-inventory control algorithms 

see further in the paper). We employed agent-based method to 

mplement infection forecast model control loop in order to cap- 

ure epidemic propagation in a more precise way. To aid in clear 

esult interpretation without losing the reality of the context, we 

o not include varying intensities of lockdowns (e.g., a full lock- 

own or a partial lockdown) or the duration of lockdown periods 

i.e., we model only a single lockdown period with epidemic con- 

rol measures of a steady intensity). 

Agent statechart allowed to trace contacts of infected agents in 

 model and implement quarantine measures modeling. The agent 

tatechart is presented in Fig. 3 . 

The initial infection source is external to a system. Then infec- 

ious agents contact susceptible agents with a predefined contact 

ate. These contacts are modeled as sending of messages by tran- 

ition 6. After receipt of a message (transition 1), an agent can 

et the infection and follow transition 3 or stay in a normal state 

ith transition 2. The result is defined by the infection probabil- 

ty parameter. Transitions 4 and 5 are defined by no symptoms 

eriod duration and expected illness duration, respectively. Quar- 

ntine (transitions 7 and 8) is imposed on all traced agents which 

ere contacted by infectious agents. The quarantine list is updated 

very period. Transition 9 is defined by quarantine length. The 

uarantine loop is activated only in case of application of external 

pidemic control measures. 

. Experiments and results 

In our empiricaly grounded problem setting, the company is 

nterested in predicting how three different SC structural designs 

i.e., three different sourcing strategies) will react to a pandemic in 

rder to discern if and when structural changes might be needed. 

o this end, we individually model SC inventory dynamics and per- 

ormance impacts in each of these three sourcing network designs. 

ased on this analysis, we then build an overarching perspective 

hat derives managerial implications about the positive and nega- 

ive effects of transitions between structural states. 

Our model was implemented in AnyLogic that conveniently 

ombines agent-based modeling for pandemic dynamics and 

iscrete-event modeling for SC dynamics. For experiments, we di- 

ided the disruption modeling into two categories: impact and re- 

overy for (a) a conventional setting (instantaneous disruptions: 

rofile I) and (b) the COVID-19 setting (super disruptions: Profile 

I). In Profile I, SC operations during the disruption period and 

he recovery are not influenced by any exogenous systems and 

re guided by a given and static level of capacity degradation and 

estoration. In Profile II, SC operations during the disruption pe- 

iod and the recovery are influenced by an exogenous system (i.e., 

he pandemic super disruptions) and are guided by forecasting the 

apacity degradation and restoration according to the dynamically 

hanging epidemic states at SC echelons (e.g., quarantine measures 

nd lockdowns). With the differentiation of these two disruption 

rofiles, we sought to explore the specifics of the pandemic-like 

isruption profile, and if the results would be different or similar 

s compared to a single-event instantaneous disruption [ 24 , 42 ]. For 

oth disruption profiles, we intended to observe SC reactions and 

xamine their differences and commonalities. Another rationale for 

imulating with two different disruption profiles is the possibil- 

ty that the gradual growth of the disruption scale in a pandemic 

uper-disruption may allow for time to adapt both SC structures 

nd process planning policies. 
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Table 1 

Modeling parameters. 

Parameters Value 

Production order size and RDC order size, units 1000 

FDC order size, units 5,000 

Production capacity, units 30,000 

Production cost per unit 0.5 

Production interval, periods 1 

Production freeze time, periods 2 

Base demand at RDC 2,000 

Demand variation per period 0.5 

Inventory holding costs at RDC 0.02 

Inventory holding costs at FDC 0.005 

Transportation costs at RDC 0.5 

Transportation costs at FDC 0.1 

Wastage cost per unit 1.5 

Target stock RDC and FDC, respectively, in periods 3 

Shelf life, periods 30 

Shelf life threshold RDC 0.4 

Shelf life threshold FDC 0.6 

Table 2 

Pandemic Modeling. 

Parameters Value 

Total agent population 1000 

Contact rate, per period 1 

Contact tracing accuracy 1 

Infection detection delay, periods 1 

Infection probability in case of a contact with infected agent 0.5 

No symptoms duration, periods 5 

Illness duration, periods 21 

Quarantine duration 14 

External infection rate 0.005 
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The disruptions were modeled twofold. First, we ran simula- 

ions for instantaneous disruptions. Second, we ran simulations for 

 pandemic disruption and considered two scenarios of the govern- 

ent’s and the firm’s policy to control the epidemic, which were 

a) no action to control the epidemic propagation and (b) monitor- 

ng infected persons’ contacts and quarantine measures/lockdowns. 

he following parameters have been used: 200 periods for the 

nter-disruption interval and 60 periods for the duration of disrup- 

ion. The capacity K is recovery to normal at the end of the disrup-

ion period. Fixed disruption time was used for the comparison of 

ifferent policies’ resilience capabilities shown in Table 1 . The par- 

icular set of parameters for simulations has been obtained for a 

pecific product. The data for analysis was approximated from real 

ompany data and sensitivity tests have been run to confirm the 

alidity of the proposed model (see Section 4.4 ). 

We used an agent-based implementation of the generic infec- 

ion forecast model for analyzing epidemic propagation and its in- 

uence on system resilience. The infection forecast model is linked 

o quarantine measures, i.e., quarantine duration is essential for the 

ntensity of contacts and the resulting number of infected agents. 

he epidemic starts at period 100. We limited epidemic propaga- 

ion to the manufacturer’s site ( Table 2 ). 

.1. Instantaneous disruptions (Profile I) 

This set of experiments compared the impact of instant disrup- 

ions (Profile I) on SC operations and performances for different 

tructural network designs. We considered a disruption of 50% of 

actory (i.e., supplier) capacity. The conditional expectation of de- 

and for one period at the RDC was 20,0 0 0 product units, and we

onsidered 5 customers for each RDC with a demand expectation 

f 2,0 0 0 units of two different products for each customer. There- 

ore, under normal conditions the factory has a 50% capacity reser- 

ation to compensate for daily demand deviations. Under a disrup- 
7 
ion of 50% of capacity, we have a deficit of 25%, which leads to 

he situation in which the orders are fulfilled but the inventory is 

ecreasing quickly. In this setting, we were able to observe the ini- 

ial system reaction to the disruption and the system stabilization 

uring the recovery after capacity restoration. 

In the case of a two-stage SC and direct shipments from factory 

o RDCs, we observed inventory piling (i.e., the disruption tail or 

ostponed redundancy; [ 42 , 43 ]) during the recovery period (reach- 

ng its peak in the period 279). The system reset can compensate 

or this disruption tail and localize disruption propagation. In the 

ase of a three-stage SC and cross-docking shipments via a FDC, 

e observed a similar behavior (see Fig. 4 ). 

The differences between the two-stage system and the three- 

tage system can be explained by different total cycle times from 

rder placement to delivery. The SC network with three stages and 

olding inventory in both FDC and RDC performed differently and 

as exposed to the ripple effect (Ivanov, Sokolov, & Pavlov, 2014; 

olgui et al., 2018; [ 49 , 92 ]). The process adaptation to a product

eficit caused by production capacity disruption is therefore de- 

endent on the structural network design. This result can be ex- 

lained by a combined push-pull ordering system in the network 

esign with inventories at both the FDC and RDCs (see Fig. 5 ). 

The FDC adapts to a cross-docking mode during the disruption 

periods 226–276). Inventory holding at both FDC and RDCs stim- 

lates the instability of inventory dynamics during the recovery. 

or example, in the case of a product shortage of 30,0 0 0 units, 

DC and RDCs can independently place two orders of 30,0 0 0 units 

ach, leading to disproportional production planning at the factory, 

hich would plan to double the production quantity. This finding 

onfirms the results demonstrated on the intersection of the struc- 

ural and operational disruptions [ 24 , 46 ], and emphasizes the im- 

ortance of differentiated consideration of forward and backward 

ipple effects [50] . 

.2. COVID-19 pandemic super disruption (Profile II) 

A pandemic outbreak begins gradually and locally, and its dy- 

amics can be forecasted, for example, by using infection forecast 

odels. The recovery is also gradual. We were interested in exam- 

ning how this specific disruption profile would influence the in- 

ights obtained in Section 3.1 . The experimental set in this section 

ollowed a synchronized profile of the infections and productivity. 

n the model, an agent population was allocated to the SC objects 

i.e., DCs and the factory) that has been exposed to the pandemic 

uper disruption. The operational policies at SC objects were inter- 

inked with the infection model. Two major configurations of our 

odel were analyzed: with and without governmental quarantine 

andates ( Fig. 6 ). 

In Fig. 6 , we visualize the inventory dynamics for structural de- 

igns of Modes 0 and 1. We observed a similar behavior in Modes 

 and 1, namely that the inventory increased after the capacity re- 

overy. Notably, the quarantine / contact tracing measures had a 

ositive effect because a capacity disruption was not observed. We 

ere aware of some simplification of reality in this assumption. 

ndeed, in real life, in some cases 10% of the missing (infected) 

orkforce can result in a 10% decrease in productivity; in other 

ases, a 20% workforce reduction can lead to a full shutdown or the 

losure of an SC object. However, this nonlinear relationship has 

ever been reported in literature, and we did not find any empir- 

cal evidence describing this relationship. The agent-based model- 

ng paradigm allowed for a convenient embedding of the pandemic 

ynamics model into the SC operational model. We observed sim- 

lar effects in Mode 2 (shown in Fig. 7 ). 

Finally, we performed a set of experiments that considered a 

ecovery strategy of building an excess inventory at the beginning 

f an epidemic outbreak to avoid the disruption impact on the SC. 



M. Rozhkov, D. Ivanov, J. Blackhurst et al. Omega 110 (2022) 102635 

Fig. 4. Supply Chain Reaction to Instantaneous Disruption in the Modes 0 and 1. 

Fig. 5. Supply Chain Reaction to Instantaneous Disruption in the Mode 2. 

Fig. 6. Capacity Disruption due to Pandemic Dynamics. 
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he inventory quantity was constrained by the target level of our 

nventory control policy and the perishability factor. The start of a 

andemic super disruption was judged based on the rule that 1% 

f the agent population had become infected; the end is based on 

he rule that 50% of the agents have recovered. We illustrate the 

esults of Mode 2 in Fig. 8 . 

First, we studied the situation in which inventory increased at 

nly one echelon (i.e., either at the RDC or at the FDC). Period 103

nd 134 correspond to the beginning and ending of the first pan- 

emic super-disruption wave. Building an excess stock at the be- 

inning of the epidemic contributed to system stabilization. There 

as an inventory increase at RDC during the recovery that was fol- 

owed by a higher inventory increase at the FDC. Moreover, we saw 

imilarities in inventory profiles at RDCs and FDC when compared 
8 
o the disruption Profile I (see Section 3.1 and Fig. 4 ). As such, we

oncluded that the inventory increase at the beginning of the pan- 

emic did not bring any additional destabilization in the SC recov- 

ry. When we simultaneously increased inventory at both the RDC 

nd the FDC, the system built a buffer inventory downstream the 

C. Additional inventory at the FDC was not created, as shown in 

ig. 9 . 

In summary, Figs. 7–9 demonstrate that in the case of inventory 

hortage, a three-stage SC with two planning echelons transforms 

o a “virtual” cross-docking operational logic with no stock at the 

ntermediate stage. This can be treated as a type of adaptation, but 

n reality a sourcing policy switch would lead to lost orders be- 

ause of manufacturing “freeze time” and would entail higher SC 

ead times because of new cross-dock planning. 
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Fig. 7. Inventory Dynamics for Structural Design Mode 2. 

Fig. 8. Pandemic Impacts on SC Capacity and Inventory (Mode 2) when Inventory Is Increased at a Single Echelon (RDC or FDC). 

Fig. 9. Pandemic Impacts on SC Capacity and Inventory (Mode 2) when Inventory Is Increased at Two Echelons (Both RDC and FDC). 

9 
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Table 3 

Comparison of Efficiency and Responsiveness Performance Measures (Average for 15 Replications). 

Configuration Total Costs Service Level Out-of-Stock Costs Wastage Costs 

Disruption Profile I 

Mode 0 / no system reset 315,751,116 92.58% 16,517,333 3,293 

Mode 0 / system reset 314,210,012 92.20% 17,351,333 329 

Mode 1 / no system reset 323,844,327 91.36% 18,710,000 98,837 

Mode 1 / system reset 320,729,054 90.69% 20,194,000 - 

Mode 2 / no system reset 246,445,800 93.82% 13,508,667 133,606 

Mode 2 / system reset 245,398,624 93.57% 14,077,333 42,418 

Disruption Profile II 

Mode 0 / no quarantine 308,580,088 98.81% 2,625,333 198 

Mode 0 / quarantine 305,753,576 99.92% 150,000 0 

Mode 1 / no quarantine 311,456,605 98.58% 3,028,667 11,399 

Mode 1 quarantine 308,284,619 99.66% 647,333 0 

Mode 2 / no quarantine 233,508,078 99.20% 1,740,000 14,614 

Mode 2 / quarantine 232,906,075 100.00% 0 490 

Mode 2 / no quarantine and RDC stock increase 234,022,944 99.40% 1,330,667 35,170 

Mode 2 / no quarantine and FDC stock increase 233,028,137 99.54% 976,667 15,275 

Table 4 

Statistical tests. 

Configuration Shapiro test W 

Shapiro test 

p-value 

Wilcoxon signed 

rank exact test V 

Wilcoxon signed 

rank exact test 

p-value Paired t-test t Paired t-test df 

Paired t-test 

p-value 

Disruption Profile I 

Mode 0 / no system reset/system reset 0.82663 0.008247 120 6.10E-05 

Mode 1 / no system reset/system reset 0.94978 0.5211 6.46 14 1.51E-05 

Mode 2 / no system reset/system reset 0.92315 0.2152 3.00 14 0.01 

Disruption Profile II 

Mode 0 / no quarantine/quarantine 0.97529 0.9272 8.23 14 9.83E-07 

Mode 1 / no quarantine/quarantine 0.92314 0.2151 6.81 14 8.47E-06 

Mode 2 / no quarantine/quarantine 0.91329 0.1521 2.28 14 0.03914 
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.3. Efficiency analysis 

As discussed in Sections 4.1 and 4.2 , the SC reacts differently to 

ifferent disruption profiles and structural designs. In Table 3 , we 

llustrate the impact of these reactions on SC performance. 

The respective performance indicators of efficiency and respon- 

iveness are shown in Table 3 where the performance impact is 

igher for instantaneous disruptions (i.e., lower service level and 

igher costs) as for pandemic disruption profiles. The performance 

mpact can be mitigated by epidemic control measures (i.e., reduc- 

ion of contact intensities); this is evident for all SC structural de- 

igns. Finally, we can observe that three-stage SC design demon- 

trates a lower exposure to pandemic disruptions than the two- 

tage system. 

.4. Sensitivity analysis 

Our model combines three levels, i.e., pandemic dynamics, sup- 

ly chain design, and operational production-inventory control 

olicies which is not often seen jointly in literature [ 49,93 ]. In this

etting, even a relatively small number of nodes in the network 

an yield complex behaviors at the operational level. In the lit- 

rature we find that consideration of large-scale networks makes 

t difficult to examine operational policy dynamics in detail (e.g., 

12] ), while a detailed consideration at the operational level fre- 

uently leads to the necessity of considering a small-size network 

e.g., [ 94 , 71 , 83 ]). Our study focuses on main operational dynamics

nd, hence, a set of additional sensitivity analyses have been con- 

ucted that are described in this section. 

To test the stability of the model we performed additional 

tatistical tests in R 4.1.0 for 15 replications of simulation ex- 

eriments shown in Figs. 4–9 for default parameter values from 

ables 3 and 4 . 
10 
The Shapiro test was used for normality check, then all replica- 

ions were compared with paired t-tests or Wilcoxon signed rank 

xact test. The cost level difference by applying recovery policy is 

tatistically significant. We did not test stock increase measures 

ecause of their limited effect on the system’s total costs. Subse- 

uently, we conducted model sensitivity analysis to find out sys- 

em response for both disruption profiles Figs. 10–12 . demonstrate 

he results. 

First, we performed sensitivity analysis regarding efficiency per- 

ormance and the use of order reset recovery policy in disruption 

rofile I. In Fig. 10 we can observe that the use of order reset pol-

cy yields lower total SC costs in all three operation modes (i.e., for 

ll three SC designs and associated sourcing strategies). The lowest 

ost is observed in the mode which corresponds to our simulation 

esults presented in Table 3 . 

Second, we analysed sensitivity regarding efficiency perfor- 

ance and the use of pandemic control measures in disruption 

rofile II ( Fig. 11 ). In Fig. 11 we can observe that the use of quar-

ntine measures leads to lower total SC costs in all three opera- 

ion modes (i.e., for all three SC designs and associated sourcing 

trategies). The lowest cost is observed in the mode 2 (i.e., the 

hree-echelon SC design) which corresponds to our simulation re- 

ults presented in Table 3 . This also verifies the dynamic behaviors 

hown in Figs. 6–9 when the pandemic dynamics with and without 

ockdown and quarantine measures yields different inventory and 

apacity dynamics leading to lower total costs in case with the use 

f pandemic control measures. 

Third, sensitivity of efficiency to the use of the stock increase 

ecovery policy in disruption profile II was analysed ( Fig. 12 ) which 

lso confirms our findings deduced from analysis of Figs. 7–9 . 

Fourth, we detailed the sensitivity analysis toward different 

omponents of the total SC efficiency, i.e., out-of-stock and wastage 

osts (compare with Table 3 and see Fig. 13 ). 
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Fig. 10. Sensitivity of efficiency performance to the use (1) or non-use (0) of order reset recovery policy in disruption profile I. 

Fig. 11. Sensitivity of efficiency to the use of the pandemic control measures (true) and non-use of pandemic control measures (false) in disruption profile II. 
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Fig. 13 demonstrates the sensitivity analysis results of our 

odel behavior based on variation of demand for disruption pro- 

le I and contact rate for disruption profile II and their impact on 

ut-of-stock and wastage costs. The effect of 50% capacity shortage 

disruption profile I) is evident for out-of-stock dynamics – there is 

 certain point at which lack of stock leads to penalties. Operation 
11 
ode # 2 mitigates this effect better because of higher inventory 

evel and additional stock buffer at FDC. Wastage level dynamics 

ue to perishable products has more complex behavior: starting 

rom the demand level of 20 0 0 units consumption increase out- 

eighs wastage risks caused by the ripple effect and uncertainty. 

wo-stage SC configuration is more robust to surges in demand. 
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Fig. 12. Sensitivity of efficiency to the use of the stock increase recovery policy in profile II. 
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n case of disruption profile II, the main system stressor is contact 

ate and associated infection dynamics stemming from quarantine 

easures. In summary, the results shown in Figs. 10–13 confirm 

ensitivity of our model to both epidemic dynamics control and 

ecovery policies. 

. Discussion 

In this article, we investigated the exposure of different net- 

ork design structures to the impact of the pandemic and how 

hese impacts can be mediated by adaptive operational reactive de- 

isions in anticipation of and during the pandemic. In generalized 

erms, we contribute to the understanding of the impacts of pre- 

aredness and recovery decisions in anticipation of and during the 

OVID-19 pandemic on supply chain operations and performance. 

e detail the discussion on the generalized effects observed in our 

tudy in this section. 

.1. Modeling and conceptual insights 

The COVID-19 pandemic has offered a new resilience manage- 

ent context for firms. This new context has been considered in 

ecent SC risk management literature, which is evidence of at- 

empts to define a new theoretical lens that overarches the existing 

esilience theory motivated by the COVID-19 pandemic [56] . Ivanov 

45] and Ivanov and Dolgui [58] proposed to conceptualize the no- 

ion of SC viability for the pandemic disruptions echoed by Lotfi

t al. [95] , Wang and Yao [96] , Ruel et al. [97] and Feizabadi et al.

98] . 

In the generalized terms, the pandemic disruptions are specific 

nd can be characterized by some major aspects. First, long-term 

xistence of disruption and its dynamic scaling should be consid- 

red. Second, there are multiple simultaneous effects in the supply 

hains such as simultaneous disruptions at different echelons and 

imultaneous propagation of the virus and the supply chain dis- 

uptions. Third, recovery actions are deployed in the presence of 

isruption dynamics. Fourth, the pandemic disruption begins grad- 

ally and allows some time to make decisions on SC fortification 

efore the onset of the pandemic (e.g., by prepositioning extra in- 

entory). All of these features make the pandemic disruption very 

pecific and different from instantaneous disruptions, which were 
12 
ost often studied in pre–COVID-19 literature on SC resilience. Un- 

ike that of instantaneous disruptions, the pandemic profile is char- 

cterized by dynamics of degradation and recovery rather than by 

mmediate reactions to short-term shocks to SCs, as in the case of 

atural disasters. 

In our simulations, we analyzed both singular-event disruptions 

nd pandemic profiles to identify similarities and differences in 

C reactions. In addition, the analysis of instantaneous disruptions 

elped us validate the simulation model and process control algo- 

ithms for pandemic control because we used results that had been 

onfirmed in the existing studies on SC resilience and extended 

hem toward the analysis of the post-recovery stage. We examined 

C reactions to disruptions for two-stage and three-stage network 

esigns because these reactions might be different depending on 

he number of echelons in the SC. At the process level, we exam- 

ned and assessed for efficiency and responsiveness (measured by 

ll rate) of two reactive adaptation strategies: (a) a “system reset”

e.g., cancellation of all orders in the planning algorithm at the end 

f disruption and when capacity is recovered) and (b) building an 

xcess inventory at the beginning of an epidemic outbreak, with 

egard to the pandemic impact on SC performance measured by 

ost efficiency and fill rate. We considered SC recovery happening 

n two different settings: (a) a quick capacity decrease with a quick 

ecovery and (b) a gradual capacity decrease with a gradual recov- 

ry (the latter is characteristic of the pandemic disruption). 

We learned several generalized effects. For example we ob- 

erved a system inertia, which stems from a complex SC planning 

lgorithm for several time periods, is encountered in both cases 

nd leads to an excess stock after a disruption is eliminated. Next, 

e observed that a reset of the process-planning algorithm at the 

ime that the disruption is over is an efficient approach for a quick 

ecovery. This observation is most relevant for the situations in 

hich the system has not lost its full capacity and some capacity 

till exists to serve the incoming orders. 

Many of our findings show that the number of echelons in the 

C has a crucial influence on the network exposure to disruptions. 

he efficiency of the system reset is much lower in the three- 

chelon setting (i.e., mode 2) as compared to the two-echelon de- 

ign (e.g., direct shipments). This lower efficiency can be seen as 

 consequence of the pull system of inventory replenishment: the 

nventory deficit at three-echelon SCs is multiplied, which leads to 

he backward propagation (i.e., backward ripple effect; [ 99 , 50 ]) of 
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Fig. 13. Detailed costs analysis in sensitivity experiments. 
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he excess inventory at the time of disruption elimination and ca- 

acity recovery. At the same time, three-stage SC design demon- 

trates a lower exposure to pandemic disruptions as the two-stage 

ystem. 

.2. Managerial implications 

The results we obtained allowed us to generalize five novel ma- 

or managerial implications. First, we observed that in both disrup- 

ion profiles, inventory peaks (i.e., disruption tails) happen after ca- 

acity recovery and cause the destabilization of inventory dynam- 

cs. From the management point of view, this observation implies 

hat an adaptation of a network structural design in preparation for 

 pandemic is more advantageous during the anticipation of a pan- 

emic rather than during the pandemic, when other operational 

ecovery policies are deployed. This implication suggests that man- 

gers should avoid simultaneous changes in structural and opera- 

ional policies that can destabilize the production-inventory system 

nd result in a long shortage period during the change from one SC 

tructure to another (e.g., from three-stage to two-stage SC). 

Second, our results show little difference in inventory dynam- 

cs between instantaneous and pandemic disruption profiles at the 

tage after capacity recovery. As such, the existing SC resilience 

trategies for managing instantaneous disruptions can also be used 

or the pandemic disruptions. Third, and counter-intuitively, we ob- 

erved that performance impact in terms of service level and costs 

s higher for instantaneous disruptions than for pandemic disrup- 

ion profiles. Most of the literature would expect a pandemic to 

ave more severe impacts on the SCs compared with instantaneous 

isruptions. However, our simulations show the opposite. This re- 

ult can be explained through the lens of the pandemic disruption 

rofile that has a gradual degradation and recovery in the case of 

n uncontrolled epidemic propagation and is almost smoothed at 

ome reduced capacity (about 90–95%) of normal in the case of 

overnmental and company protection measures. One limitation in 

nterpreting this finding is that our settings assumed the absence 

f severe demand shocks during the pandemic and the effective- 

ess of protection measures. 

Fourth, our findings indicate that an inventory increase in an- 

icipation of a pandemic does not have any negative effects on in- 

entory dynamics during and after the pandemic. Moreover, it has 

 positive effect on service level during the pandemic, especially 

hen increasing inventory at the upstream inventory holding lo- 

ation (i.e., at the FDC in the setting of our model). 

Fifth, we observed that a system reset stabilizes inventory dy- 

amics in instantaneous disruptions. A direct modeling of a system 

eset in the pandemic setting is complicated because of the ab- 

ence of a disruption recovery event. However, we find that a sys- 

em reset would be an efficient measure in the pandemic setting as 

ell because our experiments confirm a similarity in inventory dy- 

amics across different disruption profiles and structural designs. 

These managerial implications allow articulating several gener- 

lized effects. First, we have observed that supply chain adapta- 

ion ahead of a pandemic is more advantageous than during the 

andemic when specific operational recovery policies are deployed. 

s such, the role of visibility and communication with suppliers is 

f utmost importance for early recognition of potential shutdowns 

nd taking appropriate measures of inventory increase. For exam- 

le, as shown in Ivanov [65] , AGCO corporation had established 

arly warning and visibility system before the pandemic. Early in 

020, they “had regular discussions with Chinese vendors and re- 

ponded quickly with risk assessments and searches for alternative 

ourcing options. AGCO was able to source/produce as many criti- 

al parts as possible in China, and all the finished goods inventory 

as moved to European markets, which were still operating at the 

ime. 
14 
Second, two-stage SC systems exhibit a higher vulnerability in 

isruption cases. However, they are exposed to a lower system in- 

rtia and show positive effects at the recovery stage. They are also 

ess likely to be affected by disruption tails and inventory control 

olicy destabilization. Third, as for the reactive recovery strategies, 

e note that their practical application is frequently restricted by 

he nature of the disruption. For example, it is not always possible 

o create additional stock to survive through the disruption time. 

urprisingly, because the pandemic disruption is severe and much 

ore complex it allows for a higher flexibility in deploying recov- 

ry strategies. The pandemic disruption scales up gradually at the 

eginning of an epidemic outbreak, so the firms have time to de- 

loy recovery strategies to mitigate the disruption impact. How- 

ver, the deployment of recovery strategies can be complicated by 

nsufficient capacities and supply due to lockdown measures. 

. Conclusions & future work 

In this study, we examined the impact of management deci- 

ions on SC preparedness and recovery in anticipation of and dur- 

ng the long-lasting disruptions of exogenous dynamics on the 

perations and performance. We accomplished this examination 

hrough the development and usage of a simulation model and 

ere motivated by a real-life practical setting of the COVID-19 pan- 

emic. Positioning SC networks as multilayer systems and building 

n a real-life case of a retail company, we examined inventory dy- 

amics and the associated performance impacts in two- and three- 

tage structural settings driven by an embedded pandemic model 

nd different scenarios for pandemic dynamics (i.e., uncontrolled 

ropagation or controlled dispersal with lockdowns). 

Most centrally, we sought to understand which network de- 

ign structures are more exposed to the impact of pandemic su- 

er disruptions. We explored how these impacts can be mediated 

y structural designs and process recovery strategies. We triangu- 

ated our analysis by integrating three dimensionalities—network 

tructure, process adaptation, and different pandemic scenarios —

s exogenous environmental dynamics. Subsequently, we proposed, 

valuated, and analyzed two types of recovery strategies that a 

rm can leverage to reduce the negative effects of a pandemic 

nd the associated disruptions. First, we deployed in our model 

 reactive strategy, which increases inventory in anticipation of a 

andemic. Second, we tested the impact of a system reset at the 

ime of capacity recovery, which is used to avoid excess inventory 

ippling through the network and the associated destabilization of 

roduction-inventory dynamics. 

Our analysis enabled us to deduce useful managerial impli- 

ations related to which structural designs are more resistant to 

 pandemic and what recovery strategies firms can deploy, and 

hen, in a pandemic setting. First, we have observed that in both 

isruption profiles, inventory peaks (i.e., disruption tails) occur af- 

er capacity recovery, which causes the destabilization of inventory 

ynamics. As such, it can be useful to perform a structural change 

t when anticipating a pandemic rather than during the pandemic 

hen other operational recovery policies are deployed. Simultane- 

us changes in structural and operational policies can destabilize 

roduction-inventory systems and create a long shortage period 

uring the change from one SC structure to another. Second, our 

esults show similarities in inventory dynamics in both instanta- 

eous and pandemic disruption profiles. Third, and counterintu- 

tively, we observed that performance impact is higher for instan- 

aneous disruptions than for pandemic disruption profiles in terms 

f service level and costs, at least in the context of our study (we 

ote that other problem and model settings could imply different 

utcomes in this regard). Fourth, our findings indicate that an in- 

entory increase in anticipation of a pandemic does not have any 

egative effects on inventory dynamics during and after the pan- 
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emic, and it has a positive effect on service level during the pan- 

emic. 

As with any study, limitations exist because the variety of 

eal life is unlimited, and our modeling means are limited. Our 

tudy’s limitations are related to the modeling assumptions stated 

n Section 2 and a “classical” limitation of all simulation stud- 

es, that is, their contextual findings. We did not explicitly model 

ransitions between structural states, which is in line with our 

roblem. We assumed an absence of severe demand shocks dur- 

ng the pandemic. Finally, the peculiarity of our analysis is the 

erishable products, which impose additional restrictions on or- 

er quantities and target inventory levels (i.e., the maximum level 

f inventory in the system) because they are constrained by the 

helf-life times. This setting is quite unique and might be different 

n the context of nonperishable products, where analytical mod- 

ls would be required to determine the optimal inventory level to 

e prepositioned in anticipation of a pandemic, which would re- 

uire connecting this decision with a forecast of the pandemic’s 

uration. 

The limitations stated above offer directions for future research. 

n explicit modeling of structural transitions can be of interest 

f one element of the network structure is disrupted and results 

n missing structural connectivity (e.g., if a central DC in a multi- 

tage SC is disrupted, one is forced to switch to direct shipments or 

o shipments via alternative DCs). We did not consider severe de- 

and shocks [10] during the pandemic. This decision is the com- 

any’s sales data for 2020. Indeed, while some short-term demand 

uctuations were observed in anticipation of the first lockdown, 

his short-term deviation does not influence the long-term inven- 

ory and demand dynamics; as such, we allow for this simplifica- 

ion in the model. 

In pandemic modeling, it would be interesting to include vary- 

ng intensities of lockdowns (e.g., a full lockdown or a partial lock- 

own) as well as the duration of lockdown periods (i.e., we model 

nly a single lockdown period with epidemic control measures 

f a steady intensity). Developing analytical models to determine 

he optimal inventory level to be prepositioned in anticipation of 

 pandemic is an exciting research direction, along with model- 

ng various decentralized settings that stem from different lev- 

ls of risk- and profit-aversions of SC firms and entailing game- 

heoretical studies. Additional inventory management approaches 

re needed to cope with the side effects of generic inventory man- 

gement approaches. Thus, ripple-effect-related stock level stabi- 

ization methods is a promising future research direction. The un- 

ertainty inflicted by both disruption event and recovery neces- 

itates a set of inventory management strategies that range from 

ean to responsive. From the generalization point of view, our in- 

ights can be of value not only in food retail SCs but also in other

conomic sectors such as pharmaceutics, healthcare products, and 

onsumer goods industries that are increasingly concerned with 

he management of perishable products’ inventory under disrup- 

ions. 

Finally, it would be very interesting to incorporate demand and 

andemic forecast capability into the model. With that said, one 

oncern about the possible extensions discussed (e.g., incorporat- 

ng the pandemic forecasts using lockdown duration information) 

s that it might be more complex and so increase the modeling 

omplexity and result interpretation. Different alternative methods 

uch as robust optimization, game theory, chaos theory, Bayesian 

etworks could be used to enhance the results of our study. In ad- 

ition, uncertainty modeling by robust (conic) multivariate adap- 

ive regression splines (R(C)MARS) methods [100] can be consid- 

red in light of further investigations of the problem coined and 

xamined in our study. Effort s in this direction hold promise in 

urther enhancing our understanding of managing supply disrup- 

ions due to pandemics 
15 
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