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Abstract

Cognitive and behavioural comorbidities are prevalent in childhood and adult epilepsies and 

impose a substantial human and economic burden. Over the past century, the classic approach 

to understanding the aetiology and course of these comorbidities has been through the prism of 

the medical taxonomy of epilepsy, including its causes, course, characteristics and syndromes. 

Although this ‘lesion model’ has long served as the organizing paradigm for the field, substantial 

challenges to this model have accumulated from diverse sources, including neuroimaging, 

neuropathology, neuropsychology and network science. Advances in patient stratification and 

phenotyping point towards a new taxonomy for the cognitive and behavioural comorbidities of 

epilepsy, which reflects the heterogeneity of their clinical presentation and raises the possibility 

of a precision medicine approach. As we discuss in this Review, these advances are informing 

the development of a revised aetiological paradigm that incorporates sophisticated neurobiological 

measures, genomics, comorbid disease, diversity and adversity, and resilience factors. We describe 

modifiable risk factors that could guide early identification, treatment and, ultimately, prevention 

of cognitive and broader neurobehavioural comorbidities in epilepsy and propose a roadmap to 

guide future research.
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This Review offers a novel theoretical perspective on the neurobehavioural comorbidities of adult 

and childhood epilepsy, involving new analytical approaches, derivation of new taxonomies, and 

consideration of the diverse forces that influence cognition and behaviour in individuals with 

epilepsy.

Introduction

Epilepsy is a costly and complicated international public health problem1,2 In addition 

to recurrent seizures, epilepsy is associated with abnormalities in cognition, psychiatric 

status and social–adaptive behaviors — complications that are referred to collectively as the 

neurobehavioural comorbidities of the epilepsies (BOX 1). These comorbidities represent 

substantial life burdens for which the aetiology and most effective treatments continue to be 

sought.

This Review offers a novel theoretical perspective on the neurobehavioural comorbidities 

of adult and childhood epilepsy, involving new analytical approaches, derivation of 

new taxonomies, and consideration of the diverse forces that influence cognition and 

behaviour in individuals with epilepsy. In several respects, this approach is consistent 

with the concept of precision medicine, which, according to the International Consortium 

for Personalized Medicine1,3, relies on “characterization of individuals’ phenotypes and 

genotypes (for example, molecular profiling, medical imaging, lifestyle data) for tailoring 

the right therapeutic strategy for the right person at the right time, and/or to determine 

the predisposition to disease or deliver timely and targeted prevention.” Precision medicine 

is having a substantial impact on many medical specialties4,5, including neurology4,5 and 

important subspecialty areas such as epilepsy6–9, but has been extended minimally to the 

comorbidities of epilepsy10.

We begin by reviewing the classic paradigm that has dominated neuropsychological and 

behavioural research in epilepsy, highlighting the many striking inconsistencies of this 

paradigm. Next, we discuss an emerging taxonomy that harnesses the inherent heterogeneity 

of the neurobehavioural comorbidities of epilepsy. Finally, we propose a reformulated 

paradigm that encompasses a broader range of important aetiologies of cognitive and 

behavioural phenotypes. We believe that this new taxonomy will accelerate efficient 

identification, intervention and prevention efforts for individual patients with epilepsy. Our 

focus is on evidence from the broad spectrum of focal (including lesional) and genetic 

generalized epilepsies, and we do not address the severe childhood epilepsies associated 

with developmental delays and markedly abnormal EEG backgrounds, such West and 

Lennox–Gastaut syndromes, which have been addressed elsewhere11.

The classic paradigm

Epilepsy can be accompanied by a broad range of somatic, psychiatric and 

neuropsychological comorbidities, and studies to gain a better understanding of the 

aetiology of these comorbidities and their course across the lifespan have been ongoing for 

>100 years12. A primary focus of these studies has been the association between cognitive 

and behavioural complications and the fundamental medical taxonomy of epilepsy, that is, 
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those factors related to its aetiology, course, characteristics and treatment in young, mature 

and ageing patients (FIG. 1).

The classic paradigm that has driven much of the research into the neurobehavioural 

comorbidities of epilepsy emerged from an interest in the effects of epilepsy on cognition. 

Early studies identified objective cognitive impairments associated with epilepsy13–15, 

initially focusing on global cognitive ability (that is, intelligence) and later exploring specific 

cognitive domains as the understanding of human cognition and its assessment evolved16. 

The existence of substantial heterogeneity in cognition among patients with epilepsy rapidly 

became evident, prompting efforts to identify clinical correlates of cognitive dysfunction, 

such as age of onset and seizure frequency. The earliest empirical examples of this approach 

date back to the 1920s14 and persist to the present day17,18. Since the 1940s, efforts 

to characterize the relationship between disease-related factors and cognition have been 

reflected in narrative19–27 as well as systematic and meta-analytic reviews28–32. Factors that 

have been linked to an increased risk of cognitive impairment include earlier age of onset, 

increasing duration of epilepsy, poorer seizure control, symptomatic epilepsies, number 

of lifetime generalized epilepsies and episodes of status epilepticus, number and type of 

medications, and the type, frequency and severity of EEG abnormalities. However, owing 

to variability in the reliability and reproducibility of the findings, these relationships have 

undergone continual re-evaluation.

Efforts to classify seizures according to their aetiology and underlying pathophysiology 

were especially influential in this research. Early attempts were limited by an imprecise 

understanding of the epilepsies and were driven largely by clinical theorizing (for example, 

‘predisposing’ versus ‘exciting’ aetiologies)33 but were subsequently advanced by the 

application of EEG and the development and evolution of the International League Against 

Epilepsy (ILAE) Classification of the Epilepsies34–37. Neuropsychological and behavioural 

research paralleled the evolution of this taxonomy, and efforts to link specific cognitive 

abnormalities with distinct epilepsy syndromes followed, aptly referred to as the ‘lesion’ 

or ‘localization’ model38. This model has provided an important organizing influence 

to explore the neuropsychology of epilepsy, as well as the behavioural complications 

associated with focal39, 40 and generalized epilepsies28. Exemplars of the lesion model 

include memory impairment in temporal lobe epilepsy (TLE)41, dysexecutive function in 

frontal lobe epilepsy (FLE)42, disrupted attention in absence epilepsy43, abnormalities in 

aspects of language in Rolandic epilepsy44, visuoperceptual and spatial impairments in 

occipital epilepsy45, and abnormal primary memory and behaviour in juvenile myoclonic 

epilepsy (JME)46,47.

Challenges to the classic paradigm

Substantial challenges to the classic model have accumulated from several sources, 

including cognitive, neuroimaging, neuropathology and clinical research. These studies 

indicate that the neurobehavioural comorbidities of epilepsy are more variable and extensive 

than would be predicted by lesion location alone. In a prescient view, Jokeit and Schacher48 

argued that because the taxonomy of the epilepsies was constructed independently 

of neuropsychological concepts, specific associations between cognitive deficits and 
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epilepsy type and aetiology could represent exceptions rather than the rule. Furthermore, 

neurobehavioural comorbidities often predate seizure onset, posing an additional challenge 

to the classic paradigm.

Cognitive research—Neuropsychological impairments associated with epilepsy do 

not always respect the hypothesized boundaries of the classic lesion model. In both 

children49–54 and adults55–61 with temporal or frontal lobe epilepsies, cognitive anomalies 

are often more widespread and generalized than would be anticipated on the basis of the 

lesion location. This pattern of generalized cognitive impairment has also been observed in 

less well-investigated focal epilepsies involving posterior regions (occipital and/or parietal) 

in children45,62,63 and adults64. Furthermore, meta-analyses in Rolandic epilepsy and 

genetic generalized epilepsies27,31 have reported widespread cognitive abnormalities29.

Conversely, abnormalities in specific prototypical cognitive domains have been reported 

across diverse epilepsy syndromes. For instance, executive dysfunction has been reported 

in TLE51,65,66, FLE54,66, JME67, absence epilepsy68 and Rolandic epilepsy69,70. Similarly, 

language impairments have been reported in absence epilepsy71,72, FLE30,52, Rolandic 

epilepsy73,74 and JME72,75,76, as well as in TLE, even when seizures arise from the 

non-dominant hemisphere77,78. Thus, empirical links between purported domain-specific 

cognitive impairments and specific epilepsy syndromes are more complex than predicted by 

the classic model.

Direct multi-syndrome comparisons have demonstrated considerable overlap of cognitive 

abnormalities in both new-onset72,79 and established epilepsies. For example, surprisingly 

few substantial differences were observed between children with Rolandic epilepsy, 

absence epilepsy and FLE on measures of intelligence (different on only two of 54 

syndrome comparisons)80 and memory (two of 21 syndrome comparisons)81. Nolan et 

al.82 demonstrated reduced intellectual performance across children with diverse epilepsy 

syndromes, with any differences being primarily in magnitude rather than type of 

impairment. Similarly, memory performance was reduced across all groups of individuals 

with TLE, FLE or absence epilepsies83, again varying primarily in magnitude.

Despite the clear clinical distinction between TLE and FLE, cognitive patterns can be 

similar in these syndromes owing to extensive frontotemporal connectivity59–61. For 

example, in TLE, the presence of executive dysfunction — a domain impairment long 

considered to be a hallmark of FLE — has been linked to neurobiological influences 

exerted directly by the frontal lobe and/or indirectly through broader network connectivity. 

These influences (BOX 2) have been demonstrated across metabolic (18F-FDG PET)84, 85, 

EEG86, morphometric (atrophy)87–90, diffusion-weighted imaging91,92, resting-state93 and 

task-activated functional MRI (fMRI)94,95, and functional connectivity analyses96. Similarly, 

psychiatric complications such as depression in TLE have been linked to co-occurring 

frontal lobe hypometabolism97, 98 and structural abnormalities in the frontal lobes99,100.

We do not mean to imply that all attempts to link specific comorbidities to specific features 

of the lesion model have failed, but the non-supportive and contradictory findings, as 

reviewed above, are striking. Sophisticated methodologies such as machine learning and 
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other advanced analytics have been shown to discriminate both between syndromes (for 

example, FLE versus TLE or TLE versus Rolandic epilepsy)66,101,102 and within syndromes 

(for example, left versus right TLE)58,102–104. Such technologies could enhance the value of 

syndrome or lesion approaches, but even here they are prone to inconsistent findings, and 

standardized measures of diagnostic accuracy will be required before they can be routinely 

adopted in the clinic. Despite the aid of technological innovations for improving syndrome 

discrimination, the fundamental heterogeneity in cognitive and behavioural presentations, 

within and across epilepsy syndromes and clinical seizure features, must still be considered 

and embraced in any competing model. In our proposed taxonomy, a lesion is but one 

of several neuropathological considerations for understanding cognitive comorbidities in 

individual patients.

Neuropathology—Histopathological and neuroimaging investigations can assist in 

identifying abnormalities that might explain unanticipated syndrome-specific cognitive 

and behavioural findings. An early study of a series of 26 autopsied patients with TLE 

revealed multifocal abnormalities affecting the hippocampus (85% of cases), cerebellum 

(46%), amygdala (42%), thalamus (34%) and cortex (23%), with only 3% of individuals 

showing no appreciable pathology105. More recent neuropathological investigations have 

identified distributed cortical anomalies106, as well as the presence of neurodegenerative 

features and proteinopathies107–110, in the brains of people with focal epilepsies. Among 

the few neuropathological studies that have been conducted in patients with primary 

generalized epilepsies, microdysgenesis with variable regional distribution has been reported 

in some111,112 but not all113. In a relevant nonhuman primate (baboon) model of JME114, 

untreated animals with spontaneous seizures exhibited a reduced number of cortical neurons 

overall, with the greatest reductions being observed in primary somatosensory and primary 

motor cortices and the smallest reductions in visual regions115.

Neuroimaging—Quantitative neuroimaging studies provide perhaps the clearest 

understanding of why cognitive anomalies do not always adhere to the classic lesion model 

or follow syndrome-specific patterns. Three primary lines of evidence are problematic for 

the classic lesion model.

First, imaging abnormalities often extend substantially beyond the primary areas of 

electrophysiological abnormality. Distributed neuroimaging abnormalities in TLE include 

widespread volume loss116, cortical thinning117–119, and alterations in gyral and sulcal 

curvature and total cortical surface area120,121. In primary generalized epilepsies, a meta-

analysis has revealed widespread cortical and subcortical volume loss extending beyond 

the thalamocortical networks that are postulated to be the primary seizure generators122. 

Similarly, distributed anomalies in white matter microstructure were reported in a meta-

analysis of 1,122 healthy controls and 1,027 people with epilepsy123. Decreased fractional 

anisotropy and increased mean diffusivity were observed in commissural, association and 

projection white matter fibres in TLE and FLE, with less impact in generalized epilepsy.

Second, across common epilepsy syndromes, evidence is emerging that structural 

abnormalities are more likely to be shared than syndrome-specific, as reflected in 

the Enhancing NeuroImaging and Genetics through Meta-Analysis (ENIGMA-Epilepsy) 
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project, an international database that includes 1,727 healthy controls and 2,149 patients 

with common epilepsy syndromes124. Despite the presence of some prototypic syndrome-

specific findings, such as ipsilateral hippocampal volume loss in TLE, all patient groups 

demonstrated reduced thalamic, hippocampal and right pallidal volumes, as well as bilateral 

increases in the volume of the lateral ventricles (FIG. 2a, left). In addition, widespread 

cortical thinning, involving the precentral, paracentral, supramarginal, precuneus and 

cuneus, left entorhinal and multiple prefrontal regions, was observed across all epilepsy 

syndromes (FIG. 2a, right)124. Apart from medial temporal lobe abnormalities in patients 

with left TLE, syndrome-specific findings were rare.

In a subsequent diffusion MRI study from ENIGMA-Epilepsy, white matter microstructural 

alterations were observed across all epilepsy syndromes in 36 of 38 association, 

commissural and projection fibres125. Across patient groups, reductions in fractional 

anisotropy and increases in mean diffusivity were greatest in the genu and body of the 

corpus callosum, cingulum and external capsule (FIG. 2b). Although the severity of the 

alterations varied across epilepsy syndromes and was most pronounced in mesial TLE125, 

bilateral alterations in many anterior midline fibres were uniform across groups. These broad 

patterns of structural and microstructural alterations, shared across epilepsy syndromes, 

could help to explain the distributed nature of cognitive impairments and the variable ability 

to identify syndrome-specific impairments.

Last, analyses of macroscale and mesoscale connectivity patterns have demonstrated 

widespread network-level differences between controls and patients with either focal126 

or generalized127,128 epilepsies. These analyses included correlation or covariance 

matrices derived from fMRI and single-photon emission CT129, 18F-FDG PET130, scalp 

EEG and magnetoencephalography131,132, intracranial EEG and electrocorticography133, 

and structural MRI134. Connectivity analysis has been used to identify the epileptic 

network in individual patients135,136 and to identify disease-specific patterns of 

abnormal connectivity at the group level. Common findings include abnormal cortical–

subcortical connectivity137–139, increased connectivity within the putative primary epileptic 

network133,135,140,141 and downstream network dysfunction on a more global or multi-

network scale142,143. Widespread downstream network abnormalities have been reported 

across epilepsy syndromes, including paediatric focal epilepsy144, FLE142, TLE145, 

childhood absence epilepsy146 and JME128. Taken together, these findings suggest that 

epilepsy can cause disruption of networks far beyond the one that is responsible for primary 

seizure generation.

Important questions that emerge from this research include how different imaging features 

(or atrophy patterns) lead to the development of cognitive impairment in epilepsy, and 

what factors drive these changes if they are not syndrome-specific. Some evidence 

suggests that in patients with drug-resistant epilepsy, early-onset seizures disrupt white 

matter development, especially in late-myelinating frontotemporal association tracts147,148. 

Microstructural damage to these long-range tracts could lead to impairments in attention and 

executive functioning as a result of cortico-cortical disconnection. Microstructural damage 

to short-range, U-shaped fibres directly beneath the cortex might also contribute to cognitive 

impairment in patients with epilepsy by disrupting communication between neighbouring 
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cortical regions. In addition, longitudinal studies have shown that in patients with focal 

epilepsy syndromes such as TLE, long disease durations can lead to widespread age-

accelerated cortical thinning, thereby exacerbating global cognitive, memory, and processing 

speed impairments149,150,151.

Clinical research—A range of cognitive, behavioural and brain abnormalities are known 

to be present in both children152,153 and adults154,155 at the time of diagnosis of epilepsy, 

long before any potential impact of recurrent seizures, psychosocial consequences or 

antiseizure medications is evident. Furthermore, neurobehavioural anomalies have been 

reported to occur well before the first recognized seizure152,156. These neurobehavioural 

comorbidities at or before epilepsy onset are inconsistent with the classic paradigm, which 

assumes that neurobehavioural risk accrues over the disease course, and they highlight 

the need to explore other potential common aetiological pathways157, including genetic 

aetiologies, which are addressed below.

From lesions to networks

The fundamental view of the nature of epilepsy has evolved from the conceptualization 

of a discrete area, the epileptogenic zone158, to the suggestion that ‘focal epilepsy’ affects 

networks far beyond this zone. The latter assertion has been supported by evidence from 

invasive stereotactic EEG159–161 and from connectivity analysis using scalp EEG162,163, 

structural MRI164,165 and fMRI166,167. Even the concept of an epileptogenic zone might 

be flawed, as some patients have several nodes within a broader epileptic network that are 

capable of independent seizure generation168.

Neuropsychological research in the epilepsy field is also moving beyond the lesion model 

to focus more on disrupted networks37,38,169–172. Specifically advocated is a search for 

cognitive, behavioural and imaging phenotypes within and/or across epilepsy syndromes 

that are not restricted or constrained by the disease taxonomy54,169,170,173 — an endeavour 

that is entirely consistent with precision medicine. However, despite the shift in the 

conceptualization of epilepsy, along with considerable evidence that challenges the classic 

lesion model, this model is likely to persist until a satisfactory alternative paradigm can be 

found that assimilates both contradictory and contemporary findings174.

Moving towards a new model and taxonomy

Cognitive phenotypes—Recent research has demonstrated the utility 

of a phenotypic approach to the neurobehavioural comorbidities of 

epilepsy93,175,176,177,178,179–181,182–189,190 and (BOX 3, Supplementary Table 1). To date, 

17 taxonomic investigations have characterized phenotypes of objective or subjective 

cognition and, where available, their related neuroimaging correlates (Supplementary Table 

1).

The landscape of cognitive phenotypes.—The studies listed in Supplementary 

Table 1 investigated phenotypes relating to academic skills (word reading, spelling and 

arithmetic)175, objectively assessed cognition93,176,179–182,184,187,191 and parent-reported 

executive function189. In addition, six studies characterized neuroimaging correlates 
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of the identified cognitive phenotypes, using structural MRI93,177,179,180,183, diffusion 

MRI180,182,183,188, activation fMRI (language)178, resting-state fMRI93,183 and/or advanced 

network analytics (for example, graph theory) on structural MRI, diffusion MRI or 

resting-state fMRI data93,182,183,188,185. These studies focused predominantly on adults 

with TLE178,179,192. Characterization of cognitive phenotypes in syndrome groups other 

than TLE has been undertaken, albeit on a limited scale. Among children (aged 8–18 

years) with recent-onset focal or generalized epilepsies, three cognitive phenotypes were 

identified that cut across different epilepsy syndromes: average and comparable to controls; 

mild impairment across multiple cognitive domains; and impairment across all domains 

with severe attentional impairment179. Among adults with FLE, four cognitive phenotypes 

were identified: intact, generalized, single domain (language) impaired and multiple 

domain (language and executive function) impaired186. When children with drug-related 

epilepsy treated medically or surgically were followed up for 4–11 years, two prospective 

cognitive phenotype groups — average cognition (55% of sample) and impaired cognition 

(45%) — with different trajectories were identified regardless of treatment intervention 

(Supplementary Table 1)190.

These findings indicate that the classic lesion-based cognitive and behavioural profiles are 

imprecise and fail to reflect the substantial heterogeneity in clinical presentation. Further 

research in a range of epilepsy syndromes will be needed to further explore the possibility of 

a phenotype-based profiling approach that could inform a revised taxonomy.

Phenotype distributions across investigations.—Of the cognitive phenotypes 

reported among adults with TLE, three are particularly prevalent (FIG. 3): an ‘intact’ 

or minimally impaired subgroup, largely comparable to healthy controls; a generalized 

impaired subgroup with abnormal scores across all administered cognitive metrics; and 

a subgroup93 (or occasionally two subgroups181), exhibiting the expected pattern of 

cognitive anomalies for TLE, predominantly affecting memory, language and/or executive 

function (FIG. 3a)181. As FIG. 3b illustrates, the proportion of patients with TLE in the 

intact subgroup is surprisingly large, ranging from 27–54% across investigations (mean 

44%). This patient group is infrequently discussed in the epilepsy literature and was 

arguably unanticipated among individuals with medication-resistant epilepsy presenting as 

surgical candidates181,184. The proportion with generalized cognitive impairment, another 

unexpected phenotype for a focal epilepsy, ranged from 15–44% (mean 29%), and the 

remaining individuals exhibited more focal cognitive patterns, involving reduced executive 

function and/or speed, and memory and/or language impairments181,182. A number of 

clinical and demographic variables have been associated with these phenotypes, albeit with 

some variability in findings (Supplementary Table 1).

Neuroimaging correlates of cognitive phenotypes.—Relationships have been 

detected between cognitive phenotypes and both the degree and distribution of neuroimaging 

abnormality (Supplementary Table 1). Typically, no or minimal structural, diffusion and 

resting-state differences are evident between minimally impaired phenotypes and control 

groups, whereas marked differences in these imaging measures are observed between 

generalized impairment phenotypes and controls93,177,180,182. Overall, neuroimaging 
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differences are more prominent and consistent when network metrics, based on diffusion 

MRI, resting-state fMRI or network analyses of imaging data, are examined93,180,182,188.

Neuroimaging of cognitive phenotypes carries implications for traditional comorbidity 

research, in which a common approach is to administer a comprehensive cognitive battery to 

examine a single cognitive metric (for example, memory) in relation to clinical or imaging 

metrics (for example, connectivity), with little attention being paid to the impact of other 

co-occurring cognitive impairments. However, clear differences in white matter signatures 

can be appreciated when white matter network pathology is examined in patients with pure 

memory impaired versus mixed memory and language phenotypes (FIG. 4), highlighting 

the importance of distinguishing single-domain from multidomain impairments182. Brain 

network changes that give rise to multidomain impairments might not be additive and could 

be synergistic. Addressing how different patterns of network pathology lead to multidomain 

impairments is essential to understand the full cognitive burden experienced by any single 

patient.

Examination of global and local (temporal lobe) functional connectivity in TLE has 

demonstrated increased connectivity in the temporal lobe epileptogenic region that is not 

associated with the distribution of cognitive phenotypes185. Instead, global connectivity 

metrics — namely, clustering coefficient and rich club proportion — were predictive 

of the cognitive phenotype. These findings suggest that focal hyperconnectivity in the 

epileptogenic region contributes to the broader global network disorganization that is most 

closely linked to cognitive phenotypes.

Intracranial EEG provides a potential complementary technique to investigate cognitive 

phenotypes and cognitive processing193, in particular, the oscillations involved in mediating 

the large-scale neural networks194,195 that address cognitive adequacy in people with 

epilepsy. Memory deficits in TLE have been linked to pathological hippocampal oscillatory 

activity, with implications for alterations in large-scale neuronal synchronization196. 

Intermittent pathological high-frequency oscillations in non-lesional epilepsy have been 

linked to disrupted encoding of stimuli197. The combination of these observational 

approaches with parallel lines of research that use electrophysiological stimulation to 

identify pathological networks198,199 or map cognitive function200 provides potential 

avenues to better understand the underlying neurobiological differences that lead to distinct 

cognitive phenotypes. Further research is needed to explore the relationships between 

pathological electrophysiological activity, altered resting state metrics and disruptions to 

cognitive networks in epilepsy.

Approaches to cognitive phenotyping.—The cognitive phenotypes in TLE are 

relatively stable and reproducible, even when different methodological approaches are 

used for their assessment. Empirically driven methods, such as unsupervised cluster 

analysis, have been the most common approaches. However, diagnostic neuropsychological 

approaches (that is, actuarial methods), in which groups are determined on the basis of 

pattern of impairment (>1–2 SD below a normative sample) across cognitive domains, have 

also been used. A recent head-to-head comparison between cluster analysis and a diagnostic 

approach187 yielded a concordance rate of 82.6% with good agreement (κ = 0.716) and, 
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importantly, both approaches identified the same three broad phenotypes described above. 

This study demonstrates the validity of a diagnostic approach to characterize phenotypic 

patterns of impairment at the individual patient level in a clinical setting — a crucial 

requirement for a precision-based therapeutic approach.

Behavioural phenotypes—BOX 3 indicates the phenotypic approaches to behavioural, 

developmental and psychosocial complications of the epilepsies that support broad 

application of this approach.

Depressive symptoms.—In a 2016 study171, Rayner et al. performed cluster analysis 

of nine depressive symptoms (as recognized by the Diagnostic and Statistical Manual 

of Mental Disorders) in adult patients with focal epilepsies (n = 91) and controls (n 
= 77). This analysis identified three phenotypes and associated features: a ‘cognitive’ 

depression phenotype (17% of epilepsy participants) characterized by self-critical thoughts 

and dysphoria with associated memory deficit; a ‘somatic’ depression phenotype (7%), 

characterized by vegetative symptoms and anhedonia, with greater anxiety compared with 

the other phenotype and controls; and a non-depressed epilepsy phenotype (76%).

Developmental trajectories.—In a study published in 2012, Wilson et al.201 examined 

prospective developmental trajectories — operationally defined academic achievement, 

occupational achievement, peer social competence, relationship status and independence 

— in patients with childhood-onset TLE (n = 54). Three cluster trajectories were 

identified: normal development (52% of participants); altered and achieving some but not 

all developmental tasks (37%); and delayed and achieving few developmental tasks (11%). 

The normal group outperformed the altered and delayed groups across a range of cognitive 

measures, and additional analyses demonstrated that the phenotypes were independently 

related to chronicity of seizures, cognitive status, surgically remediable epilepsy and gender.

Child behavioural problems.—Assessment of children with new-onset epilepsies (n 
= 183) and normally developing controls (n = 107), using the Child Behavior Checklist, 

identified three behavioural phenotypes: a ‘normal’ group that was comparable to controls 

across all behaviour problem scales (67% of participants); a subset with abnormal scores 

across all scales (22%); and a specific non-externalizing behaviour disorder group (11%)192. 

The phenotypes correlated with diverse cognitive, familial, developmental and neuroimaging 

(cortical thickness) factors.

Adult behavioural problems.—In a study published in 2021, adults with TLE (n = 

96) and healthy controls (n = 82) were assessed with the Symptom Checklist 90-Revised 

(SCL-90-R) and unsupervised machine-learning techniques were used to identify latent TLE 

groups186. As a group, the patients with TLE patients exhibited significantly higher (more 

abnormal) scores across all nine SCL-90-R scales compared with controls. However, cluster 

analysis identified three latent groups: unimpaired with no scale elevations compared with 

controls (Cluster 1, 42% of the patients with TLE); mild-to-moderate symptomatology 

characterized by significant elevations across several SCL-90-R scales compared with 

controls (Cluster 2, 35%); and marked symptomatology with significant elevations across 

all scales compared with controls and the other TLE phenotype groups (Cluster 3, 23%). 
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Significant associations were observed between cluster membership and demographic 

(education), clinical epilepsy (perceived seizure severity and bitemporal lobe seizure onset), 

and neuropsychological status (intelligence, memory and executive function), but structural 

neuroimaging correlates were minimal. Concurrent validity of the behavioural phenotype 

grouping was demonstrated through association with psychiatric (current and lifetime-to-

date DSM IV Axis 1 disorders and current treatment) and quality-of-life variables.

Psychosocial profiles.—To study psychosocial profiles, Josephson et al.10 examined 

patient-reported outcome data from 462 individuals with epilepsy. Cluster analysis revealed 

three groups, who were deemed to have high (46% of participants), intermediate (33%) or 

low (21%) psychosocial health. The clusters were differentiated by the degree of seizure 

control, need for partially or completely subsidized income support, inability to drive, and 

history of a psychiatric disorder.

Health-related quality of life.—Sajobi et al. (2017)202 assessed and tracked health-

related quality of life (HRQoL) for 2 years in 373 children with newly diagnosed epilepsy. 

Multi-trajectory modelling characterized three longitudinal HRQoL trajectory groups: high 

HRQoL (44.7% of participants), intermediate HRQoL (37.0%) and low HRQoL (18.3%). 

Predictors of HRQoL trajectories included less severe epilepsy, absence of cognitive and 

behavioural problems, lower parental depression scores, better family functioning and fewer 

family demands. Additional longitudinal (2-year) investigations of young people (aged 2–

12 years at study entry) with new-onset epilepsies have similarly identified a spectrum of 

HRQoL trajectories203,204, ranging from individuals with stable, intact and even superior 

HRQoL to individuals at increased risk and concern for poor HRQoL.

Summary.—Although attempts to identify broadly defined behavioural phenotypes are 

progressing, they are complicated by the need for more diversity in the comorbidities 

addressed and the dependent measures utilized compared with the cognitive studies. 

Therefore, we do not yet have broad taxonomic agreement or the ability to identify the 

phenotypic status of individual patients. However, these investigations have been more 

inclusive than the cognitive studies with regard to representation of diverse focal and 

generalized syndromes among children and adults (Supplementary Table 1).

Broadening the scope of risk and resilience factors—An unfortunate byproduct 

of the classic paradigm has been the underappreciation of potentially relevant risk and 

resilience factors for cognitive and behavioural comorbidities in epilepsy. This situation 

is not unique to epilepsy: a bibliometric analysis of trends in the precision medicine 

literature revealed that of 5,552 articles published from 2012 to 2018, mostly in medical 

specialty journals (particularly oncology), only 1.6% included terms related to social and 

environmental determinants of health, health disparities or health equities in their abstract 

and/or title5. Most articles used definitions of precision medicine related to tailored, 

individualized or personalized treatment and genetics and/or biology, with less than one-

third including environment and lifestyle.

A precision approach requires an alternative framework for the cognitive and behavioural 

risk and resilience factors in epilepsy (FIG. 5) that more broadly addresses the aetiology of 
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common comorbidities and targets potential treatments and prevention efforts. Conventional 

risks, including the epilepsy itself and neuroimaging abnormalities, as well as ever-present 

concerns regarding medication effects205,206, will remain embedded in this framework. In 

addition, incorporation of other factors related to cognition and behaviour, such as genomic, 

medical, social and lifestyle factors, will offer a more comprehensive and contemporary 

approach.

Genomic risk.—Identification of genomic risk and resilience factors for neurobehavioural 

comorbidities in epilepsy is essential to a precision medicine approach. However, although 

genomic research related to the development of epilepsy and related neuropathologies 

has burgeoned in recent years207–211, research into the role of genomic factors in 

neurobehavioural comorbidities of epilepsy is still in its infancy212. Most neurobehavioural 

studies to date have been conducted in genetic epilepsy syndromes, such as tuberous 

sclerosis complex or Dravet syndrome212. Genomic contributions to comorbidities in non-

syndromic, idiopathic epilepsies are largely unexplored and might have their own genetic 

causes or shared genetic risk factors with epilepsy (Supplementary Figure 1). Environmental 

factors (the exposome) are also likely to have an important role and to interact with genomic 

factors to influence cognitive and behavioural phenotypes. The genetic liability model 

for common diseases posits that the additive effects of many genetic and environmental 

factors contribute to an individual’s liability to develop a disease or disorder, and this 

model is also likely to apply to common comorbidities including memory impairment and 

depression213,214.

An emerging literature examining cognitive, behavioural and imaging abnormalities in 

unaffected family members (in particular, siblings or parents) of patients with epilepsy has 

raised interest in the potential genetic contributions to the neurobehavioural comorbidities 

of epilepsy. These far-ranging findings include effects on cortical and subcortical structures, 

including hippocampal and white matter volumes in relatives of individuals with TLE 

syndromes215–219; cognition, imaging and cortical excitability in relatives of individuals 

with JME220–226; reading problems, difficulties with speech sound discrimination and 

cognitive dysfunction in relatives of individuals with Rolandic epilepsy227–229; and 

behavioural problems in relatives of children with epilepsy230,231.

Cognition and behaviour are affected to varying degrees in epilepsy, even among patients 

with the same type of epilepsy and pathological substrate (for example, mesial TLE with 

hippocampal sclerosis)176. Genomic factors are likely to account for some of this variability 

or to serve as key modifiers in epilepsy comorbidities, and might provide important 

insights to aid the future development of therapeutic approaches for these conditions. The 

studies to date (TABLE 1) have focused largely on genetic variants and have identified 

associations with memory impairment232–235, executive dysfunction236,237, working 

memory impairment236, slowed processing speed234, depression238 and anxiety238, among 

other comorbidities. The potential role of epigenomic, transcriptomic and proteomic changes 

in epilepsy comorbidities is now beginning to be explored in humans239–241, and we recently 

identified >1,000 transcripts that were differentially expressed between TLE patients with 

and without memory impairment242. This study revealed overrepresentation of genes 

in pathways pertaining to brain-related neurological dysfunction and neurodegenerative 
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diseases, such as apolipoprotein E (APOE), amyloid precursor protein (APP), microtubule-

associated protein tau (MAPT) and serine/threonine-protein kinase PINK1, mitochondrial 

(PINK1). Importantly, several microRNAs were also differentially expressed and were 

predicted to target a large subset of the identified transcripts, suggesting such upstream 

processes could serve as biomarkers and potential treatment targets for memory impairment 

in TLE242.

Although much work remains to be done, a great deal has already been learned about 

the potential genetic contributions to epilepsy comorbidities through research on epilepsy 

syndromes associated with single-gene mutations243. Furthermore, animal studies and 

human research in epilepsy and other CNS disorders have highlighted the utility of 

genomic strategies in elucidating the biological underpinnings of common comorbidities 

associated with these conditions. We believe that incorporation of such methods into 

neuropsychological research in epilepsy will be essential to understand the observed 

phenotypic variability and to develop a precision medicine approach to the neuropsychology 

of epilepsy.

Social and psychological risk.—Epilepsy in adults is known to be more prevalent in 

lower (disadvantaged) socioeconomic groups, and is independent of social drift244 and other 

established risk factors, such as head injury and stroke245. Population-based investigations 

have demonstrated that adults with epilepsy have an increased likelihood of living in 

households with the lowest annual incomes246. These individuals are also sevenfold more 

likely to report experiencing discrimination due to health problems and have greater odds of 

experiencing domestic violence and sexual abuse compared with the general population247.

Although disadvantage, food insecurity, reduced personal safety and other hardships, 

including stigma and discrimination, are well known and documented in adults and 

children with epilepsy248–250, their relationship to neurobehavioural comorbidities has 

been vastly understudied, with just a few reports demonstrating their relevance to 

behaviour251, cognition252, 253 and quality of life254. In the Epilepsy Connectome Project, 

variables reflective of disadvantage, such as lower parental education, increased parental 

unemployment and increased racial diversity, were associated with the cognitive phenotypes 

and their underlying biological alterations (for example, anomalies on resting-state fMRI), 

underscoring the utility of a more comprehensive approach93. These risk factors can 

also have clinical consequences. The use of epilepsy treatments such as surgery is 

disproportionately low among ethnic minorities in the USA — a phenomenon that has 

been attributed to a host of factors, including access to care, fear, education, mistrust in the 

health-care system and physician bias255. Furthermore, epilepsy mortality rates are higher 

among non-Hispanic Black patients than in their non-Hispanic white counterparts256. Lack 

of access to specialized epilepsy care leads to poorer seizure control, which could exacerbate 

related issues, including cognitive impairment, psychiatric and behavioural comorbidities, 

and poor quality of life.

Direct and easily accessible markers of neighbourhood adversity257 are available that can 

inform the social determinants of health258. In the USA, the Neighborhood Adversity Index, 

an indicator of socioeconomic status disadvantage within a given region, has demonstrated 
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applicability to brain disorders including Alzheimer disease259, in which disadvantage has 

been shown to be linked to imaging abnormalities (decreased hippocampal and cortical 

volumes)260 and underlying neuropathology261. This type of approach could also be 

informative for epilepsy.

Medical risk.—Given the prevalence and co-occurrence of somatic comorbidities in 

people with epilepsy262,263, interest in their relationships with cognitive and behavioural 

phenotypes is expected to grow. Direct characterization of comorbid disease and specific 

metabolic, vascular, inflammatory, immunological and other risks to cognition and 

behaviour in epilepsy is underway. The available evidence indicates that many medical risk 

factors, including obesity, diabetes and inflammatory markers, are overrepresented among 

individuals with epilepsy are and related to cognition264–267. Other important factors, such 

as atherosclerosis268, are widely documented in population-based epilepsy research, but 

have yet to be examined in relation to brain neuroimaging metrics, behaviour and cognition 

in people with epilepsy.

Resilience and reserve.—The identification of resilience factors — especially those 

that are modifiable — is crucial for epilepsy intervention and prevention efforts. These 

factors are of intense interest in other fields, such as ageing and preclinical and clinical 

neurodegenerative disorders269–271, and are of particular relevance in epilepsy in light 

of growing concern about brain and cognitive ageing processes in epilepsy150,272,273. 

Problematic lifestyle practices that have been documented in individuals with epilepsy 

include decreased physical fitness, activity and mental activities, smoking and social 

isolation246,274–276. Interventions targeted at improving health and lifestyle practices in 

patients with epilepsy have yet to be widely implemented in clinical practice. However, 

improvements in mood277, memory278 and executive function279 were reported in initial 

exercise intervention trials, and alterations in resting-state functional connectivity were 

linked to cognitive improvement278.

Resilience factors, which have been shown to be important in other areas of inquiry280, 

have not been extensively studied in epilepsy to date. However, consistent with the 

wider literature, protective effects of higher global ability level (intelligence)281,282, 

bilingualism283 and years of education56,284–286 on neurobehavioural status have been 

reported in people with epilepsy. These studies were all cross-sectional in nature, and a 

causal modelling approach will be needed to explore the roles of these factors in shaping 

cognitive and behavioural phenotypes. As noted above, certain genotypes have been linked 

to cognitive functioning in people with epilepsy (TABLE 1). However, genetic research in 

epilepsy comorbidities is in its infancy, and much work remains to be done to identify the 

factors that are most important for cognitive and behavioural resilience.

Self-efficacy beliefs lead to better adoption of the health habits and coping skills that 

are needed to manage chronic conditions such as epilepsy. In the context of epilepsy, 

self-management approaches have tended to focus on medication management rather 

than broader lifestyle modifications that are intended to improve overall health287,288. 

Self-management behaviours can be improved via interventions such as education, focused 

interventions and psychosocial therapy (for example, cognitive behavioural therapy289). 
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However, many epilepsy self-management studies have excluded patients with cognitive 

impairment289. Furthermore, low health literacy and comorbid mental illnesses such as 

depression reduce the effectiveness of self-management interventions. The phenotypic 

approach that we advocate could enable self-management training to be tailored to the 

patient’s level of cognitive functioning and health-care literacy while also addressing 

mood-related issues such as depression and anxiety. Importantly, this proposed approach 

might help clinicians to implement individualized health-enhancing lifestyle behaviours that 

address health-related risk factors such as hypertension, obesity and diabetes, which are 

overrepresented among people with epilepsy.

Applications and benefits of the proposed paradigm—By placing the focus on the 

individual patient, a proposed new paradigm (FIG. 5) has direct clinical utility. Identification 

of a patient’s phenotype, as determined by empirical or actuarial methods, places them 

in a clinically meaningful category. A broader consideration of potential risk factors for 

neurobehavioural comorbidities could inform improvements to routine patient assessment 

and history taking. Validation of factors that predict adverse phenotype membership would 

lead to a better understanding of modifiable and non-modifiable treatment targets and, 

importantly, their relative predictive power, which would indicate where the most clinical 

impact might result. More generally, application of this paradigm would accelerate a 

better understanding of the relative predictive power of classic epilepsy-related versus non-

epilepsy-related risk factors.

The relationship of phenotypes to longer-term cognitive and behavioural outcomes would 

yield valuable prognostic information to guide timely interventions in people with 

epilepsy. For example, factors that are likely to be linked to the generalized cognitive 

impairment phenotype include long-duration epilepsy (non-modifiable), elevated vascular 

risk (possibly modifiable), untreated depression and sleep apnoea (modifiable), and older 

age (non-modifiable). Understanding how this combination of risk factors manifests at the 

individual level in the phenotype of interest could help guide behavioural interventions and 

predict the risk of future decline or improvement (see ref.290 for a precision-based case 

example). However, a realistic view of the strengths and limitations of an approach of 

this type deserves careful consideration for future clinical and research efforts, as reviewed 

previously9.

Conclusions

In this Review, we have proposed a ‘next-generation’ precision approach to the 

neurobehavioural comorbidities of epilepsy, which offers to advance our understanding by 

identifying phenotypes that are applicable to individual patients, along with their correlates, 

course and, ultimately, their underlying genotypes. This revised paradigm embraces findings 

that are problematic for the classic model while retaining components of that model, 

including neuroimaging findings, which are consistent with the network view of epilepsy 

and now, as we have shown in this article, its comorbidities. This revised model integrates 

established aetiologies but expands them considerably with new directions for clinical 

research designed to improve patient care and quality of life, enhance biomarker discovery 

and inspire possible therapeutic strategies, with a focus on modifiable lifestyle factors. This 

Hermann et al. Page 15

Nat Rev Neurol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phenotypic approach has the potential to alter the perspective of epilepsy from a condition 

characterized as ‘debilitating’ to one reflecting its actual underlying heterogeneity, whereby 

substantial proportions of adults and children with epilepsy demonstrate intact cognition, 

behaviour and quality of life. This change of emphasis should help us to focus on those most 

in need, moving to a multidimensional approach to care that will be crucial for improving 

neurobehavioural outcomes and quality of life.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• The cognitive and behavioural complications of the epilepsies have 

traditionally been examined in relation to the core characteristics of the 

disorder, such as the epilepsy syndrome, its aetiology, the frequency and 

severity of seizures, and treatments.

• This ‘lesion model’ has been the predominant paradigm for over 100 

years; however, substantial evidence of patient heterogeneity from cognitive, 

behavioural, neuroimaging, neuropathological, network science and clinical 

studies is inconsistent with this model.

• A precision approach to epilepsy neurobehavioural comorbidities requires an 

understanding of this natural heterogeneity, which could be aided by a new 

taxonomy based on cognitive and behavioural phenotyping.

• This Review surveys the literature that has identified cognitive and 

behavioural phenotypes in children and adults with epilepsy and provides 

a synopsis of the evolving taxonomy.

• A new and expanded paradigm is proposed, which includes sophisticated 

neurobiological measures, genomics, comorbid medical disease, diversity and 

adversity, and resilience factors.
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Box 1 |

Neurobehavioural comorbidities of epilepsy

Cognition

Higher neuropsychological abilities assessed by objective tests involving intelligence, 

academic skills, language, visuoperceptual–spatial, memory, executive, attention–

working memory and sensorimotor functions.

Emotional–behavioural

Diverse aspects of behaviour, personality and psychiatric status assessed by standardized 

patient or proxy-completed questionnaires or structured psychiatric interviews, 

including evaluation of depression, anxiety, neurodevelopmental disorders (for example, 

autism spectrum disorder, attention-deficit/hyperactivity disorder and specific learning 

disabilities) and social cognition.

Social–adaptive

Performance in diverse areas of functional status (for example, social cognition) assessed 

by structured assessment audit of day-to-day abilities including employment, independent 

living, social network, marital status and quality of life.
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Box 2 |

Executive dysfunction and network changes in TLE

Executive dysfunction in temporal lobe epilepsy (TLE), as identified through 

neuropsychological assessment, has been related to abnormal findings in frontal, 

frontostriatal and midline parietal networks. The diverse sets of findings supporting this 

perspective are listed below.

EEG

• Increased rate of interictal epileptiform discharges to the frontal lobe86.

Metabolism

• 18F-FDG PET hypometabolism extending to the prefrontal lobe85.

Brain volume and diffusion

• Caudate atrophy and disrupted frontostriatal networks88,91.

• Atrophy of prefrontal cortex and thalamus87,90.

• Decreased frontotemporal and thalmofrontal fibre tract integrity93,291.

• Extratemporal white matter pathology (corpus callosum volume89.

• Abnormal restriction spectrum imaging of the inferior frontostriatal tract91.

• Abnormal uncinate fasciculus ipsilateral to side of seizure onset292.

Altered activation patterns

• Underactivation of the executive control network on task-activated fMRI94.

• Decreased functional MRI (fMRI) task-related deactivation of the default 

mode network95.

Altered resting-state connectivity

• Decreased functional connectivity between executive control and default 

mode networks96.

• Altered frontotemporal lobe and thalamofrontal connectivity on resting-state 

fMRI93,291.
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Box 3 |

Phenotypic investigations of neurobehavioral status in epilepsy

This box lists the range of cognitive and behavioral phenotype investigations that have 

been conducted in paediatric and adult epilepsy cohorts (see Supplementary Table 1 for 

details).

Cognitive phenotypes

• Academic achievement in temporal lobe epilepsy175.

• Neuropsychological and imaging status in temporal lobe 

epilepsy93,176,177,180,181,182,183,184,185,187,188.

• Neuropsychological status in frontal lobe epilepsy186.

• Patterns of activation on language task-based functional MRI in children with 

focal epilepsy178

• Neuropsychological status in children with diverse epilepsy syndromes179.

• Parent-rated executive function189.

Behavioural phenotypes

• Depressive symptoms171.

• Developmental trajectories201.

• Parent reports of child behavioural problems192.

• Psychopathology in adults with epilepsy293.

• Psychosocial health profiles10.

• Health-related quality of life202,203,204.
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Fig. 1 |. 
The classic paradigm of neurobehavioural comorbidities of epilepsy. The outer ring depicts 

five major factors (and associated exemplars) that have long been considered, alone or 

in combination, to exert direct and/or indirect influences on the causes and course of 

neurobehavioural comorbidities in epilepsy.
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Fig. 2 |. 
Subcortical, cortical and diffusion findings in ENIGMA-Epilepsy. a  Subcortical volume 

(left) and cortical thickness (right) abnormalities shared across all epilepsy syndromes in 

the ENIGMA-Epilepsy meta-analysis124. Coloured bar represents Cohen’s d effect size 

estimates for case–control differences in each subcortical or cortical region. Red and yellow 

shading depicts regions with greater volume loss or thinning in patients relative to controls, 

whereas blue shading represents regions with higher volume relative to controls. Patients 

with epilepsy had lower volumes of the bilateral thalami and hippocampi and right pallidum 
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relative to controls, and increased volume of the lateral ventricles. The patients also showed 

cortical thinning in the precentral and paracentral gyri bilaterally and in the left prefrontal, 

superior parietal and cuneus. b  White matter microstructural differences across 38 fibre 

tracts for the ‘all epilepsies’ cohort compared with controls125. All values represent Cohen’s 

d effect size estimates for differences in fractional anisotropy and mean diffusivity between 

each patient group and healthy controls. Positive effect sizes reflect diffusion values greater 

than controls and negative effect sizes represent values lower than controls. The y and z 

values represent the slice number for the coronal and axial planes, respectively. Across 

all epilepsies, the greatest effects on fractional anisotropy were observed in the body and 

genu of the corpus callosum, external capsule, cingulum and corona radiata. The greatest 

effects on mean diffusivity were observed in the external capsule, anterior corona radiata and 

superior longitudinal fasciculus. Part a reprinted with permission from ref.124. Part b adapted 

with permission from ref.125.
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Fig. 3 |. 
Cognitive phenotypes and their distribution. a | The Epilepsy Connectome Project identified 

three cognitive phenotypes in patients with temporal lobe epilepsy (TLE): intact or 

minimally impaired, comparable to healthy controls; generalized impairment, with abnormal 

scores across all administered cognitive metrics; and focal impairment, predominantly 

affecting memory, language and/or executive function93. The z-scores represent performance 

of the epilepsy groups compared with controls, with negative values indicating worse 

performance. b | Distribution of cognitive phenotypes across seven investigations in 

individuals with TLE93,176,180,181,182,184,187.
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Fig. 4 |. 
Diffusion and network findings across discrete cognitive phenotypes of TLE. a | Differences 

in superficial white matter (SWM) fractional anisotropy and mean diffusivity across 

cognitive phenotypes in individuals with temporal lobe epilepsy (TLE) relative to healthy 

controls. Blue and cyan represent lower values and red and yellow represent higher values 

than controls. b | Local efficiency differences between healthy controls and each cognitive 

phenotype within perisylvian regions (depicted in red), including the pars triangularis 

(pTRI)/pars opercularis (pOPC), superior temporal gyrus (STG) and supramarginal gyrus 

(SMG). Significant differences between patients with TLE and healthy controls are depicted 

in grey and blue. The line graphs demonstrate differences in local efficiency within 

the left and right STG between healthy controls and each cognitive phenotype across 

different network densities. Shaded areas represent the upper and lower boundaries of 

local efficiency for healthy controls. In both panels, patients with single-domain memory 

or language impairments demonstrate findings distinct from patients with multiple domain 

impairments. Patients with both language and memory impairment showed widespread 

SWM abnormalities, whereas patients with memory impairments alone showed SWM 

abnormalities predominantly in the bilateral temporal lobes and cingulum. Patients with 

language impairments alone showed distinct abnormalities in perisylvian network structure 

that were not apparent at the regional SWM level. Adapted with permission from ref.182.
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Fig. 5 |. 
A next-generation paradigm for neurobehavioural phenotypes of epilepsy. The outer 

ring depicts six major factors (and associated exemplars) that alone or in combination 

are proposed to exert direct and/or indirect influences on the causes and course of 

neurobehavioural phenotypes in epilepsy.
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Table 1 |

Genetic factors associated with neurobehavioural comorbidities in epilepsy

Comorbidity Gene (polymorphism) Cohort

Memory impairment APOE (rs7412, rs429358) Temporal lobe epilepsy232,233

BDNF (rs6265) Mesial temporal lobe epilepsy235

BDNF (rs1491850, rs2030324, rs11030094, 
rs12273363)

Newly diagnosed epilepsy234

REST (rs1105434, rs2227902) Newly diagnosed epilepsy234

Executive dysfunction BDNF (rs6265) Temporal lobe epilepsy234

COMT (rs4680) Temporal lobe epilepsy and paediatric epilepsy 
(mixed types)236

MTHFR (rs1801133) Paediatric epilepsy (mixed types)236

Impaired working memory MTHFR (rs1801133) Paediatric epilepsy (mixed types)236

COMT (rs4680) Paediatric epilepsy (mixed types)236

Reduced processing speed REST (rs3796529) Newly diagnosed epilepsy234

Depression BDNF (rs6265) Refractory epilepsy238

Anxiety COMT (rs4680) Refractory epilepsy238

APOE, apolipoprotein E; BDNF, brain-derived neurotrophic factor; COMT, catechol-O-methyltransferase; MTHFR, methylenetetrahydrofolate 
reductase; REST, RE1-silencing transcription factor.
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