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Abstract
Nurturing pressure and unemployment affect our production and life in many ways. The aim of this study is to examine the 
potential effects of nurturing pressure and unemployment on global CO2 emissions, by using the panel data of 77 countries 
and regions from 1991 to 2020 and a STIRPAT-based theoretical framework. The results show that at the global level, both 
nurturing pressure and unemployment overall have negative effects on CO2 emissions. While at the regional level, it becomes 
a different situation. An increase in nurturing pressure leads to an increase in CO2 emissions in the Americas and the Middle 
East and a decrease in CO2 emissions in Africa, Europe, and Asia–Pacific. Unemployment has a positive effect on CO2 emis-
sions in the Middle East and a negative effect on CO2 emissions in Africa, Americas, Europe, and the Asia–Pacific regions. 
There is no evidence that unemployment has certain effects on CO2 emissions in the Middle East and the Asia–Pacific regions.
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Introduction

Climate change, mainly characterized by global warm-
ing due to the continuous increase of CO2 emissions, has 
attracted widespread attention worldwide (Anser et al. 2021; 
Li et al. 2021; Yang et al. 2021). Global warming not only 
leads to the imbalance of the climate system, but also causes 
sea-level rise and the reduction of species diversity, which 
have great impact on the survival and development of human 
beings. According to the BP (2021), global CO2 emissions 
have reached as high as 31,983.6 million tons in 2020 and 
have maintained an average annual growth rate of 1.4% in 
the past decade. This impact usually remains in the atmos-
phere and oceans for many centuries and poses a huge threat 
to human survival and economic loss. In the era of globaliza-
tion, no country can be left alone with the diverse connec-
tions between different countries and regions. Therefore, it 

has become imperative to take effective measures to reduce 
carbon emissions on a global scale (Wang et al. 2019; Xu 
et al. 2021). Studying the drivers of global and regional car-
bon emissions is not only beneficial for exploring ways to 
reduce carbon emissions and improve the ecological envi-
ronment, but also for long-term and short-term environmen-
tal policy arrangements of national governments.

Relevant studies have shown with 95% certainty that 
human activities are the main cause of CO2 emissions 
(Pachauri et al. 2014). For decades, scholars have studied 
the mechanisms by which human activities act on the envi-
ronment using various methods. Some recent studies con-
firm that agriculture, tourism, innovations in economic and 
financial sectors, and related policy implementation may 
have some impact on carbon emissions at a single national 
or regional level (Rahman et al. 2021; Chishti et al. 2020; 
Chishti and Sinha 2022; Chishti et al 2021a, b). Considering 
the complex mechanisms of human–environment interac-
tions, we argue that the possible impact of two important 
issues related to human problems, namely, nurturing pres-
sure and unemployment, on carbon emissions cannot be 
ignored as well, and the policy implications behind them 
have implications for global low-carbon and sustainable 
development.

In terms of nurturing pressure, on the one hand, popu-
lation aging is considered to be a universal phenomenon 
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worldwide (Wang and Wang 2021; Jayantha et al. 2018; Li 
et al. 2019a, b). The latest data from the United Nations 
indicate that the average annual growth rate of the global 
aging population from 1990 to 2020 is 2.5%. Its impact on 
CO2 emissions has gradually attracted the attention of schol-
ars in recent years, and no consistent conclusion has been 
reached yet. On the other hand, the declining trend of birth 
rates in many countries and regions also has an impact on 
the proportion of young people to be dependent, and how it 
acts on CO2 emissions undoubtedly also deserves attention. 
Therefore, the impact of nurturing pressure or age structure 
on CO2 emissions should be considered in both directions, 
but current studies tend to focus only on the aging of the 
population, leaving room for further investigation.

In addition, the demographic crisis caused by the irra-
tional development of age structure often coexists with 
the problem of unemployment, which is another potential 
influence on CO2 emissions that is more easily neglected. 
Adesina and Mwamba (2019) focused on the African region 
and for the first time used the unemployment as one of the 
influencing factors of CO2 emissions. There are also some 
studies that demonstrate the inverse relationship between 
unemployment and environmental pollution (Kashem and 
Rahman 2020), but further exploration is lacking. In this 
context, an in-depth understanding of the impact of global 
and regional unemployment on CO2 emissions is necessary 
for the effective formulation of relevant policies.

Against this background, the main objective of this 
paper is to explore whether, to what extent and in what 
direction nurturing pressure and unemployment affect 
CO2 emissions at the global and regional scales and what 
policy directions are implied. Compared with other lit-
eratures, the potential contributions and innovations of 
this paper are as follows: firstly, it extends the traditional 
analytical framework by adding the non-traditional fac-
tors nurturing pressure and unemployment and provides 
a global perspective and an analysis from each regional 
perspective, giving the specific degree and direction of 
influence of the two key factors explored in this paper on 
CO2 emissions, as well as the corresponding policy rec-
ommendations for carbon emission reduction. Secondly, 
it attaches importance to the selection and comparison of 
parameter estimation methods, to the data characteristics, 
and to the comprehensive analysis based on the consid-
eration of the existence of multiple parameter estimation 
methods with different advantages, rather than relying 
only on a single estimation method.

This paper is organized as follows: the second section 
reviews the relevant research literature; the third section 
introduces the relevant theoretical hypotheses; the fourth 
section presents the methodology and data sources; the fifth 
section gives an empirical study of the factors influencing 

CO2 emissions at the global and regional levels; and the 
sixth section gives conclusions and recommendations.

Literature review

Research on the factors influencing non‑traditional 
carbon emissions

At present, the study of CO2 emission drivers has become a 
hot topic of attention among scholars. In addition to popula-
tion size, GDP per capita, energy intensity, industry share, 
urbanization level, and other carbon emission influencing 
factors that have been widely concerned, more and more 
scholars have also started to focus on non-traditional carbon 
emission influencing factors in recent years.

The non-traditional factors that the current literatures 
focus on can be divided into three main categories. The 
first type of literature focuses on social development facil-
itators. This includes education level, R&D level, inno-
vation, etc. The study of Meng et al. (2018) shows that 
in China, the increase of R&D intensity is beneficial to 
promote carbon emission reduction. Mensah et al. (2018) 
suggest that increasing R&D intensity can better encourage 
innovation and thus promote carbon emission reduction in 
OECD countries. The second group of literature focuses on 
economic trade-related factors. This includes trade open-
ness, import and export levels, foreign direct investment, 
etc. Specifically, trade openness has been shown to have 
a positive impact on CO2 emissions in China, Japan, and 
South Korea, as well as in countries along the “Belt and 
Road,” but increased cooperation through trade agreements 
may help to reduce carbon pressure (Dou et al. 2021; Chen 
et al. 2021). While the reduction of exports will benefit 
CO2 emission reduction in Turkey in the long run, FDI has 
been shown to have a nonlinear and time-varying effect 
on carbon emissions in different countries (Haug and 
Ucal 2019; Zhou et al. 2018). The third group of litera-
ture focuses on population-related factors. These include 
population density, household size, gender structure, age 
structure, unemployment rate, etc. For example, Wen and 
Zhang (2020) insist that population density and household 
size have positive and negative effects on CO2 emissions in 
the Beijing–Tianjin–Hebei region of China, respectively. 
An increase in the proportion of males can promote eco-
nomic development in some regions of China, which can 
lead to an increase in carbon emissions (Li et al. 2019a, b).

It is worth mentioning that there is a controversy among 
scholars about the impact of population aging or age struc-
ture on carbon emissions. Zhang and Tan (2016) based on 
data from a provincial panel in China found that popula-
tion aging has a positive effect on carbon emissions at the 
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national level and an uncertain effect at the regional level. 
The study by Kim et al. (2020) suggests that the fact of 
population aging reduces CO2 emissions. As for the effect 
of unemployment on carbon emissions, related studies are 
very limited. Some scholars have suggested that there is no 
threshold effect between unemployment and carbon emis-
sions in developed and developing countries but only a linear 
relationship (Wang and Li 2021), but further exploration at 
the regional level is lacking. Therefore, there is relatively 
little literature on the possible effects of nurturing pressure 
and unemployment on carbon emissions, the findings are 
unclear, and there are certain research gaps. In addition, 
youth population change is also an important component of 
age structure change, but few scholars have considered this 
factor when focusing on population age structure. Therefore, 
this paper attempts to further expand the relevant studies 
from these two aspects.

Research scope of the current literature

In terms of research scope, there are three broad categories 
of research scope in the current literature on the drivers of 
carbon emissions. One is to focus on a specific country and 
region. Meng et al. (2018) conducted an exponential decom-
position of data for 22 Chinese provinces from 2005 to 2014 
and found that R&D efficiency and energy intensity were 
the main factors inhibiting the growth of carbon emissions, 
and GDP and investment intensity were the main factors 
driving the growth of carbon emissions. Chong et al. (2019) 
studied the factors influencing carbon emissions in Malaysia 
from 1978 to 2014 and found that in addition to population, 
GDP per capita, and energy intensity, the role of technology 
drivers is also increasingly noteworthy. Wang et al. (2020) 
combined LMDI approach and scenario analysis to study 
that the key drivers of emission reduction in the USA are the 
scale effect and technology effect, and the structural effect is 
less influential. Wang et al. (2019) identify the key drivers 
of carbon emissions change in the United States and fur-
ther explore how to decouple economic growth and carbon 
emissions.

The second is to study the drivers of carbon emissions 
in geography or regional countries with strong linkages in 
economic activities. Guo et al. (2020) analyzed the impact of 
China, Russia, and South Korea on Mongolia’s carbon emis-
sions through international trade from a system implemen-
tation perspective. Timilsina and Shrestha (2009) explored 
the drivers of carbon emissions in the transport sector of 
major Asian countries from 1980 to 2005 and found that 
changes in GDP per capita, population growth, and changes 
in energy intensity of transport were the main influencing 
factors. Dong et al. (2010) focused on China and Japan, two 
countries with strong trade ties and explored the drivers of 

CO2 emissions implicit in their trade from 1990 to 2000 and 
confirmed the offsetting effect of the sharp decline in carbon 
intensity of the Chinese economy on the carbon emissions 
of Chinese exports of Japanese goods. In addition, the envi-
ronmental pollution transfer from the implied carbon flows 
accompanying inter-regional trade has increasingly attracted 
the attention of  scholars (Wang et al. 2019; Wang et al. 
2020).

Third, the drivers of carbon emissions are explored from 
a global perspective. Jiang et al. (2021) explored the possible 
effects of changes in internal and external input structures 
on global carbon emissions using structural decomposition 
analysis and found that different drivers of carbon emis-
sions have different driving effects in different periods and 
that changes in domestic input structures have become the 
main reason for the decline in global carbon emissions in 
the last 5 years. Cranston and Hammond (2010) selected 
four different scenarios to assess the possible changes in car-
bon emissions up to the end of the twenty first century and 
found that economic wealth was the most important driver 
of CO2 emissions in industrialized countries in the twenty 
first century.

It is easy to see that scholars have paid more attention 
to country- and region-specific than global-level studies on 
the factors influencing carbon emissions. To achieve global 
carbon emission reduction, not only country-specific and 
region-specific measures are needed, but also overall control 
and coordinated measures at the global level are required.

The research method of carbon emission influencing 
factors

In terms of research methods, there are two major widely 
used methods. One is the decomposition method, repre-
sented by structural decomposition analysis (SDA) (Guo 
et al. 2020; Jiang et al. 2021), index decomposition analysis 
(IDA) (Yang et al. 2013; Dong et al. 2010), and production 
decomposition analysis (PDA) (Liu et al. 2017). In recent 
years, many scholars have also optimized and improved the 
decomposition methods to have better applicability. For 
example, the decomposition method combined with the 
extended Kaya equation (Zhang et al. 2013) and the loga-
rithmic mean Divisia index (LMDI) method based on the 
improved IDA method (Lin and Long 2016; Zhu and Du 
2019; Chong et al. 2019; Chen et al. 2020), which are used 
to analyze the relative contribution of predetermined fac-
tors to the change of indicators and are especially applied in 
studies of carbon emissions related to energy and industry.

However, the decomposition method also has some 
drawbacks. It is often based on input–output models, the 
input–output tables on which it is based are not updated 
annually, and the application of the input–output method 
also has assumptions that may not actually be satisfied. In 
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addition, the SDA approach requires high data requirements 
and is often difficult to apply in practice. IDA has major 
limitations in terms of economic explanatory power because 
it does not take into account factors such as technological 
progress and efficiency changes. Although PDA has a good 
economic basis, it does not reflect the heterogeneity of dif-
ferent energy inputs and outputs and may lead to conclusions 
that are contrary to reality (Wang 2011).

The second is to quantify the degree of influence of drivers 
through a series of econometric methods, represented by mod-
els based on IPAT and its extensions (Wang et al. 2017; Zhao 
and Gou 2013), as well as spatial econometric techniques 
(Tong et al. 2016, 2018) and ridge regression (Zhao and Yan 
2013; Wen and Shao 2019). IPAT and its extension methods 
combined with econometric techniques can well quantify 
the specific contributions of multiple drivers and are widely 
used for the identification of carbon emission impact factors, 
and the improved STIRPAT model can easily introduce new 
variables with great elasticity. In addition, econometric tech-
niques such as quantile regression and Logit regression are 
also widely used (Zheng et al. 2021; Pan et al. 2020).

Therefore, it can be seen that the existing literature on 
the factors influencing carbon emissions mainly has the fol-
lowing characteristics. First, there are more extensive stud-
ies on the drivers of CO2 emissions in single countries and 
regions, but relatively little attention has been paid to them 
at the global level, and few studies have focused on coun-
try differences in different regions. Second, less attention 
has been paid to the possible impact on carbon emissions 
caused by changes in other characteristics of the population 
besides population size. In addition, insufficient attention to 
data characteristics may lead to bias. Therefore, based on 
the STIRPAT model, this paper explores the possible driv-
ing effects of two demographic-related variables, nurturing 
pressure and unemployment, on CO2 emissions and tries to 
explain the long-term changes in carbon emissions from the 
perspective of non-traditional factors.

Research hypothesis

Some scholars have studied the effect of age structure changes 
on CO2 emissions. Changes in age structure may affect CO2 
emissions through three channels. First, an increase in the 
proportion of the nurturing population will reduce the pro-
portion of the working population, slowing economic growth 
and leading to lower CO2 emissions. Second, the uncertainty 
of the future due to the lack and inadequacy of the nurturing 
security system will increase the hidden costs of nurturing 
and psychological stress, which will lead to a reduction in 
spending and lower overall consumption levels, resulting in 
lower carbon emissions. Finally, a nurturing population may 
consume more resources in health care and other supporting 

areas, leading to increased CO2 emissions. Therefore, the 
effect of nurturing pressure on CO2 emissions depends on 
the combination of the above three aspects.

Considering the global level, we argue that the negative 
effect of nurturing pressure on CO2 emissions is greater 
than the positive one, because the effect of economic fac-
tors on carbon emissions has been shown to be pervasive 
and quite significant and has even become one of the most 
important drivers of carbon emissions with immediacy. For 
example, the 6.3% decline in global CO2 emissions in 2020 
is largely due to the global economic impact of the COVID-
19 that year (Li and Li 2021). Clearly, the consumption of 
resources in healthcare and other supporting areas does not 
affect carbon emissions to the same extent as the impact of 
economic factors on carbon emissions. In addition, except 
for a few developed countries and most developing countries 
and regions, the nurturing security system still needs to be 
improved, and resources such as medical care are relatively 
scarce products, so the promotion of carbon emissions by 
related industries due to nurturing pressure is limited.

Further, our study also wants to focus on regional-level 
heterogeneity. The economic development level of each 
region of the world is not the same, and the nurturing pres-
sure faced by each region is also heterogeneous. In addition, 
there is a great difference in the soundness of the conserva-
tion protection system in different countries and regions, so 
the specific direction and degree of influence of conservation 
pressure on CO2 emissions should be different in different 
regions. Based on the above analysis, two hypotheses are 
proposed in this paper:

Hypothesis 1: At the global level, nurturing pressure has 
a negative effect on CO2 emissions.
Hypothesis 2: At the regional level, the effect of nurturing 
pressure on CO2 emissions is heterogeneous.

In addition to nurturing pressure, this paper aims to analyze 
the response of CO2 emissions to unemployment. According 
to the United Nations International Labor Organization (ILO), 
the total number of unemployed people worldwide is expected 
to reach 205 million in 2022, significantly more than the 187 
million in 2019, and the global unemployment rate will reach 
5.7% (Berg et al. 2021). Unemployment is known to cause 
a range of social problems such as poverty, rising inequal-
ity, and social unrest, but its impact on the environment is 
often overlooked. On the one hand, unemployment implies a 
restriction on personal income sources, thus creating a con-
straint on consumption behavior and reducing CO2 emission 
levels. On the other hand, the integrity of the unemployment 
protection system affects the optimism of the unemployed or 
potentially unemployed about their future life and their con-
sumption behavior. The lack of a well-established unemploy-
ment protection system tends to make people have pessimistic 
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psychological expectations and curtail their consumption, thus 
producing less CO2 emissions.

Generally, given the range of social impacts that unem-
ployment can cause, governments tend not to ignore it. In 
addition to measures such as granting benefits and unem-
ployment insurance, government-led public work projects 
and other measures intended to create more jobs are often 
used to relieve unemployment pressure, thus creating a 
positive driver of CO2 emissions in the process of solving 
the unemployment problem. According to the ILO report, 
the global unemployment problem is not optimistic. The 
unstoppable globalization of the economy has exacerbated 
the global impact of economic and financial problems, and 
many governments have not been able to solve the unem-
ployment problem well or to balance economic growth and 
unemployment reduction at the same time. Therefore, con-
sidering the global level, we believe that unemployment 
has a negative impact on global CO2 emissions. However, 
given the different levels of economic development and the 
different attitudes and governance capabilities of govern-
ments in facing the unemployment problem in each region, 
the impact of unemployment on carbon emissions should 

be heterogeneous at the regional level. Based on the above 
analysis, the third and fourth hypotheses are proposed in 
this paper:

Hypothesis 3: At the global level, the increase in unem-
ployment has a negative impact on CO2 emissions.
Hypothesis 4: At the regional level, the effect of unem-
ployment on CO2 emissions is heterogeneous.

Figure 1 shows the possible pathways through which nur-
turing pressure and unemployment affect CO2 emissions, 
and we will explore the specific effects at both the global 
and regional levels later in the paper.

Methodology and data

STIRPAT model

The IPAT model can initially be traced back to the equation 
I = PF proposed by Holdren and Ehrlich (1972), in which 
I denotes environmental stress, P denotes population size, 

Fig. 1   Possible pathways by which nurturing pressure and unemployment affect CO2 emissions
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and F denotes per capita environmental stress. It was sub-
sequently developed and improved by scholars, and Com-
moner (1990) proposed the classical IPAT model based on it:

The model suggests that changes in the environment are 
mainly due to the combination of population size P, afflu-
ence (per capita consumption or per capita production) A, 
and technology (environmental impact per unit of energy 
consumption or per unit of production) T and has since 
been widely used as an analytical framework for the driv-
ers of environmental change. The main advantage of this 
analytical framework is that it describes the important driv-
ers of environmental change in a concise way and clearly 
identifies the relationship between these three drivers and 
environmental pressures through an equation. At the same 
time, the multiplicative form of the drivers implies that the 
effects of the variables are not completely independent of 
each other.

However, this form of concise mathematical constancy 
equation also makes the IPAT model to have some key 
limitations. One is that it does not allow for statistically 
significant hypothesis testing, since the form of the equa-
tion makes the value of the missing term determined by 
the value of the known term. Second, it also assumes a 
priori that the functional relationship between drivers and 
environmental impacts is proportional, thus making it easy 
to ignore non-monotonic or non-proportional effects of 
the driving influences (York et al. 2003). To overcome 
these shortcomings, Dietz and Rosa (1994) proposed a 
stochastic impact by regression on population, affluence, 
and technology (STIRPAT model). The model forms are 
as follows.

where a is the constant term of the model; P, A, and 
T have the same meaning as in the IPAT model; b, c, 
and d are the exponential terms of P, A, and T, respec-
tively, and can be estimated; e is the error term in the 
model; and the subscript i indicates that I, P, A, T, and e 
vary with the observed units. When a = b = c = d = 1, the 
STIRPAT model is transformed into the IPAT model, and 
therefore, the IPAT model can be considered as a special 
form of the STIRPAT model. In practical use, the origi-
nal STIRPAT model, which is a multivariate nonlinear 
model, is usually logarithmically linearized. There are 
two advantages to doing this: it facilitates the estimation 
and hypothesis testing of the equations, and it reduces 
the possibility of heteroskedasticity in the subsequent 
econometric analysis. The specific form of the conver-
sion is as follows:

(1)I = P∗A∗T

(2)Iit = aiP
b
it
Ac
it
Td
it
eit

Panel unit root, cross‑sectional correlation, 
within‑group autocorrelation, and between‑group 
heteroskedasticity tests

As a combination of cross-sectional and time series 
data, panel data facilitate the reduction of covariance 
in explanatory variables and not only provide more 
information but also make it easy to obtain more valid 
estimates. However, several problems often arise when 
performing estimation of panel data models. The first 
is the cross-sectional correlation that emerges from the 
correlation of random perturbation terms for different 
individuals at the same time. Second is the intra-group 
autocorrelation arising from the correlation of different 
random perturbation terms for the same individual, and 
third is the inter-group heteroskedasticity arising from 
the different variance of different individual perturbation 
terms. The application of traditional panel data models 
tends to default to correlation and cross-sectional inde-
pendence among observed individuals at different times, 
and this assumption is often difficult to achieve in prac-
tice. The presence of within-group autocorrelation and 
between-group heteroskedasticity also affects the degree 
of standardization of traditional panel model estimates. 
Therefore, this article intends to test the cross-sectional 
correlation of the data first.

To ensure the accuracy of the tests, the LM test statistic 
proposed by Breusch and Pagan (1980), the bias–adjusted LM 
statistic proposed by Pesaran et al. (2008), and the CD cross-
sectional correlation test statistic proposed by Pesaran (2004) 
were calculated separately. Wooldridge test statistic (Wool-
dridge 2010) and modified Wald test statistic (Lütkepohl and 
Burda, 1997) were used for within-group autocorrelation and 
between-group heteroskedasticity tests, respectively.

The degree of non-stationarity of the time series 
should be measured. In order to examine the data charac-
teristics and avoid pseudo-regressions, a panel unit root 
test must be performed (Ullah et al., 2020). The panel 
unit root test developed from the time series unit root 
test uses the cross-sectional dimensional information in 
the panel framework to construct the test statistic, which 
has stronger testing power than the time series unit root 
test. Although traditional first-generation panel unit root 
tests such as LLC test, IPS test, Fisher test, etc. are use-
ful for improving the test efficacy by considering cross-
sectional dimensional information, they often have strong 
subjective assumptions of cross-sectional independence, 
which often lead to significant bias (Palm et al. 2011). 

(3)lnI
it
= a

i
+ blnP

it
+ clnA

it
+ dlnT

it
+ e

it
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The second-generation panel unit root test CIPS, devel-
oped on the basis of the first-generation panel unit root, 
takes into account the heterogeneity component, which 
helps to overcome the existence of cross-sectional cor-
relation problem and enhances the reliability of the test 
(Pesaran 2007; Weimin et al. 2021). In this paper, we will 
choose the appropriate test based on data characteristics 
and panel fitness.

Panel cointegration test

If the results based on the unit root test indicate that the 
variables are cointegrated with each other of the same 
order, then a cointegration test can be performed as a 
way to determine whether there is a long-run cointegra-
tion relationship between the variables, which in turn 
provides a reference for the selection of the subsequent 
estimation methods. Kao (1999) proposed a method for 
testing panel cointegration using the extended DF and 
ADF tests, using the residuals from static panel regres-
sions to construct the statistic. However, the asymp-
totic distribution of this test statistic proved not to be 
an excellent approximation of its empirical distribu-
tion and was not applicable to test the cointegration of 
cross-sectionally correlated panel data (Westerlund and 
Edgerton, 2007). Pedroni (2004) proposed a residual-
based cointegration test statistic for panel data with the 
null hypotheses of no cointegration relationship, which 
allows for the presence of heterogeneous panels. West-
erlund (2005) further developed the test by proposing 
a residual-based cointegration test for panel data that 
is nonparametric in nature and does not require consid-
eration of any correction for current period correlation. 
This test was shown to have high stability and reliabil-
ity when the error term has cross-sectional dependence 
(Kapetanios et al., 2011).

Parameter estimation methods

The panel corrected standard errors (PCSE) estimation 
method introduced by Beck and Katz (1995) is an inno-
vation in the estimation of panel data models, which can 
effectively handle complex panel structures and allow 
for the existence of heteroskedasticity in different cross-
sections. PCSE also effectively handles serial and con-
temporaneous correlations in the perturbation terms and 
is well adapted to non-equilibrium panels. The stand-
ard error-adjusted robust estimation (Driscoll–Kraay F. 
E. Estimation) proposed by Driscoll and Kraay (1998) 
proved to be advantageous in the face of data with simul-
taneous within-group autocorrelation, between-group 
contemporaneous correlation, and between-group heter-
oskedasticity. This method was used in this study to check 
the robustness of the PCSE estimates. Since all estima-
tion methods have only relative accuracy but not absolute 
accuracy qualitatively, the analysis in this paper is based 
on a combination of the above estimation methods.

Data

Referring to previous studies (Chontanawat 2018; Li et al. 2018; 
Dong et al. 2019), P in this paper is measured by population 
size, GDP per capita to measure affluence A, and energy inten-
sity to measure T. Based on the ordinary STIRPAT model, this 
paper introduces two critical variables, age dependency ratio 
and unemployment rate, to explore how the possible nurturing 
pressure and unemployment on the population of countries 
and regions will affect the level of global CO2 emissions. In 
addition, referring to other studies, urban population share is 
added to reflect the driving effect of urbanization process and 
level in countries and regions. Based on the above considera-
tions, the model is rewritten as follows, and the specific vari-
able choices and meanings are shown in Table 1:

(4)lnCit = ai + blnPSit + clnGDPit + dlnEIit + elnPUPit + f lnADRit + glnURit + eit

Table 1   Description of 
variables

Abbreviation Meaning Description

C CO2 emissions Million tons of CO2

PS Population size Year-end population
GDP Per capita GDP At constant 2017 purchasing power parity (PPP)
EI Energy intensity Total energy consumption (kg oil equivalent)/total GDP
PUP Percentage of urban population Urban population/total population
ADR Age dependency ratio Percentage of population aged 14 years and younger 

and 65 years and older
UR Unemployment rate Unemployed population/labor force population
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In view of the small size of some countries and regions 
and the serious lack of relevant data, this paper selects data 
for 77 countries and regions with relatively complete data 
from 1991 to 2020. All data are sourced from the official 
website of the World Bank (IBRD) and the BP Statistical 
Yearbook. In addition, due to data access problems, data for 
some variables are missing, so this paper uses unbalanced 

panel data. In order to explore the different characteristics 
that different regional panels may present, the global panel 
is further divided into five sub-panels, Africa, the Americas, 
Asia–Pacific, Europe, and the Middle East, based on the 
geographical location of each country, and explored at the 
global and regional levels respectively.

Fig. 2   Scatterplot of global CO2, ADR, and UR changes 1991–2020

Fig. 3   CO2 emissions in Europe, Middle East, Americas, Africa, and Asia–Pacific, 1991–2020
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Empirical results

Descriptive statistical analysis

In order to provide an overall picture of global CO2 emis-
sions, the data has been collated, and the following overview 
graphs of the relevant variables have been created. Figure 1 
shows the change in total CO2 emissions for 77 countries and 
regions between 1991 and 2020, confirming the large vol-
ume of global CO2 emissions, which have generally shown 
a relatively steady increase over the 30-year period, with a 
relatively rapid increase between 2000 and 2010. Further, 
Fig. 3 visualizes global carbon emissions by five different 
regions.

We found that among the different geographical regions 
in our study, Europe, Asia–Pacific, and the Americas have 
relatively high carbon emissions, while Africa and the Mid-
dle East countries have relatively low emissions. The yel-
low carpet plot facets of the graph show that Asia–Pacific, 
Europe, and the Americas have a greater dispersion of CO2 
emissions than Africa and the Middle East. We also find 
that there are two clear outliers among the Asia–Pacific and 
the Americas: China and the USA. Having such high car-
bon emissions may be related to their huge population size 
and economic volume. With the exception of China, where 
carbon emissions fluctuate more markedly over the study 
period, the fluctuations in carbon emissions over the 30-year 
period are generally more moderate. On this basis, there is a 
slow downward trend in CO2 emissions for European coun-
tries as a whole and a slow upward trend for Asia–Pacific 
countries and regions.

In addition, Figs. 2  shows the movement of the average 
ADR and UR for the 77 countries and regions included in 
the sample of this paper. The scatterplot shows that the aver-
age ADR has not followed a linear trend over the 30-year 
period but has been characterized by a more pronounced 
quadratic curve. Since 1990, the proportion of the popula-
tion under 14 and over 65 years of age who are of dependent 
age has been declining, from nearly 60% in 1990 to 47% in 
2010, and has been trending upwards again in the following 
decade. By 2020, the global average ADR rises to 51.1%. 
The global average unemployment rate, on the other hand, 
has fluctuated in a range of 6–9% over this 30-year period, 
and the employment situation is not optimistic.

To further explore the different characteristics of ADR 
and UR across continents, we plotted the density profiles 
of them at the average level of each region as shown in 
Fig. 4. Among the five regions delineated in this paper, 
ADR in the Asia–Pacific and European regions is generally 
concentrated around 50%, with relatively obvious normal 
distribution characteristics. In Africa and the Americas, 
the ratios are slightly higher and have a more pronounced 
right-skewed distribution. The European countries have the 
most similar dependency ratios of the five regions, while 
the Middle Eastern countries have more varied ADR. 
On the other hand, the density profile of the UR shows 
that, with the exception of Africa, all four regions have a 
more pronounced right-skewed distribution of UR, with 
Asia–Pacific having the lowest unemployment rate and 
a smaller gap between countries and regions and Africa 
having the highest unemployment rate and the largest gap 
between countries.

Fig. 4   ADR and UR density by region, 1991–2020
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Figure 5 shows a graph of the relationship between 
the ADR and the UR for each country in the global panel 
explored in this paper. The horizontal axis represents 

the ADR, and the vertical axis represents the UR. The 
graph visually shows that the relationship between ADR 
and UR shows large differences across countries and 

Fig. 5   Scatterplot of ADR and UR by country

Fig. 6   Scatterplot of ADR and CO2 emissions by country
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regions. In some countries, the lower unemployment 
rate is accompanied by lower nurturing pressure, such 
as Qatar and the United Arab Emirates, while others have 
both high UR and high ADR, such as South Africa and 
Algeria. Some countries have more stable UR and signif-
icantly higher ADR; examples include Japan, Vietnam, 
and the Philippines.

Figure 6 shows the relationship between ADR and 
CO2 emissions for each country. The horizontal axis rep-
resents the ADR, and the vertical axis represents CO2 
emissions. As can be seen, in most countries and regions, 
higher ADR seems to imply lower CO2 emissions, and 
lower ADR seems to imply higher CO2 emissions. The 
lower carbon consumption patterns of the dependent 
population relative to the working population may have 
contributed to this result (Yang and Wang 2020). Fig-
ure 7 shows the relationship between UR and CO2 emis-
sions across countries and regions. The horizontal axis 
represents the UR, and the vertical axis represents CO2 
emissions. Looking at the graphs alone, there is no par-
ticularly clear synergistic trend between changes in UR 
and CO2 emissions for most countries and regions, which 
will be explored in more detail and with statistical sig-
nificance in later sections of this paper.

Cross‑sectional correlation, within‑group 
autocorrelation, and between‑group 
heteroscedasticity tests

With the deepening of globalization, rapid development of 
international trade, accelerated circulation of economic fac-
tors across countries, and continuous technological advances, 
economic variables are often not independent of each other 
but show a tendency to influence or co-evolve with each other. 
Pesaran points out that ignoring the correlation of individual 
panel data cross-sections is likely to lead to large differences 
between the estimated results of panel data models and the real 
situation (Pesaran, 2007). The results of all three tests indicate 
that there is significant cross-sectional correlation in panel data 
at the global level as well as at each regional level. The paper 
also tests for possible autocorrelation, and the results show that 
there is within-group autocorrelation for both the global and 
the country samples by different regions. Similarly, if there is 
between-group heteroscedasticity in the panel data, then there 
also generates bias in the estimation of the parameters, and 
the test result of between-group heteroscedasticity signifi-
cantly rejects the original hypothesis of no heteroscedasticity, 
indicating that there is significant heteroscedasticity within 
the sample. Table 2 shows the results of the specific tests.

Fig. 7   Scatterplot of UR and CO2 emissions by country
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Table 3   Panel CIPS unit root 
test results

Note:*, **, and *** denote significance at the 1%, 5%, and 10% levels, respectively, to test the null hypoth-
esis of the existence of a unit root

Level 1st difference

Scope Variables Individual Individual and trend Individual Individual and trend

Global lnCO2  − 1.1458  − 1.9808  − 2.3654***  − 2.6213**
lnP  − 1.4584*  − 1.5564  − 1.9167***  − 2.2949*
lnGDP  − 0.6726  − 2.203  − 2.211***  − 2.1322*
lnEI  − 1.3717  − 1.8737  − 2.5378***  − 2.9717***
lnPUP  − 0.90862  − 1.688  − 1.3823*  − 2.9398***
lnADR  − 0.95247  − 2.2065  − 1.5656**  − 3.2178***
lnUR  − 1.8816**  − 2.2956  − 2.5284***  − 2.6201**

America lnCO2  − 0.7360  − 1.2251  − 2.3619***  − 3.9828***
lnP  − 1.505  − 2.1502  − 2.3801***  − 4.6074***
lnGDP  − 1.7842**  − 1.8699  − 1.8517**  − 2.8187**
lnEI  − 1.5115  − 1.9132  − 2.4762***  − 3.2345***
lnPUP  − 1.6981*  − 2.6505  − 1.7184*  − 3.1142**
lnADR  − 2.2085***  − 2.0678  − 1.7606**  − 2.2687
lnUR  − 2.4396***  − 2.3012  − 2.5988***  − 2.9263**

Asia–Pacific lnCO2  − 1.4804  − 2.1976  − 2.3464***  − 3.5407***
lnP  − 0.2015  − 2.9433***  − 1.8449***  − 5.3005***
lnGDP  − 1.181  − 2.578  − 2.7884***  − 2.6066
lnEI  − 1.469  − 2.1334  − 1.9725***  − 2.68*
lnPUP  − 1.2555  − 2.2723  − 1.1398  − 2.3414
lnADR  − 0.8184  − 2.0678  − 1.3694  − 3.5985***
lnUR  − 2.3406***  − 3.0577***  − 3.0374***  − 3.2913***

Europe lnCO2  − 1.66**  − 2.0155  − 2.4407***  − 3.9783***
lnP  − 0.6660 -2.2383  − 2.3584***  − 3.1415***
lnGDP  − 0.4331 -2.5855*  − 2.2827***  − 2.7941**
lnEI  − 1.4383 -1.5688  − 2.9073***  − 3.0148***
lnPUP  − 0.9748 -1.2384  − 1.3871  − 2.4980*
lnADR  − 1.3448 -2.5149  − 1.7999***  − 2.637**
lnUR  − 1.9699*** -2.6357*  − 2.5895***  − 2.8388***

Table 2   Results of cross-sectional correlation, intra-group autocorrelation, and between-group heteroscedasticity test

Note: *, **, and *** denote significance at the 1%, 5%, and 10% levels, the null hypothesis of cross-sectional correlation test is no cross-
sectional correlation, the null hypothesis of within-group autocorrelation test is no within-group autocorrelation, and the null hypothesis of 
between-group heteroscedasticity test is no between-group heteroscedasticity

Cross-sectional correlation test Intra-group autocor-
relation test

Between groups 
heteroscedastic-
ity test

Scope Breusch–Pagan LM Pesaran scaled LM Pesaran CD Wooldridge test Modified Wald test

Global 29,787.11 *** 351.1331*** 8.8328 *** 41.947 *** 1.5e + 05 ***
Africa 23.1525 *** 4.9515 ***  − 2.2279 ** 10.766 ** 224.51 ***
America 419.5492 *** 39.4809 ***  − 2.8897** 67.632 *** 936.72 ***
Asia–Pacific 1903.07 *** 87.8786 *** 4.5395*** 8.04 ** 6791.51 ***
Europe 5572.902*** 150.099*** 7.0677*** 33.682*** 2397.86 ***
Middle East 255.4714*** 30.3971***  − 2.6764** 98.618*** 426.75***
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Table 4   IPS, Fisher ADF, and 
Fisher ADF panel unit root test 
results

Note: *, **, and *** denote significance at the 1%, 5%, and 10% levels, respectively, to test the null 
hypothesis of the existence of a unit root

Level 1st difference

Variables Test statistics Individual Individual and trend Individual Individual and trend

Middle East
    lnCO2 IPS  − 1.0558  − 0.2155  − 7.9613***  − 9.9901***

Fisher ADF 34.687* 15.203 86.759*** 100.147***
Fisher PP 63.716*** 17.883 106.789*** 443.070***

    lnP IPS 0.4971  − 5.7532***  − 3.2225*** 0.8140
Fisher ADF 11.306 58.5604*** 34.8804*** 12.331
Fisher PP 15.242 14.8735 19.8047 12.323

    lnGDP IPS  − 0.6166 1.9316  − 7.4489***  − 7.1070***
Fisher ADF 15.2614 8.4669 76.292*** 67.626***
Fisher PP 17.1735 6.3090 76.1536*** 67.0364***

    lnEI IPS  − 0.1147  − 0.7653  − 9.4958***  − 8.1461***
Fisher ADF 15.869 15.2768 100.070*** 78.796***
Fisher PP 12.316 8.8637 101.400*** 103.097***

    lnPUP IPS  − 0.0538 0.15299  − 18.6662***  − 30.1242***
Fisher ADF 35.0746** 18.7108 49.5191*** 307.966***
Fisher PP 37.6099 73.4016*** 43.4441*** 283.375***

    lnADR IPS 0.0930 1.3432  − 9.6682***  − 8.6587***
Fisher ADF 11.7269 6.1392 103.229*** 83.5785***
Fisher PP 6.1563 2.5967 109.664*** 91.8981***

    lnUR IPS  − 1.505  − 0.2803  − 4.3094***  − 0.7352
Fisher ADF 32.4118** 21.810* 48.9417*** 26.1706**
Fisher PP 9.3560 3.9783 36.4059*** 0.0123**

Africa
    lnCO2 IPS 0.1018 2.2642  − 6.1038***  − 4.5678***

Fisher ADF 9.6072 6.5574 51.699*** 35.4136***
Fisher PP 7.4096 6.9332 68.2380*** 77.9538***

    lnP IPS  − 1.3979  − 1.7913**  − 3.8529***  − 3.2576***
Fisher ADF 11.505 17.083** 30.7674*** 24.605**
Fisher PP 4.8844 13.8022* 16.8667** 7.54371

    lnGDP IPS  − 0.2802 2.2125  − 4.3285***  − 4.1039***
Fisher ADF 7.5406 5.7978 37.5639*** 37.3799***
Fisher PP 1.9602 3.9463 36.929*** 30.7938***

    lnEI IPS 0.9003  − 0.6510  − 6.6259***  − 7.2113***
Fisher ADF 17.7384 25.6318** 55.7733*** 55.1565***
Fisher PP 17.5320 39.5996*** 79.8766*** 150.532***

    lnPUP IPS 0.4958 1.4197  − 5.1312***  − 4.3497***
Fisher ADF 10.0834 11.3538 39.2888*** 31.2478***
Fisher PP 48.7583*** 3.4630 39.1528*** 31.0211***

    lnADR IPS  − 6.9259***  − 2.6574**  − 3.6481***  − 2.0871**
Fisher ADF 57.8277*** 28.302*** 28.6668*** 15.885**
Fisher PP 18.2084** 0.0104 32.6859*** 6.25149

    lnUR IPS 0.6146 0.2320  − 6.6725***  − 5.4588***
Fisher ADF 4.3854 12.038 52.8569*** 39.2314***
Fisher PP 5.1842 2.8842 53.9542*** 39.4803***
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Panel unit root test and panel cointegration test

In order to test the stability of the panel data and to test 
whether it can be modeled as a steady panel, this paper 
performs a unit root test on the panel data. We use unbal-
anced panels containing missing values in some years, 
and the tests with hidden assumptions of strongly bal-
anced panels are not suitable for the data in this paper. 
Taking into account the data characteristics, the limita-
tions of the unbalanced panels, and the characteristics of 
each sub-panel, we use the CIPS second-generation panel 
unit root test for the global, American, Asia–Pacific, and 
European panels and the first-generation panel unit root 
test (IPS, Fisher ADF, Fisher PP) for the Middle East and 
African panels. The specific results are shown in Table 3 
and Table 4, respectively. The unit root test indicates that 
in all panels, the null hypothesis of the existence of unit 
root cannot be rejected for most of the data without any 
treatment. With the first-order difference treatment, almost 
all variables significantly reject the null hypothesis of the 
existence of unit root, and all series are first-order single 
integer series. It is reasonable to conduct cointegration 
tests and further study (Chishti et al. 2021a, b; Zhao et al. 
2021).

On this basis, we perform cointegration tests, and 
Table 5 gives the results of Pedroni and Westerlund test, 
both with the null hypothesis that there is no cointegra-
tion relationship between the variables. The results of 
the tests indicate that the long-run cointegration relation-
ship between CO2 emissions and its potential drivers is 
significantly supported in both the global panel and the 
regional panels, thus allowing us to further investigate 
the impact of drivers on CO2 emissions.

Estimated results

Based on the implementation of the above tests, the long-
run parameters are estimated for the global panel and 
for five different regional panels. The tests show data 

characteristics of cross-sectional correlation, autocorre-
lation, heteroscedasticity, and first-order single integer of 
the data. Taking these data characteristics into account, 
we use the PCSE method to estimate the long-run param-
eters of the variables, and the parameters are estimated 
using robust estimation methods with Driscoll–Kraay 
standard error adjustment, which effectively reduce or 
avoid the estimation bias arising from single estimation 
method. In addition, the Hausman test results indicate the 
existence of individual fixed effects and random effects 
are not suitable for the data in this paper. Since vari-
ous estimation methods exist only for relative accuracy 
but not absolute accuracy, referring to other literature, 
the regression results of fixed effects model (FEM) are 
also presented in this paper, and these estimation results 
will be compared. The specific estimates are presented 
in Table 6, and Fig. 8 compares the estimated results of 
the coefficients of each variable under the global and five 
different regional panels.

From the above estimation results, it can be seen 
that for most of the variables in all panels, there is 
no significant difference in the estimation results of 
different estimation methods. Next, the global panel 
and different regional panels are divided into separate 
discussions.

Estimation results for the global panel

Table 6 presents the estimation results of different esti-
mation methods for the global panel. The estimation 
results show that all estimation methods consider the 
coefficients of lnP, lnGDP, lnEI, lnADR, and lnUR pass 
the significance test. The coefficients of population size, 
per capita GDP, and energy intensity are positive, which 
have a positive driving effect on CO2 emissions. The 
coefficients of ADR and UR are minus and have a nega-
tive driving effect on CO2 emissions. Different estima-
tors have different views on the possible effect of PUP 
on CO2 emissions but generally agree that the effect of 

Table 5   Cointegration test 
results

Note: *, **, and *** denote significance at the 1%, 5%, and 10% levels, the null hypothesis of Pedroni test 
is no cointegration correlation, the null hypothesis of Westerlund test is no cointegration autocorrelation

Pedroni test Westerlund test

Test statistics Modified Phillips–
Perron t

Phillips–Perron t Augmented Dickey–
Fuller t

Variance ratio

Global 5.6157***  − 8.9511***  − 12.1533***  − 5.6800***
Africa 1.8114**  − 1.7732**  − 0.4193  − 1.0543
America 4.0594***  − 2.0261**  − 5.8393***  − 2.0813**
Asia–Pacific 4.5465***  − 5.7062***  − 8.1834***  − 2.7792**
Europe 5.1589***  − 11.2756***  − 18.0941***  − 4.0191***
Middle East 3.1228***  − 2.2691**  − 3.9066***  − 1.7289**
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urban population share on CO2 emissions is insignificant 
or only weakly significant. Focusing on the key vari-
ables of this paper, PCSE estimates suggest that each 1% 
increase in the ADR and UR will result in a 0.0758% and 
0.0175% reduction in CO2 emissions, and the D–K esti-
mation suggests that this rate is 0.1303% and 0.0207%. 
Combining FEM, these estimates are considered reason-
able. The above estimation results confirm hypothesis 
1 and hypothesis 3 and are consistent with the results 
obtained by Wang and Li (2021).

Estimation results of different regional panels

The estimation results for the regional panels are also pre-
sented in Table 6. In each region, almost all estimation meth-
ods affirm the positive driving effects of population size, 
GDP per capita, and energy intensity on CO2 emissions. 
Further, we discuss the specifics of each region.

In the African panel, all estimators conclude that nurtur-
ing pressure leads to a significant reduction in CO2 emis-
sions in the long run. The PCSE estimates suggest that a 1% 

Table 6   Estimation results

Note: *, **, and *** indicate significance at the 1%, 5%, and 10% levels, respectively

lnP lnGDP lnEI lnPUP lnADR lnUR

Global
    FEM .8702***

(.0150)
.9602***
(.0107)

1.0494***
(.0099)

 − .0145
(.0303)

 − .1302***
(.0180)

 − .0207***
(.0042)

    PCSE 1.0355***
(.0048)

.9583***
(.0155)

1.0026***
(.0127

.0558
(.0367)

 − .0758**
(.0267)

 − .0175***
(.0045)

    Driscoll–Kraay .8702***
(.0371)

.9602***
(.0243)

1.0494***
(.0298)

 − .0145
(.0635)

 − .1303**
(.0613)

 − .0207**
(.0086)

Africa
    FEM .9154***

(.0327)
.9387***
(.0244)

.9491***
(.0235)

.0675
(.0510)

 − .0658**
(.0272)

 − .0229**
(.0105)

    PCSE 1.6899***
(.0670)

.8221***
(.0292)

1.1213***
(.0314)

 − 1.366***
(.1125)

 − .3536***
(.0640)

 − .0351**
(.0165)

    Driscoll–Kraay .9154***
(.0523)

.9387***
(.0247)

.9491***
(.0224)

.0675
(.0734)

 − .0658*
(.2001)

 − .0229*
(.0095)

America
    FEM .8809***

(.0916)
.9631***
(.0370)

1.0053***
(.0489)

.1250
(.2804)

 − .0163
(.0881)

 − .0392**
(.0133)

    PCSE .9595***
(.0208)

1.1431***
(.0402)

.7445***
(.0386)

.0971
(.1843)

.4977***
(.0789)

 − .0221
(.0134)

    Driscoll–Kraay .9677***
(.0036)

1.3079***
(.0384)

.6182***
(.0307)

 − .2003*
(.0658)

.6837***
(.0682)

 − .0531***
(.0111)

Asia–Pacific
    FEM 1.0447***

(.0310)
.9898***
(.0158)

1.0463***
(.0137)

 − .0080
(.0355)

 − .0382
(.0288)

 − .0088
(.0059)

    PCSE 1.0329***
(.0083)

.9873***
(.0281)

1.0377 ***
(.0148)

.0782
(.0786)

 − .1885**
(.0608)

 − .0064
(.0062)

    Driscoll–Kraay 1.0395***
(.0048)

.9522***
(.0405)

1.0514***
(.0058)

.1112*
(.0564)

 − .4022***
(.0796)

.0051
(.0229)

Europe
    FEM .5577***

(.0393)
.8280***
(.0256)

1.0167***
(.0214)

.0564
(.0826)

 − .3489***
(.0389)

 − .0438***
(.0077)

    PCSE 1.0179***
(.0094)

.8013***
(.0342)

.8851***
(.0291)

.0959
(.0987)

 − .4087***
( .1198)

 − .0386***
(.0116)

    Driscoll–Kraay 1.0106***
(.0031)

.6045***
(.0343)

.5843***
(.0300)

.2965***
(.0575)

 − 1.1567***
(.1730)

 − .0012
(.0232)

Middle East
    FEM .9827***

(.0146)
.9910***
(.0148)

.9548***
(.0140)

 − .5572***
(.0920)

 − .0153
(.0241)

.0004
(.0060)

    PCSE .9944***
(.0107)

.9894***
(.0141)

.9817***
(.0148)

 − .1577
(.1037)

.0564**
(.0276)

.0048
(.0060)

    Driscoll–Kraay .9541***
(.0039)

.9344***
(.0173)

.8436***
(.0551)

.1047
(.0571)

 − .0205
(.0327)

.0632***
(.0104)
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increase in ADR leads to a 0.3536% decrease in CO2 emis-
sions. While the FEM and Driscoll–Kraay standard error-
adjusted estimates have slightly smaller decision values for 
this coefficient, the evidence is sufficient to show a negative 
effect of nurturing pressure on CO2 emissions in Africa. 
The estimation results likewise indicate a negative effect of 
unemployment on CO2 emissions in Africa. According to 
the PCSE estimation results, a 1% increase in UR decreases 
CO2 emissions by 0.0351% in the long run, and other esti-
mators show similar results. Although the magnitude of the 
effect of unemployment on CO2 emissions appears to be less 
than that of the traditional drivers of carbon emissions that 
have been receiving much attention, the excellent signifi-
cance implies that it is worthy of being drawn to attention.

However, the situation is different in the Americas’ panel, 
where our results show that nurturing pressure has a positive 
effect on CO2 emissions. According to PCSE estimates, a 
1% increase in ADR increases CO2 emissions by 0.4977%, 
and Driscoll–Kraay standard error-adjusted estimates put 
this increase at 0.6837%, and both have strong significance. 
All three estimators conclude that unemployment has a 
negative effect on CO2 emissions. According to the PCSE 
estimates, a 1% increase in unemployment decreases CO2 
emissions by 0.0221%. The impact of nurturing pressure 

on carbon emissions in the Asia–Pacific region is less 
significant than that in the Americas. As with the Africa 
panel, nurturing pressure drives CO2 emissions negatively, 
and the PCSE estimates that a 1% increase in ADR would 
reduce CO2 emissions by 0.1885%. A 1% increase in unem-
ployment would reduce CO2 emissions by about 0.0064%, 
but the effect of unemployment on CO2 emissions in the 
Asia–Pacific region is not statistically significant.

It is worth noting that the effects of nurturing pressure 
and unemployment on CO2 emissions in the European 
region are highly significant. According to the FEM, PCSE, 
and Driscoll–Kraay standard error-adjusted estimates, 
a 1% increase in ADR leads to a 0.3489%, 0.4087%, and 
1.1567% decrease in carbon emissions, and a 1% increase 
in unemployment would result in a 0.0438%, 0.0386%, and 
0.0012% decrease in carbon emissions. It seems that carbon 
emission reduction in the European region should be more 
concerned about the potential impact of nurturing pressure 
and unemployment than in other regions and that population 
and employment policies should be proposed not only for 
economic development considerations alone, but also for 
their possible impact on the environment.

There are some arguments among different estima-
tors about the driving effects of nurturing pressure and 

Fig. 8   Estimated results of global panel and different regional panel coefficients
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unemployment on CO2 emissions in the Middle East. The 
PCSE estimates suggest that a 1% increase in ADR increases 
CO2 emissions by 0.0564%, but the Driscoll–Kraay standard 
error estimates suggest that this effect is negative. The PCSE 
estimates also suggest that a 1% increase in UR increases 
CO2 emissions by 0.0048%. Considering all estimation 
methods together, the effects of nurturing pressure and 
unemployment on CO2 emissions are not statistically signifi-
cant, and more consideration should be given to traditional 
carbon emission drivers for carbon reduction in Middle East-
ern countries compared to other regions. The above analysis 
shows that the effects of nurturing pressure and unemploy-
ment on CO2 emissions vary across different regions of the 
globe, supporting hypothesis 2 and hypothesis 4.

Conclusions and policy implications

Based on a global perspective, this paper collects panel 
data for 77 countries and regions from 1991 to 2020 and 
empirically explores the driving effects of two demographic 
factors, nurturing pressure and unemployment, on carbon 
emissions globally and in different regions based on a modi-
fied STIRPAT model. By testing the panel data, different 
estimation methods are used to estimate and compare the 
long-run parameters of the independent variables, and tar-
geted suggestions are made for the different influential roles 
exhibited by ADR and UR in different regions, respectively.

The specific conclusions of this paper are as follows.

(1)	 Global CO2 emissions show an overall steady upward 
trend during 1991–2020 and have reached 31,983.6 
millions of tons by 2020, with a growth rate of 49.86% 
over 30 years and an average annual growth rate of 
1.4% from 1991 to 2019. In all regions, CO2 emis-
sions are relatively high in Europe, Asia–Pacific, and 
the Americas. There is still a further upward trend of 
global CO2 emissions in the future.

(2)	 The global ADR shows an obvious U-shaped feature, and 
in 2010, it achieved an inflection point from decreasing 
to increasing, among which the ADR in Africa and the 
Americas as a whole are slightly higher than those in 
other regions, and the ADR varies greatly among coun-
tries in the Middle East. Unemployment rates are gener-
ally on a declining trend, with Asia–Pacific having the 
lowest UR and Africa having the highest.

(3)	 Globally, nurturing pressure and unemployment have a 
negative driving effect on CO2 emissions. Although the 
effects are less significant than traditional carbon emis-
sion influences such as population size and GDP per 
capita, they are statistically significant. Continent-spe-
cific, both nurturing pressure and unemployment have 

statistically significant effects on CO2 emissions in most 
regions, but the directionality of this effect is not con-
sistent, and the magnitude of the effect varies. Although 
there are differences in the estimates considering different 
data characteristics, for countries and regions in Africa, 
the Americas, Asia–Pacific, Europe, and the Middle East, 
it is generally agreed that a positive change in the ADR 
will have a negative, positive, negative, negative, and 
positive impact on CO2 emissions, and a positive change 
in the UR will have a negative, negative, negative, nega-
tive, and positive impact on CO2 emissions.

Following the conclusions discussed above, some pol-
icy recommendations emerge from the findings. First, our 
study confirms that Europe, Asia–Pacific, and the Ameri-
cas are regions with relatively high CO2 emissions. In the 
future, when global CO2 emissions are still on an unstop-
pable upward trend, carbon emission reduction in these key 
regions should receive more attention and focus. The global 
green and low-carbon development is not just a matter for a 
certain country or region, and the related international coop-
eration and communication should be further developed.

Second, our study shows that nurturing pressures and 
unemployment have a negative impact on CO2 emissions 
at the global and some regional levels. It is worth not-
ing, however, that we cannot use a precipitous increase 
in nurturing pressure or unemployment to achieve carbon 
reduction targets, because pursuing carbon reduction tar-
gets without considering other factors will have serious 
consequences, both in terms of national development and 
people’s livelihoods. Clearly, there is a trade-off between 
economic development, people’s quality of life, and carbon 
emission reduction. Especially considering the potentially 
significant negative impact of unemployment on economic 
development, an increase in unemployment will limit sus-
tainable economic and social development and even trig-
ger serious political and social crises. Especially for some 
developing countries, the formulation of relevant carbon 
emission reduction policies must take into account the 
development stage and level of development the country 
is at. In some countries with low birth rates, population 
policies can be coordinated with environmental policies, 
and the relevant policy-making departments should not be 
completely separated from each other.

Third, a comparative analysis at the regional level shows 
that different countries and regions by geography exhibit 
significant heterogeneity. For countries in the Americas 
and the Middle East, where ADR has a positive impact, 
population policies that help reduce the pressure to raise 
children, such as reasonable incentives for childbearing, 
may have a positive impact in the future in order to pro-
mote CO2 reduction. For countries and regions in Africa, 
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Asia–Pacific, and Europe, where ADR has a negative 
impact, although the policy direction of increasing ADR 
is not realistic and may cause greater dependency pressure, 
focusing on and controlling healthy demographic changes 
will still have a positive impact on carbon emission reduc-
tion. For countries in the Middle East where the UR has a 
positive impact, policies to reduce the unemployment rate 
are not only meaningful for the improvement of national 
livelihoods, but also bring positive effects on environmen-
tal impacts in the future. At the same time, the government 
should pay attention to guiding non-workers’ lifestyles and 
consumption patterns in a healthy way. For countries and 
regions in the Americas, Africa, Asia–Pacific, and Europe, 
where UR has a negative impact, promoting the rational 
adjustment and transformation of industrial structure and 
upgrading and paying more attention to the cultivation 
and development of low-carbon industries in the future 
will be beneficial to long-term CO2 emission reduction. It 
is important to note that there is no policy direction that 
applies to all countries and regions.
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