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Abstract

There is no consensus on the optimal rehabilitation protocol after platelet-rich plasma (PRP) 

treatment for tendinopathy despite basic science studies showing the critical role of mechanical 

loading in the restoration of tendon structure and function post-treatment. In this article, we will 

review tendon mechanobiology, platelet biology, and review level I-II Achilles tendon clinical 

studies paying particular attention to the role of mechanical loading in rehabilitation of injured 

tendons.

Summary statement:

Animal studies emphasize the synergistic effect of mechanical tendon loading and PRP to treat 

tendon injury while clinical studies described minimal details on loading protocols.
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Introduction

Tendinopathies are common debilitating tendon conditions, in both the athletic and 

aging populations, which reduce a patient’s ability to work and participate in sports 

(1). Treatment options traditionally have been palliative and include non-steroidal anti-

inflammatory drugs (NSAIDs), extracorporeal shockwave therapy (ESWT), corticosteroids, 

and surgery. Platelet-rich plasma (PRP) injections have emerged as an alternate to these 

traditional treatments. PRP belongs to a class of interventions called orthobiologics, 

which use biological substances aimed to foster healing in injured musculoskeletal tissues. 

Orthobiologics have since expanded to include the use of tissues harvested from bone 
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marrow, adipose tissue, and placenta, amongst others, but many physicians still regard PRP 

as the “original” orthobiologic. PRP for tendinopathy involves an injection of concentrated 

autologous or allogenic platelets to boost one’s tendon healing capacity (2–7). While animal 

investigations generally show the efficacy of PRP treatment for tendinopathy, clinical results 

have been variable (8–12). Variations in PRP preparation, cellular content, frequency and 

number of injections, and subtypes of treated tendon injuries may account for the variability 

in clinical studies. This manuscript will review both the role of mechanical loading and 

PRP biology for tendon, and will appraise level I-II clinical studies for PRP-treated Achilles 

tendinopathy, paying specific attention to the post-PRP rehabilitation program. Achilles 

tendinopathy was chosen as this tendon is subject to heavy mechanical loading, and a large 

portion of Achilles tendon injuries fail conservative management and become chronic (13).

To find level I and II studies on PRP for Achilles tendinopathy, a search was conducted on 

PubMed on December 10th, 2018 using the terms: (tendon OR tendinopathy OR tendinosis 

OR tendinitis) AND (platelet-rich plasma OR PRP OR autologous conditioned plasma OR 

ACP). Titles and abstracts were screened, and the following inclusion criteria were used: 

human studies, randomized controlled trials, and prospective or retrospective cohort studies 

using PRP or ACP products for the treatment of Achilles tendinopathy using ultrasound 

guidance. Studies using PRP combined with surgery and those that did not use ultrasound 

guidance were excluded. The 88 full texts were read and relevant data on mechanical 

loading rehabilitation was extracted. This yielded 5 publications for the review. There were 

35 level I and II studies pertaining to other tendons (20 on common wrist extensor tendon, 

8 on patellar tendon, 3 on rotator cuff tendon, 2 each on gluteal and proximal hamstring 

tendons).

Discussion

Tendon Mechanobiology

Healthy tendon tissue displays parallel collagen fibers (65% to 80% of the dry mass is 

type 1 collagen) among cellular components including mature tendon cells or tenocytes 

and tendon-specific stem/progenitor cells (TSCs) within a well-organized extra-cellular 

matrix (ECM) composed of proteoglycans, glycoproteins, and elastin (14–19). The highly 

organized structural components and cellular organization are vital for the optimal function 

of tendon to act as load bearing units. The mechanical signals are transferred to tendon 

cells, which, in turn, are transduced to intracellular biochemical responses known as 

mechano-transduction (20–22). Tendon cells play a vital role in mechano-transduction and 

maintain tendon tissue homeostasis. Although tendon structure is optimized to support 

tensile load, excessive loading, defined as a mismatch between load capacity and load 

placed on the tendon, results in overuse tendinopathy which presents as varying degrees 

of pain and loss of functional capacity. The tendon cells sense changes in the load and 

biochemical factors, resulting in a cascade of cellular and matrix responses that initiate 

pathological consequences (23–27). The mechanisms of tendon injury and repair have been 

reviewed extensively (5, 28–33). According to the pathoetiology of the inflammatory model 

of tendinopathy, when injured, tendon healing typically progresses through three stages. 

The first stage is the inflammatory phase which is characterized by acute inflammation as 
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pro-inflammatory cytokines attract blood cells to begin repair of injured tissue (34). This 

stage generally lasts for 5 to 7 days. The second stage is the proliferative phase where 

the tendon attempts to heal itself via synthesizing reparative, smaller diameter type III 

collagen and proteoglycans (35). This is believed to take place starting one week after the 

injury and lasting for approximately six weeks. The third stage is the remodeling phase 

where healed tendon undergoes re-organization and crosslinking of mature collagen fibers 

(36). The remodeling phase is essential for restoring normal tendon mechanical properties. 

However, healing can fail. When this occurs, the tendon can go into a state of “tendinosis”, 

characterized by a combination of increased mucoid ground substance, collagen disarray, 

increased type III to type I collagen ratio, neovascularization, and decreased tenocyte density 

and dysmorphism (19, 33, 37, 38). Cook et al. has proposed a continuum model for tendon 

patho-etiology that explains most clinical presentations (29, 30). This model has three stages 

featured as reactive tendinopathy, tendon disrepair, and degenerative tendinopathy. The first 

stage is the proliferative response in the cell and matrix, the second describes an attempt 

to heal with matrix breakdown, and the third with a progression of changes in matrix and 

cells. Regardless of the school of thoughts regarding tendon healing, the failed tendon 

is characterized by non-tenogenic tissue types such as lipoid, fibrinoid, fibrocartilaginous, 

or calcified material and is colloquially referred as scarred (35, 39). Tendons with non-

tenogenic tissue have been known to exhibit inferior mechanical properties such as tensile 

strength, and they can become chronically painful (40, 41) (Table 1).

Tendon is a biological structure that transmits mechanical loads for joint movements. 

Controlled mechanical loading on tendon, typically accomplished with physical therapy 

(PT) for clinical patients, benefits tendon healing, presumably through its effect on both 

TSCs and ECM. The effect of mechanical loading on TSCs is magnitude-dependent. In 

an in vitro mechanical loading model, it has been shown that small mechanical stretching 

(~ 4%) induces TSCs to differentiate into tenocytes, whereas large mechanical stretching 

(~8%) results in differentiation of TSCs into non-tenocytes; these findings may explain 

the development of tendinosis (39). In rat, the benefit of mechanical loading on tendon 

appears to take place as early as 4 weeks after initiation of the tendon loading program 

(42). Specific mechanisms involve decreased non-tenogenic transformation and increased 

TSC activities evidenced by down-regulation of non-tenocyte genes (collagen II, PPARƔ, 

SOX-9, and Runx-2) and by up regulation of tenocyte-related genes (collagen I and III) 

(43). Mechanical tendon loading also benefits the ECM via activation of fibroblasts that 

increase the secretion of transforming growth factor- β1 (TGF-β1), connective tissue growth 

factor, and insulin-like growth factor-I (39, 42, 44). These growth factors ultimately aid 

collagen cross-linking and help to restore pre-injury tendon tensile strength (42). Hence, 

placing tendons under moderate mechanical loading is beneficial for tendon healing. It is 

important to keep in mind that as compared to young adult tendons, aging tendons may 

not respond similarly to mechanical loading as they have inherently reduced mechanical 

strength (36) and a decline in the number and quality of TSCs (45), which likely make aging 

tendons more susceptible to impaired or slower healing and tendon homeostasis that favors 

development of tendinosis (38, 46).
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Effect of Platelets on Tendon Remodeling

Platelets (PLTs) are formed from megakaryocytes through hematopoiesis and are 

synthesized in bone marrow by pinching off from their progenitor cell (47). Thereafter, 

they are released in a non-thrombogenic state into the peripheral circulation as anucleate, 

small discoid blood cells. The average platelet count in adults ranges from 150 to 350 × 

106/mL of circulating blood and platelets have been recognized for their pivotal roles in 

the healing cascade (48). PLTs have a number of intracellular structures, including alpha-

granules, comprised of platelet derived growth factors (PDGFs) and angiogenesis regulators, 

and dense granules containing ADP, ATP, serotonin, histamine, calcium, and mitochondria. 

Other complex platelet biological components include adhesins and coagulants as well as 

immunological molecules (47). These molecules serve a multitude of functions, first within 

the clotting cascade and finally as initiators of tissue healing processes. PLTs are able 

to detect injuries via endothelial-driven cellular reactions and are able to access bodily 

tissues including tendon via vascular flow. Following an injury, PLTs are activated, releasing 

the alpha granular contents including PDGF, TGF-β, vascular endothelial growth factor 

(VEGF), epidermal growth factor (EGF-1), fibroblastic growth factor (FGF), connective 

tissue growth factor (CTGF), and hepatocyte growth factor (HGF) (39, 49). The biological 

activities and the individual specific functions of the various PGFs have been described 

extensively (47–51).

PLTs also contribute to many adjunctive and supportive activities that result in increased 

angiogenesis and vascular remodeling through release of several chemokines and cytokines, 

via paracrine, autocrine, and endocrine modes of action (51, 52). Because of these unique 

modes of action, PDGFs are also capable of exerting morphometric and mitogenic effects on 

multiple cell types and they play important roles in tendon repair (47, 49). Chemokines and 

cytokines also play vital roles in tendon regeneration and tendon pain modulation although 

the discussion of these is beyond the scope of this article (50).

Platelet Rich Plasma in Animal Tendons

While a clear definition is not currently available, platelet-rich plasma (PRP) is most simply 

defined as “a preparation of a small volume of plasma with an increased concentration of 

PLT from autologous or allogenic hosts” (53). In animal studies, PRP infiltration in acutely 

injured tendons promoted shortening of the inflammatory phase, with additional benefits 

during the proliferative phase, such as collagen maturation noted by increased type I to 

type III collagen ratio and increased ECM synthesis, resulting in faster healing (7, 10, 

43). PRP’s ability to promote angiogenesis has been studied extensively showing that PRP 

infiltration results in increased vessel density as early as 2 weeks after the intervention (54). 

Since reduced vascularity of tendons is a major factor in their limited healing capacity, 

PRP-associated angiogenesis also contributes to accelerated tendon healing (54).

Two studies by Zhang et al. are insightful in this regard (53, 54). For example, after 

acute tendon injury, PRP induced tenogenic differentiation of TSCs and suppressed non-

tenocyte differentiation. However, when PRP was applied to TSCs from tendons that had 

already undergone non-tenogenic differentiation, PRP was unable to reverse the undesirable 

differentiation that had already occurred. These findings imply that PRP may not be 
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effective in repairing tissues once injury has progressed to the chronic stage, and it may 

not be indicated in treating tendinosis (53, 54).

Optimum PRP Formulation: Platelet concentration, white cell inclusion, and timing of 
injection

Optimal PLT concentration is a frequently discussed topic amongst practicing clinicians. 

This likely depends on both 1) the biology specific to the target tendon and 2) tendon 

injury type, in terms of severity and chronicity. One recent study out of Japan revealed 

that 1.0 × 106/uL PLT concentration was more effective in both pain control and tendon 

regeneration in rat patellar tendons than 5.0 × 105/uL, supporting the notion that higher PLT 

concentration is more effective (55). On the other hand, an extremely high concentration 

of PLT has been shown to result in detrimental effects on tendon proliferation; therefore, 

continued investigations are necessary to elucidate the optimum PLT concentration (56).

Leukocytes have a great impact on the intrinsic biology of tendons because of their 

immune and host-defense mechanisms. The presence of various leukocytes in PRP can 

have a significant effect on tendon healing. In PRP, lymphocytes, which produce insulin-

like growth factors that support tissue remodeling (57) are more concentrated than other 

leukocytes.

Monocytes are non-inflammatory leukocytic cells and are the precursors to macrophages, 

which are important cells of the immune system, similar to neutrophils. A distinct difference 

between the cells is that monocytes do not lead to a prolonged inflammatory condition 

but instead play important roles in tissue healing. M1 macrophages are responsible for 

producing several inflammatory cytokines that support host defense through pathogen 

clearance, necrotic tissue clearance, and reactive oxygen species (58). Additionally, the 

M1 macrophage phenotype produces VEGF and FGF (58). M2 macrophages have anti-

inflammatory capacities and generate precursors for collagen and fibroblast stimulating 

factor, thus supporting their role in ECM deposition (58). Monocytes/macrophages release 

additional pro-regenerative growth factors that lead to neovascularization, proliferation of 

myogenic precursor cells, and play key roles in wound repair and inflammatory control (59). 

Therefore, the presence of high concentrations of monocytes/macrophages in PRP is likely 

to contribute to better tendon healing.

Neutrophils play a key role in various healing cascades by forming a dense barrier against 

invading pathogens and counteracting infections (60). Their presence in PRP can be 

desirable within specific treatment protocols that require higher levels and longer periods 

of inflammation such as fracture healing (61), while it can be harmful and not indicated in 

other applications. In fact, animal studies demonstrated that the use of neutrophil-rich PRP 

resulted in a higher collagen type III/collagen type I ratio, leading to fibrosis and decreased 

tendon strength (62).

Another frequently discussed topic amongst clinicians is the timing of PRP application 

and the exact clinical indications. Two studies by Zhang et al. are insightful in this regard 

(63, 64). For example, after acute tendon injury, PRP induced tenogenic differentiation of 

TSCs and suppressed non-tenocyte differentiation. However, when PRP was applied to TSCs 
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from tendons that had already undergone non-tenogenic differentiation, PRP was unable to 

reverse the undesirable differentiation that had already occurred. These findings imply that 

PRP may not be effective in repairing tissues once injury has progressed to the chronic 

stage, and it may not be indicated in treating tendinosis (63, 64).

The differences in PRP composition and quality among numerous preparation methods 

remain unclear. Specifically, the benefit of including leukocytes in the PRP product remains 

controversial, and few studies have evaluated the effects of the interaction between platelets 

and leukocytes on the growth factor concentrations, proinflammatory effects and cellular 

effects. Several studies, mainly in the orthopedic field and sports-related injuries, support 

the use of leukocyte-poor (LP) PRP, whereas leukocyte rich (LR) PRP had a leading role in 

biological processes associated with healing, including angiogenesis and matrix remodeling. 

Kobayashi et al. concluded that the leukocyte concentration positively correlated with 

PDGF-BB and the VEGF concentration, while it negatively correlated with FGF-b (65).

In a study by Yan and co-workers, it was revealed that LP-PRP in a rabbit chronic 

tendinopathy model lead to larger collagen fibril diameters than when LR-PRP was 

used. Whereas in both the LP-PRP and LR-PRP groups significantly lower matrix 

metalloproteinase (MMP)-1 and MMP-3 expression levels were seen than in the control 

group (66). Stronger chemotactic and proliferative properties of PRP seem to be present with 

LR-PRP, with tendinopathic cells migrating at a higher velocity under LP-PRP conditions, 

although this formulation is more pro-inflammatory in terms of IL-6 secretion (67).

Based on different PRP formulation profiles and measurable effects in LP and LR-PRP. 

emphasis should be placed on the temporal needs and biological characteristics of injured 

tendons, and PRP formulations should be tailored accordingly, using versatile PRP devices, 

allowing for the preparation of different PRP formulations.

Data Summary of Combining Mechanical Loading and PRP

The efficacy of PRP is shown to depend on mechanical loading. Injection of PRP alone 

without mechanical loading was found to improve mechanical properties of rat tendons 

including stiffness and increased stress at failure by day 3 to 5 (11). However, mechanical 

loading was required for this effect to continue to 14 days. The unloaded tendons were less 

than one third as strong as the tendons that were loaded normally; without differences in 

tendon size, stiffness, force, or stress to failure at 14-day follow-up (11).

Clinical Study Review of PRP Injection for Achilles Tendon

Six studies met the initial search criteria as detailed in the introduction section. The study 

by Kearney et al. was excluded from our review on the basis of lack of guided injection 

(68). Details of the five remaining included studies are found in Table 2 (69–73). Four 

studies treated a total of 98 cases of mid-portion Achilles tendinopathy while one study 

by Erroi et al. treated 21 cases of insertional Achilles tendinopathy (72). PRP cellular 

profiles were not available in any of these studies despite the recent consensus statement 

on the minimum reporting requirement for orthobiologic trials (74). Based on the PRP kits 

used, however, injected PRP was likely leukocyte-poor formulation with PRP concentration 

ranging between 1.6 to 5 times the physiological platelet concentrations (75). Two earlier 
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studies by DeVos and Krogh used a single PRP injection while studies by Boesen, Erroi, 

and Abate used multiple (two to four) PRP injections one to two weeks apart. Four 

studies employed tenotomy (3 to 10 passes) in addition to PRP as the intervention (69, 

71–73). Boesen’s study was the only study that employed four bi-weekly peri-tendinous 

PRP infiltrations without tenotomy (70). PRP plus tenotomy was found to be superior to 

tenotomy alone at week 24 (69), while PRP plus tenotomy was equal to normal saline 

injection (71, 73) and 2 bi-weekly PRP plus tenotomy treatments were equal to 3 weekly 

ESWT treatments at 24 weeks (72). As for peri-tendinous PRP injections, PRP was superior 

to saline injection at week 6 and week 12 but not at week 24 (70). In the same study, high 

volume image guided injection, where a combination of a local anesthetic and corticosteroid 

was injected to the space between Kager’s fatpad and Achilles tendon was more effective 

than PRP at week 6 and 12, and equally as effective at week 24 (70).

The Trend in Clinical Studies: Mechanical Loading Programs

During the post-PRP phase, duration of relative rest or protected loading varied significantly 

amongst studies and ranged from Errois’ no rest protocol (72) to 4 days’ relative rest. All 

except for one study recommended in the “2–4 days” range (69–71, 73). Erroi et al. returned 

subjects to activity with no rest following an intra-tendinous Achilles tendon PRP injections 

(72). With this protocol, one concern is the risk of tendon rupture due to the mechanical 

stress from intra-tendinous injection. In some subjects, tendon loading may not be feasible 

due to procedure-related pain. The first day of formal rehabilitation fell on day 4 to 8 after 

the last PRP intervention, and it most commonly involved Alfredson’s (76) progressive 

eccentric tendon loading program at its core; although, they were all unsupervised home 

exercise programs. Of our interest was that 10 studies out of 36 non-Achilles tendinopathy 

PRP level I-II trials (mainly common extensor tendinopathy) had no mention on the post-

PRP rehabilitation program (77–86), highlighting the possibility that researchers might not 

have fully appreciated the rehabilitation program as an integral part of clinical trial protocol 

involving regenerative strategy.

Conclusions

Animal studies have pointed out that mechanical loading is regenerative to tendons, and 

the load is synergistic to PRP injections for tendon healing. While Achilles tendon PRP 

trials have done well in incorporating mechanical loading/post-PRP rehabilitation as part of 

regenerative strategy in the studies, the lack of supervision leaves something to be desired. 

Supervised rehabilitation programs seem to result in increased exercise compliance (87) and 

improved outcomes, and it also allows for improved ability to monitor for exercise “dosing” 

(88–91). Although no evidence exists, pre-PRP mechanical loading can also be considered 

as another method to optimize the regenerative benefit from PRP injections. Implementation 

of a structured, formal loading program might promote activation of TSCs and potentially 

improve the outcomes from the subsequent interventions if patients are able to tolerate the 

program (39, 42, 44).

In summary, efficacy of PRP injection for tendon injuries might be potentiated when it is 

used as a part of the spectrum of care where mechanical loading is combined with PRP.
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