Skip to main content
. 2022 Feb 21;13:833099. doi: 10.3389/fphar.2022.833099

TABLE 4.

Objective functions for machine learning models.

Name Prediction task Formula
Accuracy Classification Accuracy=TP+TNP+N
AUC (Area under the receiver operating characteristic curve) Classification TPR=TPFN+TP
FPR=FPTN+FP
AUC=TPR d(FPR)
LogAUC Classification logAUC=0.0010.1TPR d(log(FPR))0.0010.1d(log(FPR))
MCC (Matthew’s correlation coefficient) Classification MCC=TPTNFPFN(TP+FP)(TP+FN)(TN+FP)(TN+FN)
PPV (Positive predictive value) Classification PPV=TPTP+FP
Enrichment factor Classification EF(x%)=PPV(x%)PPV(100%)
MAE (Mean absolute error) Regression MAE=1NiN|f(xi)yi|
MAE_NMAD (MAE normalized by the mean absolute deviation) Regression MAENMAD=MAE1NiN|yiy¯|
RMSD (Root-mean-square deviation) Regression RMSD=1NiN(f(xi)yi)2
NRMSD (RMSD normalized by the range) Regression NRMSD=RMSDmax(y)min(y)
RMSD_NSTD (RMSD normalized by the standard deviation) Regression RMSD_NSTD=RMSDStdev(y)