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Abstract

Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the 

electroencephalogram (EEG) during non-rapid eye movement (NREM) sleep are associated with 

learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-

established; however, the role of NREM sleep in childhood is less clear. Growing evidence 

suggests the importance of two NREM sleep features: slow wave activity and sleep spindles. 

These features may be critical for understanding maturational change and the functional role 

of sleep during development. Here, we review the literature on NREM sleep from infancy 

to preadolescence to provide insight into the network dynamics of the developing brain. The 

reviewed findings show distinct relations between topographical and maturational aspects of slow 

waves and sleep spindles; however, the direction and consistency of these relationships vary, 

and associations with cognitive ability remain unclear. Future research investigating the role of 

NREM sleep and development would benefit from longitudinal approaches, increased control 

for circadian and homeostatic influences, and in early childhood, studies recording daytime naps 

and overnight sleep to yield increased precision for detecting age-related change. Such evidence 

could help explicate the role of NREM sleep and provide putative physiological markers of 

neurodevelopment.
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1 Introduction

It is well documented that circadian and homeostatic processes change across the lifespan, 

and the most prominent changes are observed across childhood (Grigg-Damberger et al., 

2007). Around two months of age, the infant electroencephalogram (EEG) shows distinct 

signatures of sleep akin to those in adults, including cyclic alterations of rapid eye 

movement (REM) and non-rapid eye (NREM) sleep (Ednick et al., 2009). During the 

first year, the amount of REM sleep decreases, while NREM becomes the predominant 

state (Ednick et al., 2009; Grigg-Damberger et al., 2007; Iber et al., 2007). NREM sleep 

consists of multiple stages that reflect the transition from light sleep (stage 1) to deep sleep 

(slow-wave sleep, SWS), with distinct arousal patterns, and electrophysiological features 

that are observed in the EEG (Iber et al., 2007). Two prominent NREM features, slow 

wave activity (SWA) and sleep spindles, are known to reflect neural plasticity, myelination, 

and brain maturation during sensitive periods (Sejnowski & Destexhe, 2000; Steriade & 

Timofeev, 2003). Slow wave activity follows a maturational sequence that is non-linear and 

highly clustered, with scalp topography changes that parallel the maturation of motor and 

cognitive functioning (Kurth et al., 2012). Sleep spindle features have a distinct topographic 

distribution, mirroring trait-like aspects that show between- and within-individual variability, 

representing a biological “fingerprint” (Bódizs et al., 2009; De Gennaro et al., 2005; Finelli 

et al., 2001) and a possible marker of cognitive ability (Fogel & Smith, 2011).

Sleep plays a vital role in neurobehavioral functioning, and altered NREM sleep may be 

related to atypical development (Gorgoni et al., 2020; Gruber & Wise, 2016). Research 

examining adolescents and adults suggests that SWA and sleep spindle characteristics reflect 

plasticity that is critical for supporting motor functioning, learning, memory consolidation, 

and cognitive abilities (Barakat et al., 2011; Bódizs et al., 2005; Huber et al., 2004; 

Lustenberger et al., 2012; Walker et al., 2002; Wilhelm et al., 2014). However, findings 

in childhood are more variable, and far less is known about the maturation of NREM sleep 

and its relationship to motor, memory, and cognitive functioning in early life.

SWA and sleep spindles are implicated in many neurodevelopmental disorders, including 

autism spectrum disorder (ASD) (Farmer et al., 2018; Lehoux et al., 2019; Limoges et 

al., 2005; Page et al., 2020; Tessier et al., 2015), schizophrenia (Gardner et al., 2014; 

Lustenberger et al., 2015; Manoach & Stickgold, 2019), and attention deficit hyperactivity 

disorder (Darchia et al., 2021; Miano et al., 2006; Ringli et al., 2013; Saletin et al., 2017). 

Established NREM markers have the potential to inform developmental processes and 

improve early identification; however, there remains a gap in our understanding of how 

SWA and sleep spindles contribute to healthy maturation and their relation with motor, 

memory, and cognitive functioning. Given the rapid development in the investigated age 

range (infancy to preadolescents), a next step is to establish whether specific developmental 

domains, such as motor, memory, and cognitive abilities are associated with particular 

NREM features, and at what ages. Elucidating the role of NREM features in typical 

development may contribute to our understanding of sleep physiology in early development.
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1.1 Scope of the review

We provide an integrative review of the literature on the physiological features of NREM 

sleep and their relations with motor, memory, and cognitive ability to understand healthy 

maturation and put forward putative physiological markers of neurodevelopment. To ensure 

a comprehensive search of the literature, we retrieved research from a combination of 

databases including PubMed, PsycINFO, Web of Science, and Embase. We searched for 

studies that investigated the physiological features of NREM sleep, and included the 

following keywords: (“slow wave activity” OR “SWA” OR “slow-wave sleep” OR “SWS” 

OR “slow oscillations” OR “sleep spindles” OR “sigma band” OR “sigma activity”) AND 

(“motor ability” OR “fine motor” OR “sensorimotor” OR “motor performance” OR “finger 

tapping” OR “memory” OR “motor performance” OR “cognitive ability” OR “cognition” 

OR “intelligence”).

1.2 Inclusion and exclusion criteria

The literature search was tailored to the specific database using the following inclusion 

criteria: 1) Peer-reviewed; 2) full-text available through May 31st, 2021; 3) empirical 

research (e.g., not a review); 4) published in English; and 5) studies including humans 

ranging in age from infants (3 months) to preadolescents (age 12). This range of ages allows 

for an investigation of important multi-domain transition periods in development, most 

notably infancy to toddlerhood, toddlerhood to preschool, and school age to preadolescence. 

Studies were excluded if the experimental statistics compared participants with a medical 

or neurodevelopmental disorder (e.g., ASD, ADHD, Down Syndrome, dyslexia) or an adult 

sample. The reference lists of the studies meeting our inclusion criteria were manually 

reviewed for other relevant articles.

In the following section we provide a brief overview of the studies’ assessment and analysis 

of sleep physiology. Next, we focus on slow wave activity, and the development of SWA 

and its relations with motor, memory, and cognitive ability in typical development. Then, we 

examine sleep spindles, the development of sleep spindle features, and the evidence of sleep 

spindles as an underlying neural correlate of motor, memory, and cognitive ability in typical 

development. Finally, we identify gaps in our current understanding of NREM sleep in child 

development, and offer recommendations for future research.

2 Defining sleep: sleep scoring and analysis

Sleep is quantified with polysomnography (PSG) consisting of EEG, electrooculography 

(EOG, eye movement) and electromyogram (EMG, muscle movement). The distinction of 

the sleep stage is determined by features of the EEG, EMG and EOG. Sleep stage are 

usually identified and scored in 20 or 30 second intervals following established scoring 

criteria (Iber et al., 2007; Rechtschaffen & Kales, 1968). Sleep is classified into two main 

states, rapid eye movement sleep (REM) and non-rapid eye movement (NREM) sleep. 

During REM sleep, the brain exhibits desynchronized activity, with bouts of atonia and rapid 

eye movements (Iber et al., 2007). NREM sleep is differentiated by the appearance and 

frequency of slow wave activity and sleep spindles and is delineated into various stages (e.g., 
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N1, N2, and N3) based on the percentage of slow wave activity and the presence of sleep 

spindles and k-complexes (Iber et al., 2007).

In premature infants, neonates, and young infants, scoring criteria account for the gestational 

and maturational age of the infant, and the presence of active sleep (AS), quiet sleep 

(QS), and periods of indeterminate sleep (IS). Premature infants and neonates show distinct 

oscillatory features, such as delta-brushes, tracé alternant, and temporal theta, which are age 

and region dependent (Wallois et al., 2020; Whitehead et al., 2017). Active sleep resembles 

REM sleep and is characterized by tense muscle tone or phasic twitches, eye movements 

fluttering, and rhythmic startles (Grigg-Damberger et al., 2007). Quiet sleep resembles 

NREM sleep and is characterized by regular breathing, limited or no eye fluttering, and 

little movement(Grigg-Damberger et al., 2007). Around the first month of life, the circadian 

rhythm emerges (Shimada et al., 1999) and around three months, infant sleep has features 

similar to adults, where REM and NREM can be recognized (Grigg-Damberger et al., 

2007; Jenni et al., 2004). Infants’ REM/NREM cycles range between 45- 60 minutes, with 

different compositions during nocturnal and daytime sleep (Jenni et al., 2004).

Additional information can be extracted from the sleep EEG to describe changes in the 

power spectrum (Achermann, 2009). The Fast Fourier Transformation (Cooley & Tukey, 

1965) is widely used to transform the signal from the time domain into the frequency 

domain. Spectral analysis is used to decompose the EEG spectrum into discrete frequency 

bands (Hz). Change in spectral features including absolute power (the amount of EEG 

activity within a frequency band) and relative power (the ratio of absolute power in an 

individual frequency band to the total power of all bands) are widely examined (Cohen, 

2014). The most commonly reported features of the sleep EEG include the distribution of 

power within specific frequency ranges, such as slow wave activity, the presence of specific 

EEG oscillations such as sleep spindles, and the topographical distribution on the scalp. 

To quantify spindle activity, visual or automatic spindle detection methods are used. Sleep 

spindles are defined by symmetry between hemispheres, as well as their amplitude (voltage), 

frequency (number of waveforms/second), density (number of spindles/minute), and the 

duration of the spindle burst (De Gennaro & Ferrara, 2003). Similar to the wake EEG in 

infancy and early childhood (though not discussed here, see review by (Saby & Marshall, 

2012)) the sleep EEG power spectrum shows pronounced maturational change with age, 

with a prominent increase in lower frequencies during the first year of life, and higher 

frequencies increasing in power across childhood (Chu et al., 2014; Jenni et al., 2004; Kurth 

et al., 2010; McClain et al., 2016; Novelli et al., 2016; Sankupellay et al., 2011).

3 Neurophysiology of slow wave activity

Slow waves become visible in the infant EEG between 2- 4 months of age (Fattinger et 

al., 2014; Jenni et al., 2004). During deep sleep, the low-frequency oscillation (< 1 Hz) is 

generated in nearly all cortical neurons (Steriade et al., 2001; Timofeev, Bazhenov, et al., 

2001). When thalamocortical neurons become highly synchronized in local regions, these 

slow oscillations appear as slow waves on the surface EEG (Vyazovskiy et al., 2009). SWA 

is defined as high-amplitude (>75µV) and slow frequency (< 4.5 Hz) waves in the scalp 

EEG, and is a measure of sleep homeostasis and sleep depth (Achermann et al., 2017; 
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Borbély & Achermann, 1999). The slope of the slow wave serves as a marker of sleep 

pressure, reflecting greater sleep homeostasis and higher cortical synchronization (Borbély 

& Achermann, 1999; Esser et al., 2007; Vyazovskiy et al., 2009). Slow waves increase with 

time spent awake, and over the course of the night, SWA undergoes a local topographical 

distribution shift, where brain regions alternate between active and inactive states (Nir et 

al., 2011; Timofeev, Grenier, et al., 2001), with the synchronization of SWA decreasing 

across successive NREM cycles (Achermann & Borbély, 2003; Riedner et al., 2007). The 

overnight reduction occurs with the homeostatic decrease of sleep pressure, and thus, SWA 

has a homeostatic regulatory aspect that is associated with the restorative features of sleep 

(Riedner et al., 2007).

Slow waves are regulated on a local level, and appear to reflect use-dependent features that 

are a function of prior experience and learning before sleep (Huber et al., 2006; Huber et al., 

2004; Wilhelm et al., 2014). When specific brain regions are enlisted and used extensively 

during learning, the result is a local increase in SWA in subsequent sleep (Finelli et al., 

2000; Huber et al., 2006; Huber et al., 2004; Määttä et al., 2010). Learning throughout the 

day comes at a cost, and when cerebral processes during wake produce increases in synaptic 

strength, the need for further synaptic potentiation is reduced (Tononi & Cirelli, 2006, 

2014). During NREM sleep, SWA is associated with the downscaling of synaptic strength 

and restoration of cellular homeostasis, and this allows for further synaptic potentiation and 

the strengthening of synapses to bolster learning following sleep (Tononi & Cirelli, 2006, 

2014).

3.1 Slow wave activity and development

Slow waves originate in deep cortical layers and proliferate across cortical layers with 

changing network dynamics (Steriade & Timofeev, 2003; Timofeev, Bazhenov, et al., 2001) 

that are best characterized as traveling waves across the cerebral cortex (Massimini et 

al., 2004; Schoch et al., 2018). Slow wave activity changes rapidly across the night and 

with maturation. From early childhood to adolescence, SWA propagates spatially in a 

postero–anterior direction (Campbell & Feinberg, 2009; Kurth et al., 2010; Massimini 

et al., 2004). This propagational sequence mirrors the underlying processes of cortical 

maturation via widespread remodeling of cortical brain circuits during sleep (Kurth et 

al., 2010; LeBourgeois et al., 2019) which parallel the time course of synaptic density 

changes (Huttenlocher & Dabholkar, 1997). As new synapses are formed in childhood, 

global changes in connectivity occur, which manifest as increased cortical synaptic density 

and SWA (Huber & Born, 2014), that is associated with cortical areas undergoing alterations 

and the acquisition of regionally specific skills (Kurth et al., 2017; Kurth et al., 2012; 

Lustenberger et al., 2017).

Features of slow wave activity vary between individuals, though intraindividual features are 

stable across time; however, this relation becomes evident in adulthood, when the brain 

reaches full maturity (Ringli & Huber, 2011). Compared to adults, children exhibit a higher 

percentage of slow wave sleep, which is thought to reflect changes in plasticity and brain 

myelin. In children, the frontal occipital shift of SWA is predictive of whole brain myelin 

in later development (LeBourgeois et al., 2019). SWA power follows an inverted U-shape 
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trajectory with a general increase in childhood and a reduction in adolescence (Campbell & 

Feinberg, 2009; Jenni et al., 2004; Kurth et al., 2010). Slow waves propagate across longer 

distances with increasing age (Kurth et al., 2017; Schoch et al., 2018). Topographically, the 

amplitude of SWA is most prominent over occipital regions during preschool, shifting to 

central regions in school age, reaches a frontal maximum in puberty (Feinberg & Campbell, 

2010; Kurth et al., 2010; Novelli et al., 2016). From birth to preadolescence, the slope 

of slow wave shows a significant reduction, presumably reflecting processes of synaptic 

pruning (Buchmann et al., 2011; Kurth et al., 2010). These maturational patterns are 

consistent with evidence from mechanistic investigations demonstrating that SWA supports 

remodeling of brain circuits, in which lower-order areas subserving sensorimotor systems 

mature first, followed by higher-order areas that support cognitive functions maturing later 

in adolescence (Buchmann et al., 2011; Gogtay et al., 2004; Kurth et al., 2012; Luna & 

Sweeney, 2004).

3.2 Slow wave activity and relations with neurodevelopment

SWA appears to play an active role in motor, memory and cognitive processes and this 

relationship is particularly salient in time periods exemplified by great maturational change 

(Kurth et al., 2010; Timofeev et al., 2020). Neurodevelopmental transitions are associated 

with a topographic re-distribution of power during NREM sleep (Kurth et al., 2010), and 

localized changes of SWA over the motor and frontal cortex may be indicative of maturation 

in these networks (Kurth et al., 2017; Kurth et al., 2012). Research findings across infancy to 

preadolescence are limited, nonetheless, the findings provide preliminary support for SWA 

as a neural correlate of motor ability and memory. Table 1 provides a summary of the 

included studies examining slow wave activity and their main findings on motor, memory, 

and cognitive ability. Of the ten included studies, 7 studies report on slow wave findings in 

nap, and the remaining in overnight sleep.

3.2.1 Motor ability—Local changes in SWA are put forth as a marker of synaptic 

plasticity reflected in motor skill development, whereby the maturation of simple and 

complex motor skills is predicted by a topographical increase of SWA (Kurth et al., 2012; 

Lustenberger et al., 2017). Indeed, motor skills generally improve after practice and sleep; 

however, the formation and establishment of specific types of motor skills requires memory 

consolidation to stabilize and bolster newly acquired information (Abel & Lattal, 2001; 

Kuriyama et al., 2004; Walker et al., 2002; Walker & Stickgold, 2004). While these studies 

provide support for an active role of SWA in the acquisition of motor skills, less is known 

about the role of SWA in the formation of basic motor functions. Gross motor (e.g., the 

coordination of large muscles, involving actions such as, sitting up, crawling) and fine 

motor (e.g., the coordination of small muscles, such as finger and hand movements) are key 

developmental domains, germane to early childhood; yet, largely ignored in the literature on 

NREM sleep. Gross motor and fine motor are often assessed using standardized assessments 

(e.g., Bayley Scales of Infant and Toddler Development) or parent reported checklists (e.g., 

Ages and Stages) to assess child development across key milestones. Despite the scarcity of 

NREM research examining these key domains, there is preliminary evidence to suggest that 

SWA is associated with fine motor ability. In 8-month old infants during nighttime sleep, 

one study found higher left frontal and occipital SWA (low, 0.75-1.75 Hz and total, 0.75-4.0 
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Hz) to be positively correlated with fine motor ability (Satomaa et al., 2020). In toddlers, 

low delta power (0.5-2 Hz) showed a moderate change with age, such that toddlers older 

than 20 months had significantly greater delta power than toddlers age 12-19 months (Page 

et al., 2018). The authors also found that across the entire age range (12-30 months) frontal 

and posterior delta were positively correlated with fine motor ability.

3.2.2. Memory—The increase of synchronized cortical activity in early childhood may 

be due to increasing synaptogenesis reflected in SWA, which helps to facilitate more 

efficient reorganization of cortical circuits, playing a critical role in experience-dependent 

plasticity and memory consolidation (Fattinger et al., 2014; Wilhelm et al., 2014). The 

time course of experience-dependent plasticity for memory and cognitive processes, and the 

extent to which age modulates these relations, is largely unknown. While there is growing 

interest in understanding how SWA and memory relate, different classifications for memory 

functions and tasks are seen across studies, reflecting the range of ages included in the 

review. The literature focused on declarative memory (explicit recall for events or facts), 

and non-declarative memory, (including procedural memories for motor skill and motor 

sequences, and emotional memory). The majority of studies report on SWA during nap, and 

relations with memory performance, encoding, consolidation and task retrieval.

There are some investigations of SWA and early indices of memory in infants. In one study 

in three-month old infants, a visual comparison task was used to assess habituation and 

dishabituation before and after a nap. Infants who napped had shorter habituation times, but 

habituation was not associated with SWA (Horváth et al., 2018). In a different study, 9-to 16-

month-old toddlers were presented with words for specific objects and general categories, 

pre-and-post nap (Friedrich et al., 2015). The infants that napped showed evidence of 

generalization for recently learned words, however infants’ SWA was not associated with 

retention or generalization of words.

In contrast to these findings, the majority of the reviewed studies found a relation between 

SWA and memory performance, whereby increased SWA was associated with retention for 

words and generally faster performance.

Morning and daytime naps are largely composed of NREM sleep (Cremone et al., 2017; 

Friedrich et al., 2015; Kurdziel et al., 2013; Kurth et al., 2016; Lokhandwala & Spencer, 

2021; Page et al., 2018) with the majority of time in SWS (Friedrich et al., 2015; Kurdziel 

et al., 2013; Lokhandwala & Spencer, 2021). The abundance of slow wave sleep in daytime 

naps suggests a faster accumulation of sleep pressure in infancy and toddlerhood (Kurth et 

al., 2016). The increased duration of SWS is associated with toddlers’ retention for story 

sequences (Lokhandwala & Spencer, 2021), and increased SWA in frontocentral regions 

is associated with infant’s retention and extraction of an artificial language (Simon et al., 

2017).

A daytime nap in preschool has been shown to benefit emotional memory. Greater SWA 

during nap predicted faster response times in an emotional memory task (Cremone et al., 

2017). Similar research in preschool children also point to a possible interaction in SWA 

during nap and overnight sleep. Research by Kurdziel et al. (2018) found that SWA during 
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a midday nap predicted a next-day benefit for emotional memory. When preschoolers were 

assessed on the next day, the overnight memory improvement was most pronounced for 

children whose prior daytime nap had more SWA.

Research in older school-age to preadolescence shows a strong relation of an overnight 

sleep-dependent change of SWA after learning a procedural motor task. Zinke et al. (2017) 

investigated children’s (8-12 years) initial and weeklong learning of a serial reaction time 

task, and found a negative relation between baseline overnight change in mean reaction 

time, in which participants were faster in the morning following sleep. Increased SWA mean 

power during the first 60 minutes of NREM was significantly correlated with reaction time 

at the end of training. In another motor sequence task, Astill et al. (2014) examined SWA 

pre- and post-completion of a finger tapping sequence in 10-year-old children. Children with 

increased duration of slow wave sleep exhibited increased accuracy, and children with faster 

slow waves (increased frequency) had the fastest performance.

3.2.3. Cognitive ability—While findings regarding SWA and relations with motor 

and memory performance are generally consistent, only two studies examined SWA and 

cognitive ability, albeit with mixed results. One study in infants age 7-9 months, found 

total SWA (0.75–4.0 Hz) in a right occipital site was positively correlated with cognitive 

ability (Satomaa et al., 2020), however, SWA in the low delta range (0.75-1.75 Hz) was not 

associated with infants’ cognitive ability. SWA in the low delta range (0.5-2 Hz) shows a 

moderate change with age, yet low delta power was not associated with toddlers’ cognitive 

ability (Page et al., 2018). Slow waves undergo immense change until fully mature, and 

given that cognitive abilities are rapidly evolving during early development, the stable 

trait-like aspect may not be present until later in development (Ringli & Huber, 2011). Thus, 

associations between SWA and in particular low delta activity and cognitive ability may not 

be actualized until specific brain regions mature. The possible differences between low delta 

and SWA between the two studies may also be reflective of differences in sleep patterns. 

In the study by Page et al. (2018) toddlers were recorded during the day and controlled for 

biphasic sleepers (nighttime and one daytime nap). Whereas Satomaa et al. (2020) examined 

younger infants, which tend to be polyphasic sleepers (multiple times throughout the day) 

may contribute to differences in homeostatic build-up and sleep pressure.

4 Neurophysiology of sleep spindles

Sleep spindles are rhythmic thalamocortical oscillations (De Gennaro & Ferrara, 2003; 

Kandel & Buzsáki, 1997; Steriade, 2006) occurring between 10-16 Hz (the sigma frequency 

band), and exhibit a waxing and waning presence (Andrillon et al., 2011; De Gennaro 

& Ferrara, 2003; Gibbs & Gibbs, 1941). In adults, sleep spindles typically occur during 

both light sleep and slow-wave sleep, and reoccur every 5-15 seconds (Fogel & Smith, 

2011; Lüthi, 2014; Tanguay et al., 1975; Timofeev et al., 2012). Spindles are first observed 

in infants between 1-2 months of age (Tanguay et al., 1975; Wakai & Lutter, 2016) and 

typically last between 0.5-3 seconds (Rechtschaffen & Kales, 1968), but can last up to 10 

seconds (Stockard-Pope et al., 1992).
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4.1 Sleep spindles and development

In infants, sleep spindles appear between one to two months of age and show remarkable 

change over both the course of the night and development (Grigg-Damberger et al., 2007; 

Jenni et al., 2004; Louis et al., 1997; Louis et al., 1992). Change in the maturation of sleep 

spindle density and duration follows a U-shaped profile (Jenni et al., 2004; Shinomiya et 

al., 1999). In the first year, spindles increase in density, duration, and frequency in frontal, 

central, and parietal regions (D’Atri et al., 2018; Jenni et al., 2004). Between 12 and 30 

months, spindle power, density, and duration significantly decrease in posterior regions 

(D’Atri et al., 2018; Page et al., 2018), with minimum spindle density and length observed 

between 19 to 27 months (Scholle et al., 2007). Thereafter spindle duration and integrated 

spindle amplitude increase into later childhood and adolescence (Jenni et al., 2004; McClain 

et al., 2016; Scholle et al., 2007; Shinomiya et al., 1999).

Topographically, spindles first appear centrally and then by 4 months, are expressed 

maximally in frontocentral scalp locations (Clawson et al., 2016; D’Atri et al., 2018). In 

infancy, the presentation of the slow frontal spindle has been inferred as a measure of 

cognitive ability, and compared to fast spindles, shows a different maturational trajectory 

(D’Atri et al., 2018). The emergence of a slow and fast spindle peak frequency in children 

12-30 months is associated with decreased power in posterior regions, with a shift from a 

single spindle peak (~14 Hz) to a double peak (12 -16 Hz) around 20 - 24 months (D’Atri 

et al., 2018; Jankel & Niedermeyer, 1985; Page et al., 2018). In toddlers 20-30 month, the 

reduction in spindle power may be explained by a decrease in the number and duration of 

sleep spindles (Page et al., 2018). Slow spindles (~12 Hz) are more prominent during deep 

slow wave sleep, are topographically dominant over frontal regions, whereas fast spindles 

(14-16 Hz) are more pronounced during stage 2 sleep, are located over centroparietal regions 

(Andrillon et al., 2011; De Gennaro & Ferrara, 2003; Jankel & Niedermeyer, 1985).

The development of slow and fast spindle peaks is associated with changing anatomical and 

physiological properties of the thalamocortical system, and are suggested to promote the 

formation of thalamocortical networks by providing endogenous signals with repetitive and 

synchronized activity (Clawson et al., 2016; De Gennaro & Ferrara, 2003; Khazipov et al., 

2004; Lüthi, 2014; McCormick & Bal, 1997). The mechanistic origin for the presentation 

of the slow and fast spindle is still debated, but it is relevant to developmental research 

as fast and slow spindles are differently involved in cognitive processes (Mölle et al., 

2011; Schabus et al., 2007). EEG studies in adolescents and adults have shown that 

slow and fast spindle characteristics reflect individual differences in electrophysiological 

features such as amplitude, density, and duration, and are associated with cognition and 

measures of intelligence (De Gennaro et al., 2005; Fogel & Smith, 2011; Hahn et al., 

2019; Lustenberger et al., 2012). These spindle measures and their topographies reflect 

inter-individual variability as well as strong within-individual stability (De Gennaro & 

Ferrara, 2003). Evidence in adults shows that these features have associated trait-like 

properties, are critical in learning and memory consolidation during sleep, and may be a 

physiological marker of intelligence (De Gennaro et al., 2005; Finelli et al., 2001; Fogel & 

Smith, 2011).
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4.2 Sleep spindle features and relations with neurodevelopment

Research findings collectively provide strong evidence that maturation from infancy to 

preadolescence is associated with frequency changes of sleep spindles (D’Atri et al., 2018; 

Jenni et al., 2004; Scholle et al., 2007; Shinomiya et al., 1999). Research also shows that 

spindle features, such as spindle density, change across consecutive NREM sleep cycles, 

where the density of slow spindles declines over consecutive NREM sleep episodes, and the 

density of fast spindles increases across sleep cycles (Bódizs et al., 2009; Jobert et al., 1992). 

There’s also variation within each cycle, where spindle density tends to be more prominent 

at the beginning of a NREM cycle (De Gennaro et al., 2000). Given the changing dynamics 

of spindle features across maturation and NREM sleep cycles, researchers are tasked with 

distinguishing which relations with spindle features are due to maturation or the changing 

sleep physiology and their role in cognitive functioning. Table 2 summarizes the studies 

examining sleep spindle features in relation to motor, memory, and cognitive ability. Of the 

21 included studies examining sleep spindle features, 12 were collected during overnight 

sleep and the remaining 9 during a daytime nap.

4.2.1 Motor ability—The extant findings regarding motor ability and spindle features are 

limited, with mixed findings across studies. In 8-month-old infants, occipital slow sigma 

power in overnight sleep was associated with fine motor ability (Satomaa et al., 2020). 

Spindle features are known to change with age, and when controlling for age, Page et al. 

(2018) found no association with toddlers’ fine motor ability and sleep spindle features. 

Research findings in older children are also mixed. Chatburn et al. (2013) examined fast 

spindle features in 8-year-olds and relations with fine motor (hand positioning test) and 

sensorimotor ability. The authors found that the total number of fast spindles, and fast 

spindle density, was negatively correlated with fine motor and sensorimotor functioning. 

Further, the mean central spindle frequency (maximum power within 9-15 Hz) was 

negatively correlated with fine motor functioning. In a similar study, Sulkamo et al. (2021) 

also examined relations with fine motor and sensorimotor ability and spindle density and 

frequency in children 8-10 years. In contrast to the findings of Chatburn et al. (2013), 

spindle features were not associated with motor ability. The scarcity of research and varied 

findings regarding spindle features and relations with motor functioning highlights a need 

for more research to differentiate specific motor skills (e.g., fine motor, psychomotor, 

and sensorimotor) associated with sleep spindle features and identify at which ages these 

relationships may be present. Discerning functional differences in spindle features during 

nap and overnight sleep and how they bolster specific motor processes could also inform 

future investigations.

4.2.2 Memory—The reviewed studies highlight the benefits of sleep for declarative 

and non-declarative memories, with most studies reporting on performance differences in 

encoding, consolidation and retrieval. Although there are two nap studies that report no 

significant relation between spindle activity and preschoolers’ encoding and recall of a 

storybook task (Lokhandwala & Spencer, 2021), or infants’ retention of words from artificial 

language (Simon et al., 2017), several of the reviewed studies demonstrate an association 

between sleep dependent memory processes and general aspects of learning.
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The duration of stage N2 sleep in a daytime nap is shown to benefit learning, whereby 

infants with a longer duration of stage N2 sleep in a daytime nap, have a greater priming 

effect (inverse N400) for new information (Friedrich et al., 2017). Increased spindle power 

and mean spindle amplitude are also associated with infants’ generalization of newly 

acquired words. When examining differences between low and high spindle power, the 

generalization effect (N400) is present for infants with higher spindle power (Friedrich et 

al., 2015). In another study by the same group, toddlers age 14-17 months show a similar 

pattern in which higher frontal fast spindle power (13-15 Hz) is associated with the number 

of retained object-word pairs (Friedrich et al., 2020).

Other reviewed findings show evidence that spindle density enhances encoding and 

recall performance. Horváth et al. (2018), found higher frontocentral spindle density was 

associated with faster encoding of a novel stimulus in 3-month-old infants. In toddlers, the 

number and density of centroparietal fast spindles are associated with encoding object word-

pairs (Friedrich et al., 2019). In preschoolers, higher central spindle density is associated 

with better recall on a visuospatial learning task (Kurdziel et al., 2013).

Similar findings of spindle density and relationships with memory performance are present 

in older children in overnight sleep studies. One study in children 5-6 years found that 

slow frontal spindles were associated with higher maintenance of medium-quality memories, 

while increased fast centroparietal spindle density was associated with maintenance of 

low-quality memories (Joechner et al., 2021). Sulkamo et al. (2021) examined spindle 

associations with accuracy and speed on a vigilance task. Spindle density in the central left 

region was positively associated with response accuracy, whereas the topographic expression 

of central spindles was associated with reaction time for correct responses. In school age 

children, Zinke et al. (2017) found the number of spindles, and spindle density, were 

positively associated with next day performance for explicit sequence recall of a motor 

sequence, but spindle features were not associated with long-term performance. Astill et al. 

(2014) examined slow and fast spindle relations with procedural performance in a similar 

age group. The individual differences in sleep spindle frequency predicted performance 

on a finger tapping task, where children with a higher density of slow spindles were 

more accurate, and children with more fast spindles had a faster performance. Hoedlmoser 

and colleagues (2014) demonstrated that learning efficiency, before and after sleep, was 

associated with higher slow spindle activity in preadolescents; however, spindle activity 

was not associated with an overnight improvement for cued recall of word-pairs. Though 

the authors speculate that the task may have been too difficult, these findings suggest that 

spindles may reflect general learning abilities (Hoedlmoser et al., 2014).

The reviewed studies also highlight some different relations among spindle features and 

memory performance on a task compared to memory assessed as a domain on the 

Neuropsychological Developmental Assessment (Brooks et al., 2009) in children around 

9 years of age. In one study, Sulkamo et al. (2021) found that central spindle frequency 

was positively associated with speeded naming, and faster central spindles were associated 

with poorer performance for facial memory; however, spindles were not associated with 

narrative memory. Contrary to these findings, Chatburn et al. (2013) found that faster spindle 

frequencies were positively correlated with narrative memory. Despite differences across 
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memory tasks, the reviewed findings suggest that increased sigma activity, spindle density, 

and amplitude bolster memory and learning processes in childhood. Some of the reviewed 

studies show that not all learned information is retained after sleep, but these studies 

also show that sleep generally benefits performance. This prompts further investigation to 

disentangle which memories benefit from sleep and whether specific memories are bolstered 

differently by spindle features, which would inform our knowledge regarding the specific 

function of the sleep spindle. (De Gennaro & Ferrara, 2003).

4.2.3 Cognitive ability—Sleep spindle features and their topographic distribution are 

related to general cognitive abilities in adolescents and adults (Bódizs et al., 2005; Fogel et 

al., 2007; Lustenberger et al., 2012; Nader & Smith, 2015). The specific relation between 

spindle features and cognitive ability in childhood is mixed, and inter-individual variation in 

spindle activity may also explain some of the differences in study findings. Sleep spindles 

occur independently across brain regions and show a regional distribution that changes with 

age (Nir et al., 2011). In older populations, spindle features show age-related effects that 

differ across scalp locations (Martin et al., 2013) which is also evident in childhood (D’Atri 

et al., 2018).

Other variation among the reviewed studies may be attributed to differences in standardized 

cognitive assessments compared to cognitive performance on a task. For example, 

Chatburn et al. (2013) found sleep spindle features were negatively associated with 

intelligence quotient (IQ). In contrast, Doucette et al. (2015) examined associations between 

preschoolers’ sigma power and processing speed as a proxy for cognitive ability. The 

authors found a stronger overnight enhancement in processing speed to be associated with 

greater slow sigma power (slow spindles) over parietal regions. While it can be argued 

that processing speed may be more reflective of procedural performance, differences in the 

assessment of cognitive ability are evident. Given the broad age range in the current review, 

variation in cognitive assessments is expected.

The majority of studies used standardized norm-referenced assessments, which allow for an 

age-matched comparison; and is important, because of the known age-related changes in 

spindle features, normed assessments inform whether the relation between spindle features 

and cognitive ability is explained by age (Ujma et al., 2014; Ujma et al., 2016). One 

study provides evidence that increased slow sigma power in left central and occipital sites 

during overnight sleep is associated with infants’ visual reasoning (a proxy for cognitive 

ability); however, it’s unclear if there was an effect on age (Satomaa et al., 2020). In 

contrast, one study in toddlers age 12-30 months found spindle density, duration, and 

frequency were only predictive of age and not related to toddlers’ visual reception or overall 

developmental functioning (Page et al., 2018). Other research investigations demonstrated 

a relationship among cognition, age, sex, and correlates of sleep spindles in 4-8- year-old 

children (Ujma et al., 2016). After controlling for age, only females showed a significant 

correlation between slow and fast spindle amplitude and cognitive ability score (measured 

via Raven Colored Progressive Matrices, (Raven et al., 1998)).

The discrepancy in research findings may be due to differences in standardized assessments. 

As such, research using the same assessment could help address this potential source of 
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variance. There is some research in 7-12 year old’s examining relations between spindle 

features and the same standardized assessment (measured via Wechsler Intelligent Scale 

for Children, WISC (Wechsler & Kodama, 1949). Gruber et al. (2013) found that lower 

sleep spindle frequency correlated with specific domains on the WISC, such as better 

perceptual reasoning and working memory abilities; however, no other spindle features were 

associated with overall IQ. In a similar examination, Sulkamo et al. (2021) investigated 9 

year-olds and found a positive correlation between central spindle density and the object 

assembly domain of the WISC, but not with overall IQ. Hoedlmoser et al. (2014) examined 

9 year-olds and found that children with greater slow spindle activity in frontal, central, 

parietal, and occipital regions exhibited higher cognitive abilities (via the WISC subtest 

scores vocabulary, matrix reasoning, and block design). Geiger et al. (2011) examined 

children aged 9-12 years and found that the mean peak spindle frequency was negatively 

correlated with WISC full-scale IQ; but full-scale IQ and fluid IQ (reasoning and problem 

solving) were positively correlated with sigma power. In a follow-up analysis, Geiger et 

al. (2012) found that full-scale IQ negatively associated with slow and fast sigma power in 

central and parietal regions, and that fluid IQ was positively related to spectral power (13-20 

Hz) in frontal and parietal areas.

5 Discussion

The current paper reviewed two hallmarks of NREM sleep, slow wave activity and sleep 

spindles, from infancy to preadolescence, and evidence of their relationships with motor, 

memory, and cognitive functions. In early childhood, SWA showed a consistent positive 

relation with fine motor ability. In school age to preadolescence, a generally consistent 

relation of enhanced performance is predicted by the duration of slow wave sleep or 

increased SWA. These findings provide support for the notion that SWA plays a role in 

sustaining plasticity in neurodevelopment and builds on prior research in adolescents and 

adults that shows a strong use-dependent relationship of motor learning to enhanced SWA 

(Huber et al., 2004; Kurth et al., 2012; Lustenberger et al., 2017; Wilhelm et al., 2014). 

Evidence regarding the role of SWA and cognitive ability, however, is limited. Given the 

changing dynamics of SWA, which are altered by age-related maturation and extensive 

learning (Huber et al., 2004), additional research is required to tease apart SWA features 

influenced by age from those influenced by experience or learning.

The reviewed findings show a general pattern of increased sleep spindle activity relating 

to better motor, memory, and cognitive performance. Investigations of sleep spindle 

characteristics revealed different relations among domains of cognitive functioning and 

overall cognitive ability. For example, peak spindle frequency showed a negative relation 

with full-scale IQ (Geiger et al., 2011), whereas sigma power, the number of fast spindles 

and spindle density showed positive correlations with domains of cognitive functioning 

(Doucette et al., 2015; Geiger et al., 2012; Geiger et al., 2011; Gruber et al., 2013). 

Behavioral measures and task performance varied widely across age groups, making it 

challenging to pinpoint which learning processes are most benefitted by sleep spindles. 

Sleep spindles mostly occur in specific regions on the scalp (Nir et al., 2011). In early 

development, as simple and more complex motor skills are acquired and strengthened, 

spindles may be more prominent in these maturing cortical regions (Kurth et al., 2012).
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The reviewed findings show widespread variability across age, study design and the specific 

tasks for examining cognitive ability and task performance. This is particularly apparent 

when examining cognitive ability, which may be understood as a construct composed of 

multiple domains. These measures often include constructs such as language in young 

children, while older children’s constructs include verbal ability, narrative memory, and 

executive functions. In particular, the contribution of expressive and receptive language 

may account for a large proportion of this construct (cognitive ability), thus examining 

potential influences of language ability or verbal IQ that may mediate the relationship. 

The number of sleep spindles and relations with verbal IQ and performance IQ depicts an 

intercorrelated relationship in adults (Fogel et al., 2007). Yet, when verbal IQ is controlled, 

only performance is associated with the number of spindles. Moreover, specific domains 

may be more sensitive or reflective of developmental constructs in a particular age range. 

Lower-order proficiencies that develop earlier (e.g., fine motor skills) tended to be positively 

correlated with SWA. In contrast, more complex skills that develop later (e.g., reasoning, 

memory, fluid IQ) tended to be negatively correlated with sleep spindle features (Geiger et 

al., 2012; Geiger et al., 2011; Gruber et al., 2013).

Several factors may influence the relationship between sleep spindles and cognitive ability. 

Additional heterogeneity can be explained by age, sex, socioeconomic status, and maternal 

education and whether or not such factors are corrected or included as potential moderators 

or covariates (Friedrich et al., 2015; Joechner et al., 2021; Page et al., 2018; Ujma et 

al., 2014; Ujma et al., 2016). It is necessary to differentiate characteristics of age-related 

maturation from other effects that reflect an age-independent relationship between sleep 

spindles and domains of cognitive ability and general intelligence. In early childhood, sleep 

spindles may reflect maturational stages, and as children mature, spindle features reflect 

more stable trait-like features of intelligence (Ujma et al., 2016).

Other differences in the reviewed findings may be specific to EEG data collection and the 

quantification of NREM sleep. Some reported studies (Doucette et al., 2015; Geiger et 

al., 2012; Geiger et al., 2011; Page et al., 2018) used dense-array setups, which provides 

increased spatial sampling for topographical mapping. Lower-density arrays may be less 

sensitive to local and spatially distributed features of the EEG and, thus, may not fully 

capture the local or circumscribed change of SWA or sleep spindles (Lustenberger & Huber, 

2012).

Quantification of NREM sleep and spindle detection methods varied in the reviewed 

literature, with most using manual scoring, spectral analysis, visual or automatic detection to 

extract spindle features. While some studies demarcated spindles by slow and fast features, 

others did not. The reviewed findings showed slow and fast spindle frequencies exhibiting 

different topographical distributions and different relations with intellectual ability (Doucette 

et al., 2015; Geiger et al., 2011; Joechner et al., 2021). In some studies, individually 

determined slow and fast spindle frequencies were used to estimate spindle parameters, 

whereas other studies used a pre-determined spindle frequency range. Spindles in children 

are generally slower than adults (McClain et al., 2016), and when studies implement a 

predefined range (e.g., 11-16 Hz) the selected frequency range may not fully capture the 

changing dynamics of spindle features, making it challenging to detect distinct spindle 
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peaks. Future research would benefit from investigations of the individual variation in the 

presentation of the slow and fast spindle peaks and how these peak frequencies change with 

age.

The reviewed literature examined relations between daytime naps and overnight sleep. 

Careful consideration and control for the time of the sleep recording, the time awake before 

the sleep recording, and the number of daytime naps, are critical for reducing circadian and 

sleep homeostatic effects. Age-related changes in NREM sleep are more prominent in naps 

compared to nocturnal sleep (Kurth et al., 2016; Louis et al., 1997). During early childhood, 

children transition from biphasic to monophasic sleep patterns, with an abundance of NREM 

sleep in daytime naps (Cremone et al., 2017; Friedrich et al., 2015; Kurdziel et al., 2013; 

Lokhandwala & Spencer, 2021; Page et al., 2018). From 2-to-5 years, the homeostatic build-

up in sleep pressure across the day is weakened with age, as evidenced by fewer differences 

in SWA when naps are taken at different times of the day (Kurth et al., 2016). As children’s 

ability to sustain prolonged periods of wakefulness increases, napping decreases. Changes 

in habitual napping and the cessation of napping suggests that naps in early childhood 

may reflect a developmental milestone. The benefits of a daytime nap for preschoolers’ 

(age 3-5.5 years) memory performance are shown to be different in habitual nappers (e.g., 

naps 5 or more days per week) and non-habitual nappers (naps 2 or less days per week). 

For non-habitually nappers’, memories may be more stable and require less consolidation 

(Kurdziel et al., 2013). Although the role of napping in childhood is not fully understood, 

future investigations should consider examining sleep in populations that show a decline in 

daytime naps. In particular, examining sleep patterns in children that attend child care or 

preschool may provide valuable insight into nap physiology, because much of the child’s 

daily schedule, including feeding and sleeping is based on the classroom schedule. In some 

regards, the controlled nature of a child care setting offers a potential environment in which 

to examine the age-related changes in napping and differences in habitual napping, which is 

important for understanding the role of NREM sleep and cognitive development.

Research investigating adolescence and adults, not included in the present review, have 

used cross sectional (Kurth et al., 2012; Wilhelm et al., 2014; Wilhelm et al., 2013) or 

longitudinal (Hahn et al., 2019; Lustenberger et al., 2017) assessment of NREM features and 

relations with motor, memory and/or cognitive functions. These studies show that NREM 

features change well into adolescence and adulthood, and also reflect trait-like aspects. 

These relations may be evident in earlier ages. Longitudinal investigations of SWA and 

sleep spindle features across transitional developmental periods, (e.g., toddlerhood, school 

age, puberty) could help to elucidate the regional and topographical changes, and their 

relations with cognitive development. Such characterization could provide clues to capture 

disruptions in early brain development. Alterations in NREM sleep are associated with 

a range of neurodevelopmental disorders (Gruber & Wise, 2016). Elucidating the role 

of NREM features in typical development may contribute to our understanding of sleep 

physiology and help to identify if specific NREM features reflect sensitive periods in early 

development.
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6 Conclusion

A relatively small body of work has studied the physiology of NREM sleep and its relation 

to motor, memory, and cognitive ability in birth to preadolescence. These studies build 

upon existing research of NREM sleep in adults, and provide support for NREM sleep 

oscillations as an early indicator of healthy brain maturation. Both slow waves and sleep 

spindles are associated with learning and skill development, and yet are not mutually 

exclusive. Future investigations are needed to characterize the physiological features to 

help discern functional significance and underscore the individual contributions of SWA 

and sleep spindles, which could shed light on disrupted NREM features and impairments 

in motor, memory, or cognitive functions. Given the immense change from infancy to 

preadolescence, longitudinal measurements of motor, memory, and cognitive abilities and 

their specific sub-domains (e.g., verbal ability, executive functions) are necessary to tease 

apart the specific contributions across key transitions in neurodevelopment.
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