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Abstract 

Objective:  Miscarriages affect 10% of women aged 25–29, and 53% of women over 45. The primary cause of miscar-
riage is aneuploidy that originated in eggs. The Aurora kinase family has three members that regulate chromosome 
segregation. Therefore, distinguishing the roles of these isoforms is important to understand aneuploidy etiology. In 
meiosis, Aurora kinase A (AURKA) localizes to spindle poles, where it binds TPX2. Aurora kinase C (AURKC) localizes 
on chromosomes, where it replaces AURKB as the primary AURK in the chromosomal passenger complex (CPC) via 
INCENP binding. Although AURKA compensates for CPC function in oocytes lacking AURKB/C, it is unknown whether 
AURKA binds INCENP in wild type mouse oocytes. ZINC08918027 (ZC) is an inhibitor that prevents the interaction 
between AURKB and INCENP in mitotic cells. We hypothesized that ZC would block CPC function of any AURK isoform.

Results:  ZC treatment caused defects in meiotic progression and spindle building. By Western blotting and immu-
nofluorescence, we observed that activated AURKA and AURKC levels in ZC-treated oocytes decreased compared to 
controls. These results suggest there is a population of AURKA-CPC in mouse oocytes. These data together suggest 
that INCENP-dependent AURKA and AURKC activities are needed for spindle bipolarity and meiotic progression.
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Introduction
The conserved serine/threonine protein kinases in the 
Aurora kinase (AURK) family play critical roles in regu-
lating chromosome segregation in many cell types [1, 2]. 
Unlike non-mammalian eukaryotes which encode one 
or two Aurk homologs, the mammalian genome encodes 
three [3, 4]. AURKA and AURKB isoforms are expressed 
in both mitotic and meiotic cells, whereas the AURKC 
isoform is expressed mainly in meiotic cells. In mouse 
oocytes, AURKA localizes to spindle poles and micro-
tubules by binding its activator, TPX2 [5, 6] where it is 
important for normal spindle formation [7]. AURKC is 

the catalytic subunit of the meiotic Chromosomal Pas-
senger Complex (CPC), where it binds the scaffolding 
unit INCENP (Inner Centromere Protein) and localizes 
to chromatin. AURKC is responsible for most functions 
that AURKB-CPC has in mitosis [8, 9], including regu-
lating chromosome alignment and correcting errone-
ous kinetochore-microtubule attachments [10–12]. As 
a result, AURKB is diffuse in the oocyte cytoplasm and 
has still to be defined mechanisms in protecting egg qual-
ity with age [13, 14]. Therefore, subcellular localization 
and function of AURKA and AURKC in mouse oocytes 
is dictated by their binding to different activators as in 
mitotic cells.

Analyses of oocyte-specific mouse knockout strains 
reveals complex genetic interactions amongst the 
kinases that appear to be unique to the female germline. 
For example, AURKC negatively regulates AURKA by 
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competing for INCENP binding thereby promoting a 
spindle length necessary for successful asymmetric cell 
division [15]. In oocytes lacking AURKC, there is an 
INCENP-associated population of AURKA that compen-
sates, and it is detectable by microscopy. In HeLa cells, 
AURKA co-immunoprecipitates with INCENP although 
it cannot be detected on chromosomes by immunocyto-
chemistry [16]. These findings prompted us to consider 
whether there was a subpopulation of INCENP-bound 
AURKA in wild-type (WT) mouse oocytes that is unde-
tectable by available methods of protein visualization.

To more accurately characterize AURK complexes, 
a tool that disrupts binding partner interactions rather 
than catalytic activity is necessary. The activator bind-
ing site inhibitor, ZINC08918027 (ZC), blocks the 
AURK::INCENP interaction by affinity for the INCENP 
binding site on the kinase in mitotic cells [17]. Here we 
examine the utility of ZC in disrupting CPC function in 
mouse oocytes.

Main text
Materials and methods
Mice
Female CF-1 mice (Envigo; Figs. 1, 3A, B) or CD-1 mice 
(Charles River Laboratories; Fig. 2 and Additional file 2: 
Video S1) between 6 and 8 weeks old were used for most 
experiments. Animals were euthanized via cervical dis-
location without anesthesia to prevent stress hormone 
release. The generation and genotyping of Aurkb con-
ditional knockout (cKO)/Aurkc knockout (KO) mice 
(Fig.  3C) were described previously [15]. Animals were 
housed in 12–12 h light–dark cycle, with constant tem-
perature and with food and water provided ad libitum.

Oocyte collection and maturation
Female mice were injected intraperitoneally with 5 I.U. 
of pregnant mare’s serum gonadotropin (Lee Biosolu-
tions, # 493-10). Prophase I-arrested oocytes were col-
lected from both ovaries 48  h post-injection; oocyte 
numbers depended upon the experiment (indicated in 
legends) whereas live imaging experiments used at least 
20 oocytes/treatment/replicate and western blotting 
used 100 oocytes/treatment per replicate. Oocytes from 
multiple mice were mixed together prior to splitting 
into experimental and control groups to reduce animal-
to-animal variation. 2.5  μM Milrinone (Sigma-Aldrich 
#M4659) was added to bicarbonate free minimal essen-
tial medium (MEM) (25 mM Hepes, pH 7.3, and 3 mg/
mL polyvinylpyrrolidone) to prevent the oocytes from 
resuming meiosis spontaneously during collection. 
Oocytes were cultured in Chatot, Ziomek, and Bavis-
ter medium without milrinone at 37  °C in 5% CO2 [18]. 
For Metaphase I experiments, oocytes were cultured for 

7.5  h. For Metaphase II experiments, oocytes were cul-
tured for 16  h. Organ culture dishes (Becton Dickinson 
#353037) were used for in  vitro maturation of drug-
treated oocytes. At the end of the maturation period, the 
samples were fixed for immunostaining or frozen on dry 
ice for SDS-PAGE. All drug concentrations were pre-
pared at a dilution factor of 1:2000.

For live-cell confocal imaging, prophase I-arrested 
oocytes were microinjected in M2 medium (Sigma-
Aldrich) and cultured in MEM medium (Sigma-Aldrich) 
supplemented with 1.14  mM sodium pyruvate (Sigma-
Aldrich), 4  mg/ml bovine serum albumin (Sigma-
Aldrich), 75 U/ml penicillin (Sigma-Aldrich) and 60 μg/
ml streptomycin (Sigma-Aldrich), at 37  °C in a 5% CO2. 
Oocytes were stained with 100  nM SiR-tubulin (Spi-
rochrome) for microtubule visualization. After remov-
ing the cumulus cells, oocytes were microinjected in 
M2 medium with ~ 10 pl of 50 ng/μl H2b-mCherry, and 
125  ng/μl Egfp-Cdk5rap2. Microinjected oocytes were 
cultured for 3  h in MEM medium supplemented with 
milrinone to allow protein expression prior to experi-
mental procedures.

See video protocol [19] for detailed protocol methods 
for collection, injections and immunocytochemistry.

Plasmids
To generate cRNAs, plasmids were linearized and in vitro 
transcribed using a mMessage mMachine T3 (Ambion 
#AM1348) and T7 kits (Ambion #AM1344), according 
to manufacturer’s protocol. The synthesized cRNAs were 
then purified using an RNAeasy kit (Qiagen #74104) and 
stored at − 80 °C. H2B-mCherry and mEGFP-Cdk5rap2 
cRNA constructs were described previously [20].

Western blotting
Oocytes were cleaned of cumulus cells with repeti-
tive pipetting. Metaphase I oocytes (100/treat-
ment) were mixed with sample buffer (1% SDS, 1% 
β-mercaptoethanol, 20% glycerol, 50  mM Tris–HCl 
(pH 6.8)) and phosphatase inhibitors sodium fluoride 
(25  mM) and sodium orthovanadate (1  mM) and dena-
tured at 95 °C for 5 min. Western blotting for pAURKA/
B/C (1:500; Cell Signaling Technologies #2914) was 
conducted as detailed previously [7, 21]. The rabbit 
Tubulin antibody (Cell Signaling Technology, #11H10) 
was used as a loading control.

Immunocytochemistry
Oocytes were fixed in phosphate-buffered saline contain-
ing 2% paraformaldehyde (PFA; Sigma-Aldrich #P6148) 
for 20 min. Permeabilization and staining was conducted 
as described previously [19]. After final washes, the cells 
were mounted in VectaShield (Vector Laboratories, 
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#H-1000, Burlingame, USA) with 4′, 6-Diamidino-2-Phe-
nylindole, Dihydrochloride (DAPI; Life Technologies 
#D1306; 1:170).

Antibodies
For immunofluorescence experiments, the primary 
antibodies were as follows: mouse anti α-tubulin Alexa-
fluor 488 conjugated (1:100, Life Technologies #322588), 
rabbit anti-pINCENP (1:1000, gift from M. Lampson, 
University of Pennsylvania; [22]) and anti-centromeric 
antigen (ACA) (1:30, Antibodies Incorporated #15-
234). The following secondary antibodies were used for 

immunofluorescence at a concentration of 1:200: anti-
rabbit-Alexa568 (Life Technologies #A11011) and goat 
anti-human-Alexa 568 (Life Technologies #A21090).

Microscopy
A Leica TCS SP8 confocal microscope, using a 
40 × objective, was used to capture the images. Optical 
z-slices were obtained separately for each image using 
a 1.0  μm step and a zoom setting of 3.5. The power 
of the laser was left unchanged for each cell if pixel 
intensities were to be compared. Samples were coded 

Fig. 1  The ZINC08918027 (ZC) binding region is conserved, and the inhibitor perturbs meiotic progression in mouse oocytes. A Protein alignment 
of Xenopus AURKB and mouse AURKA/B/C. Yellow and green highlighted text indicate conserved residues and conservative changes in the ZC 
binding region respectively. The blue highlighted residues determine whether the AURK has affinity for INCENP (asparagine, N) or TPX2 (glycine, 
G). B Prophase I-arrested mouse oocytes were treated with the indicated doses of ZC and matured in vitro for 16 h, followed by detection of 
spindle (α-tubulin, green), kinetochores (anti-centromere antibody (ACA), red), and DNA (DAPI, blue). Met II progression was marked by polar body 
extrusion. The panels show representative images of metaphase I (Met I) arrest (PB −) and progression to metaphase II (Met II) (PB +). White circle 
outlines the oocyte and extruded polar bodies. Scale bar = 10 μm. C Percent of oocytes in each treatment that matured to the Met II stage. Error 
bars show standard error of the mean. D Quantification of Met II spindle length in each treatment. Data from three independent experiments with 
an average number of 25 Prophase I oocytes used/treatment/replicate (***p ≤ 0.001, One-way ANOVA)
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so that images and analysis of treatment groups were 
obtained and conducted in a blinded fashion.

Live cell imaging
Time-lapse image acquisition was performed using 
a Leica TCS SP5 microscope with an HCX PL Apo 
Lambda Blue 40 × 1.25 NA oil objective. Oocytes were 
scanned using sequential scan in between line mode at 
a 12-bit image depth with 7.75 × zoom on the chromo-
some area. 3D scanning was performed using 2.5-µm 
optical sections through spindle volume. Image analy-
sis was performed using FiJi software  [23].

Statistical analysis
To evaluate differences between and among groups, a 
one-way analysis of variance (ANOVA) was used on 
Prism software (GraphPad). For all experiments, signifi-
cance was marked by a p-value less than or equal to 0.05. 
Experiments were performed in triplicate and oocyte 
number per replicate and/or total number is indicated in 
the figure legends.

ZINC08918027 binding site sequence alignment
The sequences of Xenopus laevis AURKB (accession 
number: AAM76715), Mus musculus AURKB (accession 
number: AAH03261), Mus musculus AURKC (accession 

Fig. 2  Dynamics of spindle formation in ZINC08918027 (ZC)-treated oocytes. Still images from movies were taken at 10-min intervals. Time 0:30 
represents the start of imaging from Prophase I arrest release. Time when each image was taken is noted in white beneath each image. DNA 
(H2B-mCHERRY; magenta), microtubule organizing centers (MTOCs, CDK5RAP2-EGFP; white), and microtubules (fluorogenic dye SiR-tubulin; green). 
Data from 3 replicates with 10 oocytes/treatment/replicate
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number: AAH64780), and Mus musculus AURKA 
(accession number: AAH14711) were aligned using the 
MacVector with Assembler software (MacVector, Inc.).

Results and discussion
Because all three AURK isoforms can bind INCENP [16, 
24, 25], we hypothesized that ZC could block the inter-
action between any AURK and INCENP in a cell type 
that expresses different AURK-containing CPC forms. 
ZC was designed to target the INCENP binding site on 
Xenopus laevis AURKB [17]. Therefore, to explore the 
similarities of this region between organisms, we aligned 
the ZC-binding region of Xenopus AURKB with the cor-
responding region in each mouse AURK. The alignment 
revealed that the ZC-binding region was conserved in all 
three mouse isoforms (Fig. 1A). Residues in this binding 
region were either identical or were a biochemically con-
servative change. These analyses support our hypothesis 

that ZC can prevent binding between INCENP and any 
AURK isoform.

We then sought to determine the optimal concen-
tration of ZC to use in mouse oocytes. The CPC is 
important for cytokinesis [26]. Therefore, we aimed 
to determine the lowest concentration of ZC at which 
polar body extrusion (PBE), the asymmetric cytokine-
sis in oocytes, was abolished indicating CPC disrup-
tion. We performed a dose–response curve and matured 
oocytes in  vitro to Metaphase II (Met II) (Fig.  1B). The 
results showed that PBE decreased in a dose-dependent 
manner, with complete PBE failure beginning in 1.5 μM 
ZC (Fig.  1C). In 1  μM ZC, PBE was reduced by > 50% 
(Fig. 1C). The spindles of ZC-treated Met II eggs that did 
extrude polar bodies appeared shorter in length than the 
spindles of dimethylsulfoxide (DMSO)-treated oocytes 
(Fig. 1B, D). This finding is consistent with inhibition of 
AURKC-CPC and when AURKA is deleted [7, 9].

Fig. 3  ZINC08918027 (ZC) can inhibit both AURKA and AURKC. Prophase I-arrested mouse oocytes were treated with the indicated doses of ZC 
and matured in vitro to Metaphase I before freezing (A, B) or fixation (C). A Oocyte lysates (100 oocytes/per lane) were separated via SDS-PAGE 
and transferred to a membrane for western blotting to detect the activated forms of AURKA (pAURKA) and AURKC (pAURKC). Tubulin was used as 
a loading control. B Quantification of pAURKA and pAURKC normalized to Tubulin. Error bars show standard error of the mean. Data from three 
independent experiments (***p ≤ 0.001, (Unpaired Students t-Test, two-tailed)). C Wild-type (WT) or oocytes lacking both AURKB and AURKC 
were probed with anti-phosphorylated INCENP (pINCENP) antibodies (gray), α-tubulin (green) and mounted in DAPI (blue). Scale bar = 10 μm. D 
Quantification of integrated density of pINCENP from (C). WT DMSO n = 17, WT Zn 2 μM = 25, B cKO/C KO DMSO n = 27, B cKO/C KO Zn 2 μM = 33
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Because the spindle lengths of ZC-treated oocytes were 
shorter (Fig.  1D), we hypothesized that ZC adversely 
impacts spindle formation. To test this hypothesis, we 
conducted live imaging of oocyte maturation in the pres-
ence of ZC and chose a dose (2.5 μM) where all oocytes 
failed to extrude a polar body (Fig.  1C). In control 
oocytes, the microtubule organizing centers (MTOCs) 
fragmented after nuclear envelope breakdown (NEBD), 
then clustered into two spindle poles before the chro-
mosomes aligned at the metaphase plate, consistent 
with prior studies [27]. On the contrary, we observed 
that 100% of the oocytes treated with ZC never formed 
a bipolar spindle. We observed a disappearance of micro-
tubule signal, and MTOCs gradually approached each 
other and moved towards the center of the oocyte. Fur-
thermore, chromosomes did not align at the metaphase 
plate and instead condensed into a “ring-like” struc-
ture surrounding the cluster of MTOCs (Fig.  2; Addi-
tional file  2: Video S1). Therefore, we concluded that 
ZC disturbed spindle building in mouse oocytes. Taken 
together, these data demonstrate that ZC disrupts the 
formation of a bipolar spindle in mouse oocytes, which 
contributes to the reduction in PBE rates observed with 
ZC treatment.

ZC was designed with the intention to create an 
AURKB-specific inhibitor by blocking INCENP binding. 
However, because of the high degree of sequence con-
servation in this AURK domain (Fig.  1A) and because 
AURKA can bind INCENP in oocytes, we hypothesized 
that in oocytes ZC is not AURKC-specific and inhib-
its AURKA. To test this hypothesis, we first assessed 
AURKA/C activation. We treated WT oocytes with 2 μM 
ZC and separated proteins from cell lysates by SDS-PAGE 
to resolve the activated forms of AURKA and AURKC 
from one another. In control-treated oocytes, activated 
AURKA (pAURKA) is more abundant than activated 
AURKC (pAURKC) (Fig.  3A, Additional file  1: Fig. S1). 
Upon ZC treatment, pAURKC declines ~ 80% (Fig. 3A, B), 
suggesting that both INCENP and non INCENP-bound 
populations of AURKC exist in oocytes. Importantly, we 
also saw a decline in pAURKA by ~ 50% supporting the 
hypothesis that some AURKA is INCENP-bound in WT 
mouse oocytes. To further support this hypothesis, we 
used oocytes from mice lacking both Aurkb and Aurkc. 
We previously showed that in these double knockout 
oocytes, AURKA localizes to chromosomes, phospho-
rylates INCENP, and compensates for Aurkb/c loss [15]. 
These oocytes provide a simplified genetic background 
in which to visualize the impact of ZC on AURKA-CPC 
activity. To visualize AURKA-CPC activity, we probed 
oocytes with a phospho-specific INCENP antibody that 
detects the Aurora kinase specific phosphorylation sites 
[22]. WT and double knockout oocytes treated with 

DMSO contained similar levels phosphorylated INCENP 
when we examined chromosomes at Met I (Fig. 3C, D). 
When WT oocytes were treated with 2  μM ZC, pIN-
CENP immunoreactivity was not detected. Similarly, 
pINCENP was absent when double Aurkb/c knockout 
oocytes with were treated with 2  μM ZC (Fig.  3C, D). 
Taken together, these data indicate that ZC can prevent 
both AURKA and AURKC from binding INCENP and 
suggest that WT oocytes possess AURKA-CPC that is 
not visibly detectable, like some mitotic cell lines.

Limitations
Because oocytes are limiting in number, our studies are 
limited to assessing change in activity by immunofluo-
rescence and western blotting. Therefore, we cannot iso-
late AURKA-INCENP and AURKA-TPX2 from oocytes 
to conduct biochemical analyses. Mouse oocytes also 
express AURKB, which is much less abundant and more 
challenging to detect. In our assays, we have not deter-
mined the impact ZC has on AURKB and this impact 
remains an open question. We also do not know if these 
results translate to human oocytes.
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