Skip to main content
. 2022 Mar 7;13:11. doi: 10.1186/s13229-022-00491-9

Table 4.

The performance of the ADOS diagnostic cut-off (= ADOS), performance of the RF models on the test set (= test) and the previously unseen validation data set (= val) for nonverbal children and young adolescents as well as older adolescents and adults

Module No. of features AUC ADOS Sens. ADOS Spec. ADOS AUC test ACC test Sens. test Spec. test J p McNe AUC val ACC val Sens. val Spec. val
Children and young adolescents Female
ADOS algorithm 0.83 0.81 0.84
All 28 features 0.91 0.94 1 0.88 0.40 0.86 0.72 0.63 0.81
5 features (optimal model) 0.92 0.93 0.97 0.91 0.43 .60 0.83 0.84 0.81 0.87
Male
ADOS algorithm 0.87 0.88 0.81
All 28 features 0.93 0.89 0.93 0.86 0.44 0.79 0.86 0.85 0.88
7 features (optimal model) 0.92 0.88 0.91 0.86 0.40 .14 0.81 0.85 0.85 0.85
Older adolescents and adults Female
ADOS algorithm 0.89 0.82 0.88
All 31 features 0.83 0.88 0.91 0.82 0.46 0.92 0.83 0.93 0.72
5 features (optimal model) 0.88 0.88 0.92 0.85 0.42 .18 0.86 0.78 0.84 0.72
Male
ADOS algorithm 0.85 0.85 0.72
all 31 features 0.82 0.82 0.83 0.81 0.55 0.87 0.79 0.80 0.77
8 features (optimal model) 0.82 0.80 0.84 0.76 0.48 .43 0.82 0.76 0.81 0.71

AUC area under the curve, ACC accuracy, Sens. sensitivity; Spec. specificity, J Youden’s index, McN McNemar level of significance—each model tested against the full-feature sets of available features