Table 1.
Ref.
|
n
|
Image type
|
No. of radiomic features
|
Best model
|
Performance training set
|
Hanania et al[19], United States, 2016 | 53 | CECT | 360 | 10 radiomic features | AUC: 0.82 |
SP: 85%, SP: 68% | |||||
Permuth et al[20], United States, 2016 | 38 | CECT | 112 | 14 radiomic features +blood 5 mi-RNAs | AUC: 0.92 |
SN: 83%, SP: 89% | |||||
Attiyeh et al[21], United States, 2019 | 103 | CECT | 255 | Radiomic + clinical features | AUC: 0.79 |
SN: 71%, SP: 82% | |||||
Williams et al[22], United States, 2020 | 33 | CECT | 12 | Radiomic features + cyst fluid protein markers | AUC: 0.88 |
SN: 71%, SP: 92% | |||||
Hoffman et al[23], United States, 2017 | 18 | MRI w/ DWI | N/A | Entropy | AUC: 0.86 |
SN: 100%; SP: 70% |
HGD: High-grade dysplasia; LGD: Low-grade dysplasia; CECT: Contrast-enhanced computed tomography; MRI: Magnetic resonance imaging; mi-RNA: micro-RNA; DWI: Diffusion weighted imaging; AUC: Area under curve; SN: Sensitivity; SP: Specificity; NA: Not application.