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Abstract
BACKGROUND 
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by 
persistent systemic inflammation and immune activation, even in patients 
receiving effective antiretroviral therapy (ART). Converging data from many 
cross-sectional studies suggest that gut microbiota (GM) changes can occur 
throughout including human immunodeficiency virus (HIV) infection, treated by 
ART; however, the results are contrasting. For the first time, we compared the 
fecal microbial composition, serum and fecal microbial metabolites, and serum 
cytokine profile of treatment-naïve patients before starting ART and after 
reaching virological suppression, after 24 wk of ART therapy. In addition, we 
compared the microbiota composition, microbial metabolites, and cytokine profile 
of patients with CD4/CD8 ratio < 1 (immunological non-responders [INRs]) and 
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CD4/CD8 > 1 (immunological responders [IRs]), after 24 wk of ART therapy.

AIM 
To compare for the first time the fecal microbial composition, serum and fecal 
microbial metabolites, and serum cytokine profile of treatment-naïve patients 
before starting ART and after reaching virological suppression (HIV RNA < 50 
copies/mL) after 24 wk of ART.

METHODS 
We enrolled 12 treatment-naïve HIV-infected patients receiving ART (mainly 
based on integrase inhibitors). Fecal microbiota composition was assessed 
through next generation sequencing. In addition, a comprehensive analysis of a 
blood broad-spectrum cytokine panel was performed through a multiplex 
approach. At the same time, serum free fatty acid (FFA) and fecal short chain fatty 
acid levels were obtained through gas chromatography-mass spectrometry.

RESULTS 
We first compared microbiota signatures, FFA levels, and cytokine profile before 
starting ART and after reaching virological suppression. Modest alterations were 
observed in microbiota composition, in particular in the viral suppression 
condition, we detected an increase of Ruminococcus and Succinivibrio and a 
decrease of Intestinibacter. Moreover, in the same condition, we also observed 
augmented levels of serum propionic and butyric acids. Contemporarily, a 
reduction of serum IP-10 and an increase of IL-8 levels were detected in the viral 
suppression condition. In addition, the same components were compared 
between IRs and INRs. Concerning the microflora population, we detected a 
reduction of Faecalibacterium and an increase of Alistipes in INRs. Simultaneously, 
fecal isobutyric, isovaleric, and 2-methylbutyric acids were also increased in INRs.

CONCLUSION 
Our results provided an additional perspective about the impact of HIV infection, 
ART, and immune recovery on the “microbiome-immunity axis” at the 
metabolism level. These factors can act as indicators of the active processes 
occurring in the gastrointestinal tract. Individuals with HIV-1 infection, before 
ART and after reaching virological suppression with 24 wk of ART, displayed a 
microbiota with unchanged overall bacterial diversity; moreover, their systemic 
inflammatory status seems not to be completely restored. In addition, we 
confirmed the role of the GM metabolites in immune reconstitution.

Key Words: HIV; Antiretroviral therapy; Microbiome-immunity axis; Microbiota; 
Cytokines; Short chain fatty acid; Inflammation; Immunological responders; Viremia

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Even in patients receiving effective antiretroviral therapy (ART), human 
immunodeficiency virus type 1 infection is characterized by persistent systemic inflam-
mation and immune activation. Changes in the gut microbiota can occur with including 
human immunodeficiency virus infection and treatment with ART; however, the data 
are still conflicting. For these reasons, we compared the fecal microbial composition 
and serum cytokine profile of treatment-naïve patients before starting ART and after 
virological suppression. Finally, we evaluated the microbiota composition, microbial 
metabolites, and cytokine profile of patients with CD4/CD8 ratio < 1 and CD4/CD8 > 
1 (immunological responders).

Citation: Russo E, Nannini G, Sterrantino G, Kiros ST, Di Pilato V, Coppi M, Baldi S, 
Niccolai E, Ricci F, Ramazzotti M, Pallecchi M, Lagi F, Rossolini GM, Bartoloni A, 
Bartolucci G, Amedei A. Effects of viremia and CD4 recovery on gut “microbiome-
immunity” axis in treatment-naïve HIV-1-infected patients undergoing antiretroviral 
therapy. World J Gastroenterol 2022; 28(6): 635-652
URL: https://www.wjgnet.com/1007-9327/full/v28/i6/635.htm

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v28/i6/635.htm


Russo E et al. Gut “microbiome-immunity” axis in HIV-1 infected patients

WJG https://www.wjgnet.com 637 February 14, 2022 Volume 28 Issue 6

First decision: June 30, 2021 
Revised: July 30, 2021 
Accepted: January 13, 2022 
Article in press: January 13, 2022 
Published online: February 14, 2022

P-Reviewer: Hazafa A 
S-Editor: Ma YJ 
L-Editor: Wang TQ 
P-Editor: Yu HG

DOI: https://dx.doi.org/10.3748/wjg.v28.i6.635

INTRODUCTION
The mutual interaction between the human microbiota and the immune system 
defines the so-called “microbiome-immune axis”. This axis has also been associated 
with several diseases, including human immunodeficiency virus (HIV) infection[1]. 
Indeed, a key place for HIV replication is the gastrointestinal tract. HIV replication in 
the gastrointestinal tract results in a severe depletion of CD4+ T cells that leads to 
decreased function of the epithelial barrier, allowing microbes and microbial products 
to be translocated, which contributes to the chronic inflammatory response[2]. HIV 
replication can also result in a microbial dysbiosis condition[3-5], which has been 
correlated with increases in markers of disease progression, immune activation, and 
microbial translocation[3,5-7]. Notably, HIV-infected people harbour a distinct gut 
microbiota (GM)[8,9] with a Prevotella-rich community composition, typically observed 
in individuals from agrarian cultures or with carbohydrate-rich, protein- and fat-poor 
diets[10]. In addition, the significant subversion of the Bacteroidetes and Proteobacteria 
phyla, with an imbalanced Prevotella/Bacteroides species ratio and an abundance in 
Enterobacteriaceae, is one of the most persistent changes documented in untreated HIV 
infection[11-13]. Moreover, the increased number of gut-resident bacteria capable of 
directly producing inflammation can be a probable mechanistic link between HIV-
associated dysbiosis and high systemic immune activation[14]. However, converging 
data from cross-sectional studies suggest that the GM composition and its related 
immune response can change over the progression of HIV infection. In particular, 
correlating the composition of the gastrointestinal tract microbiome to immune 
activation, circulating bacterial products and clinical parameters, a decrease of 
commensal species, and a gain of pathogenic taxa was observed in HIV+ subjects 
compared to controls[15]. Additionally, analysing the functional gene content of the 
GM in HIV+ patients and the metabolic pathways of the bacterial community 
associated with immune dysfunction, the metagenome sequencing revealed an altered 
functional profile with significant interactions between the bacterial community, their 
altered metabolic pathways, and systemic markers of immune dysfunction[16]. 
Furthermore, analysing the associations between the innate lymphoid cell (ILC) 
cytokines and measures of virologic, immunologic, and microbiome indices, it was 
observed that inflammatory ILCs contribute to gut mucosal inflammation and 
epithelial barrier breakdown, important features of HIV-1 mucosal pathogenesis[17]. 
Despite growing evidence that the GM has a role in HIV pathogenesis[11,18-20], the 
results were contrasting, with some studies suggesting an influence and others no HIV 
influence on microbial diversity[1,21] and composition[22,23]. However, many studies 
on the GM in HIV-infected patients are often carried out with a lack of adjustment for 
confounding factors, such as diet and use of drugs[24,25].

Currently, antiretroviral therapy (ART) has increased the life expectancy of HIV-
infected patients, approximating it to that of the general population[26]. Interestingly, 
chronic inflammation and GM alterations persist in patients virologically suppressed 
by ART[27]. These data implicate that re-shaping the microbiota may be an adjuvant 
therapy in patients commencing successful ART[28]. On the other hand, suppressive 
ART appears to have a limited effect on the restoration of the GM[13,25,29,30]. 
Although the gut microbial composition of ART-treated people differs from that of 
untreated people, the former also have a different microbial community structure 
compared to the HIV-uninfected population[31,32]. These findings raise the possibility 
that persistent gut dysbiosis may play a role in the development of residual clinical 
illness after ART.

Currently, the CD4/CD8 ratio is considered one of the best-used markers of 
immune reconstitution. Notably, a low CD4/CD8 ratio is associated with an increased 
risk of non-AIDS-related diseases[33]. Furthermore, the differences between the 
elements of the microbiome-immune axis between patients with normalized or non-
normalized CD4/CD8 ratio during ART have not been elucidated so far[34,35]; 
however, this question is recognized as a current research gap.

Moreover, with a better understanding of the microbiota-immune axis, it is now 
known that in addition to the intestinal flora itself, its metabolites are also involved in 
regulating vital host activities, such as energy metabolism, cell-to-cell communication, 
and host immunity. Short-chain fatty acids (SCFAs) are important metabolites able to 
modulate the production of immune mediators, such as key cytokines for the repair 
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and maintenance of epithelium integrity[36]. In addition, the SCFAs modulate the 
activity of T cells and decrease the overexpression of histone deacetylase, particularly 
butyric and valeric acids[37]. SCFAs are an important link between microflora and the 
immune system; they involve different molecular mechanisms and cellular targets, are 
essential for the maintenance of intestinal homeostasis, and finally play a role in HIV 
infection[38].

The purpose of this prospective observational study was to compare for the first 
time the fecal microbial composition, serum and fecal microbial metabolites, and 
serum cytokine profile of treatment-naïve patients before starting ART and after 
reaching virological suppression (HIV RNA < 50 copies/mL) after 24 wk of ART. An 
additional aim was to correlate the GM composition, microbial metabolites, and 
cytokine profile of patients with CD4/CD8 ratio < 1 and CD4/CD8 > 1 after antiret-
roviral therapy.

MATERIALS AND METHODS
Patients
The study population, composed of 12 treatment-naïve HIV-infected patients receiving 
ART mainly based on integrase inhibitors, was enrolled between April 2018 and May 
2019 at the Department of Infective and Tropical Disease at University Hospital of 
Careggi, Florence, Italy (Table 1). The study was approved by local institutional 
review boards and written informed consent was obtained from patients before 
participation (Rif CEAVC 15035).

We conducted a prospective observational cohort study comparing the changes 
occurring in the fecal microbiota, serum and fecal SCFA, serum free fatty acids (FFAs), 
and serum cytokines of patients with HIV-1 infection before ART (T0) and after 24 wk 
(T1). In addition, patients were divided into two groups according to whether they 
were immunological responders (IRs, n = 6) or not (INRs, n = 6) (INRs and IRs, based 
on the normalization of CD4/CD8 ratio: < 1 or ≥ 1 after 24 wk of ART, respectively). 
Patients who had used antibiotics, probiotics, or prebiotics or had experienced 
diarrhoea or digestive symptoms within the previous 1 mo were excluded.

Personal data, ART regimen, HIV-RNA values, and number of CD4+ and CD8+ T 
cells prior to ART starting and at the time of virologic suppression were included in 
the analysis (Table 1). In this pilot exploratory study, no formal sample size calculation 
was performed. All patients followed a Mediterranean diet.

Plasma HIV-RNA was measured using Test v1.5 Roche COBAS AmpliPrep, Roche 
TaqMan HIV-1 Test v2.0 (Roche Diagnostics, Branchburg, NJ, United States) and 
Siemens Versant K PCR (Siemens Healthcare GmbH, Erlangen, Germany), with lower 
limits of detection of 50, 20, and 37 copies/mL, respectively.

The T cell counts of patients were determined using a FACScanto flow cytometer 
(BD Immunocytometry Systems)[10]. Immunophenotyping of peripheral blood 
lymphocytes was analysed by three-color flow cytometry (Epics XL Flow Cytometry 
System; Beckman Coulter, United States) as previously described[39]. Freshly collected 
EDTA anticoagulated whole blood was incubated and tested with a panel of 
monoclonal antibodies directed against fluorescein isothiocyanate/phycoerythrin/ 
peridinin chlorophyll protein combinations of CD3/CD4/CD8, CD3/CD16CD56/ 
CD19, HLA-DR/CD8/CD38, and CD4/CD8/CD28 and isotype controls (Immunotech, 
France).

At each time point (0 and 24 wk after study enrolment), we collected blood and fecal 
samples. After collection, stool samples were immediately frozen and stored at −80 °C 
until DNA extraction. Fecal samples were used to assess the microbiota composition 
and SCFAs, and while blood samples were used to measure SCFAs and FFAs and a 
panel of 27 selected cytokines.

Study follow-up
Patients underwent medical visits at 0 and 24 wk after study enrolment. They also 
underwent a comprehensive physical examination and medical history inquiry, urine 
toxicology panel testing, clinical laboratory tests including plasma HIV RNA, 
specimen collection, and detailed behavioural questionnaire survey. Demographic and 
clinical data were collected in a specific questionnaire and reported in an appropriate 
database, including the time point of follow-up in months; the participant’s gender, 
age, weight, and height; CD4+ and CD8+ T cell counts; the CD4/CD8 ratio; HIV-1 RNA 
levels, ART, and antibiotic use. If subjects had to start antibiotics, they provided a last 
fecal sample and the study follow-up was immediately terminated.
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Table 1 Features of the enrolled patients

Age Sex ART regimen Comorbidities Timepoints 
(wk)

Viral load 
(copies/mL)

CD4+ 
cells/mm3

CD8+ 
cells/mm3

CD4/CD8 
ratio

T0 597463 110 420 0.31 37 Male 3TC/ABC/DTG No

T24 < 20 520 832 0.6

T0 4489 630 670 0.92 38 Male FTC/TDF/EVG/C No

T24 TND 831 740 1.1

T0 165516 253 725 0.33 34 Male FTC/TDF/EVG/C No

T24 TND 504 363 1.4

T0 859883 360 974 0.44 39 Male FTC/TDF/EVG/c No

T24 33 781 986 0.8

T0 4860 1341 928 1.45 38 Male 3TC/ABC/DTG No

T24 TND 1881 988 1.9

T0 213 814 690 1.26 41 Male FTC/TDF/RPV Atrial fibrillation

T24 TND 845 519 1.6

T0 23098 516 1149 0.47 25 Male 3TC/ABC/DTG No

T24 < 20 942 1019 0.9

T0 12188 654 1055 0.68 22 Male FTC/TAF/EVG/c No

T24 TND 668 733 0.9

T0 175 833 1520 0.59 48 Male 3TC/ABC/DTG No

T24 TND 941 1258 0.7

T0 40545 863 1196 0.710 53 Male 3TC/ABC/DTG Hypertension, 
HCV

T24 TND 612 515 1.2

T0 859000 399 980 0.411 40 Male 3TC/ABC/DTG No

T24 39 648 652 1

T0 4410 884 1066 0.812 51 Male FTC/TDF DTG Diabetes 

T24 < 20 1130 1261 0.9

ART: Antiretroviral therapy; 3TC: Lamivudine; ABC: Abacavir; DTG: Dolutegravir; FTC: Emtricitabine; TDF: Tenovir; EVG/c: Elvitegravir/cobi; RPV: 
Rilpivirine.

Fecal microbiota characterization
Total genomic DNA was extracted from frozen (-80 °C) stool samples, collected at 
different time points (weeks 0 and 24; T0 and T24), using the DNeasy PowerLyzer 
PowerSoil Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 
instructions. The quality and quantity of purified DNA were assessed using the 
NanoDrop ND-1000 (Thermo Fisher Scientific, WalthAP, US) and the Qubit 
Fluorometer (Thermo Fisher Scientific), respectively.

Extracted DNA samples were sent to IGA Technology Services (Udine, Italy) where 
amplicons of the variable V3–V4 region of the bacterial 16S rRNA gene were 
sequenced (2 × 300 bp paired-end) on the Illumina MiSeq platform, according to the 
Illumina 16S Metagenomic Sequencing Library Preparation protocol[40].

Sequencing results were analysed using the QIIME 2 suite (Quantitative Insights 
Into Microbial Ecology)[41]. Briefly, following raw reads denoising (i.e., estimation of 
error rates, removal of chimeric and singleton sequences, and join of denoised paired-
end reads) using DADA2 (Divisive Amplicon Denoising Algorithm 2)[42], denoised 
reads were dereplicated and amplicon sequence variants (ASVs) were inferred. 
Taxonomic classification of inferred ASVs was performed using a Naive Bayes 
classifier trained on the SILVA 16S reference database (release 132) (https://www.arb-
silva.de/documentation/release-132/).

https://www.arb-silva.de/documentation/release-132/)
https://www.arb-silva.de/documentation/release-132/)
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Evaluation of fecal short chain fatty acids and serum free fatty acids by gas 
chromatography-mass spectrometry
The fecal SCFAs, in particular acetic, propionic, butyric, isobutyric, isovaleric, 2-
methylbutyric, valeric, and hexanoic acids, were analyzed using an Agilent GC-MS 
system composed with a 5971 single quadrupole mass spectrometer, a 5890 gas-
chromatograph, and a 7673 auto sampler. The chemicals, GC-MS conditions, and 
calibrations parameters are reported in supporting information (Tables S1-S4)[43]. 
Fecal samples were collected in 15-mL Falcon tubes and stored at -80 °C. Just before 
the analysis, each sample was thawed, weighted (between 0.5-1.0 g), and added to 
sodium bicarbonate 10 mmol/L solution (1:1 w/v) in a 1.5 mL centrifuge tube. The 
obtained suspension was briefly stirred in a vortex apparatus, extracted in an 
ultrasonic bath (for 5 min), and then centrifuged at 5000 rpm (for 10 min). The 
supernatant was collected and transferred into a 1.5 mL centrifuge tube (sample 
solution). The SCFAs were finally extracted as follows: An aliquot of 100 µL of sample 
solution was added to 50 μL of internal standard mixture, 1 mL of tert-butyl methyl 
ether, and 50 µL of 1.0 mol/L HCl solution in a 1.5 mL centrifuge tube. Afterwards, 
each tube was shaken in a vortex apparatus for 2 min and centrifuged at 10000 rpm for 
5 min, and finally the solvent layer was transferred into an autosampler vial and 
analyzed by the GC-MS method. Each sample was prepared and processed, by the 
method described above, three times. In addition, serum FFAs, classified as SCFAs 
(acetic, propionic, butyric, isobutyric isovaleric, 2-methylbutyri, and valeric acids), 
medium chain fatty acids (MCFAs; hexanoic, heptanoic, octanoic, nonanoic, decanoic, 
and dodecanoic acids), and long chain fatty acids (LCFAs; tetradecanoic, 
hexadecanoic, and octadecanoic acids) were analyzed with our previous described 
GC-MS protocol[44]. The chemicals, GC-MS conditions, GC-MS method, and 
calibrations parameters are reported in supporting information (Tables S5-S7).

Just before the analysis, each sample was thawed. The FFAs were extracted as 
follows: An aliquot of 300 µL of plasma sample was added to 10 μL of internal 
standard mixture, 100 μL of tert-butyl methyl ether, and 20 µL of 6 M HCl plus 0.5 
mol/L NaCl solution in a 0.5 mL centrifuge tube. Afterwards, each tube was stirred in 
vortex for 2 min and centrifuged at 10000 rpm for 5 min, and finally the solvent layer 
was transferred into a vial with a microvolume insert and analyzed.

Molecular inflammatory response in serum
The inflammatory response in serum samples of patients and healthy controls was 
evaluated using a specifically assembled kit ProCartaPlex MixMatch Human 27 Panel 
for Luminex MAGPIX detection system (Affymetrix, eBioscience) following the 
manufacturers' instructions.

In detail, the panel included macrophage inflammatory protein-1α (MIP-1α), 
interleukin (IL)-27, IL-1β, IL-2, IL-4, IL-5, interferon gamma-induced protein 10 (IP-10), 
IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, interferon (IFN)-γ, IFN-α, tumor necrosis 
factor-α (TNF-α), granulocyte-macrophage colony stimulating factor (GM-CSF), 
monocyte chemotactic protein 1(MCP-1), IL-9, P-selectin, IL-1α, IL-23, IL-18, IL-21, 
soluble intercellular adhesion molecule-1 (sICAM-1), IL-22, and E-selectin.

All measurements were performed in a blinded manner by a laboratory technician 
who was experienced in executing the technique. The levels of cytokines were 
estimated using a 5-parameter polynomial curve (ProcartaPlex Analyst 1.0). A value 
under the low limit of quantification (LLOQ) was considered as 0 pg/mL.

Statistical analysis 
Statistical analyses on ASVs representing the bacterial community were performed in 
R (R Core Team, 2014) with the help of the packages phyloseq 1.26.1[45] and DESeq2 
1.22.2[46], and other packages satisfying their dependencies, in particular vegan 2.5-5
[47]. Rarefaction analysis on ASVs was performed using the function rarecurve (step 
50 reads), and further processed to highlight saturated samples (arbitrarily defined as 
saturated samples with a final slope in the rarefaction curve with an increment in ASV 
number per reads < 1e-5). For the cluster analysis (complete clustering on euclidean 
distance) of the entire community, the OTU table was first normalized using the total 
ASV counts of each sample and then adjusted using square root transformation. The 
coverage was calculated by Good's estimator using the formula (1 - n/N) × 100, where 
n is the number of sequences found once in a sample (singletons), and N is the total 
number of sequences in that sample.

Richness, Shannon, Chao 1, and evenness indices were used to estimate bacterial 
diversity in each sample using the function estimate_richness from phyloseq[45]. The 
evenness index was calculated using the formula E = S/Log(R), where S is the 
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Shannon diversity index and R is the number of ASVs in the sample. Differences in all 
indices were tested using a paired Wilcoxon signed-rank test. The differential analysis 
of abundance at the ASVs as well as at the different taxonomic ranks (created using the 
tax_glom function in phyloseq) was performed with DESeq2[46] using a two group 
blocked by patient design in order to perform a paired test[48].

In addition, the software GraphPad Prism (v. 5) and Statgraphics Centurion XVI 
software were used for immunological data analysis. Numerical data are presented as 
the mean ± SD. The concentrations of several cytokines in some of the samples lay 
below the curve fit of the standards. To avoid the bias that would have been 
introduced by excluding these data, the concentrations of the implicated cytokine were 
set at half of the lower cut off of the test system, which was usually about 1 pg/mL. 
Outliers at the other end of the spectrum (higher than the mean ± SD) were identified 
via boxplots and were excluded from the statistical analysis. The comparisons between 
dependent groups were evaluated by the Wilcoxon matched pairs test, while the 
comparisons between the independent groups were assessed by the Mann-Whitney 
test. A P value less than 0.05 were considered statistically significant.

Data availability statement
The 16S rRNA sequence dataset has been deposited in the NCBI Sequence Read 
Archive (SRA) database and is available under the BioProject accession number 
PRJNA731648.

RESULTS
Comparison of fecal microbiota and metabolic and inflammatory profiles after ART
Modest differences in specific fecal microbiota taxa associated with HIV viremia: In 
the first part of our study, we compared the fecal microbiota and metabolic and 
inflammatory profile before and after ART starting, in order to examine potential 
changes resulting from HIV infection and ART therapy. We first analysed the longit-
udinal variation of fecal microbiota population in the same patients at T0 (HIV+ 
viremia - RNA > 50 copies/mL), defined as “high viremia” condition, and T24 (HIV+ 
suppression - RNA ≤ 50 copies/mL), defined as “viral suppression” condition. The 
alpha diversity of samples did not display significant differences for Chao, Shannon, 
and evenness indices (Figure 1). The analysis of the taxonomic composition revealed 
that more than 99% of the sequences collected were classified into four phyla: 
Firmicutes (65.46%), Bacteroidetes (21.54%), Actinobacteria (9.40%), and Proteobacteria 
(2.72%). In order to investigate similarity of patients’ microbiota abundance profiles 
and to study the paired nature of sampling (i.e., high viremia condition vs viral 
suppression condition), a cluster analysis and PCoA on normalized ASV counts were 
performed.

The hierarchical clustering evidenced that microbiota was not sufficiently altered 
after treatment (24 wk) to break individual compositions apart, resulting in a perfect 
matching of the two time points from the same patient (Figure 2A). This result was 
also confirmed by the PCoA (Figure 2B), which showed a substantial proximity of each 
patient at T0 and T24, indicating that, overall, the abundance profile of the single 
patient was not affected by the 24-wk therapy.

On the other hand, the paired comparison of the abundance of single microbial 
ranks revealed some significant (adj. P < 0.05, abs (logFC) ≥ 1) differences between the 
two samples groups. In particular, the genera Ruminococcus 2 and Succinivibrio were 
found to be significantly increased in higher viral suppression condition. On the 
contrary, viral suppression was related with a decrease in the Intestinibacter genus 
(median abundance, ~1%) (Figure 3).

Analysis of fecal SCFAs displays no different layout between “high viremia” and 
“viral suppression” conditions: As we noticed minor changes in fecal microbiome 
profile (just at the order and genus levels), we wondered if the GM metabolic activity 
had been altered as well, and whether this activity might be masked by simply 
examining the microbiota composition. In order to evaluate the presence of alterations 
in GM metabolic activity, the levels of microbial linear and branched SCFAs were 
measured in fecal samples for each patient. However, the analysis of linear SCFA 
(acetic, propionic, butyric, and valeric acids), and branched SCFA (isobutyric, 
isovaleric, and 2-metilbutyric acids) abundance did not reveal any significant change 
after 24 wk of therapy for each patient.
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Figure 1 Box-plots showing alpha diversity indices (Chao1, Shannon, and evenness indices) in samples. Statistical differences were evaluated 
using paired Wilcoxon signed-rank test for Chao, Shannon, and evenness indices. P value less than 0.05 were considered statistically significant.

Figure 2 Cluster analysis (A) and principal coordinate analysis showing that samples do not separate into two groups depending on their 
condition (0-24 wk) (B).

Analysis of serum FFAs reveals a significantly different subgroup of SCFAs 
between “high viremia” and “viral suppression” conditions: As we did not report 
alterations in the composition of fecal SCFAs, we wanted to observe if there were any 
other alterations in metabolic output, by analyzing both microbial and host derived 
FFAs in serum. As known, the impairment of gut integrity due to dysbiosis condition, 
leads to translocation of microbial elements from the intestinal mucosa to the 
bloodstream, which is considered a major driving force of chronic immune activation
[49] even in patients successfully treated with ART and achieving stable virological 
suppression[2].

The analysis of serum FFA levels showed a significant change of two SCFAs at T24 
compared to the baseline. In particular, propionic and butyric acids were increased in 
viral suppression condition (Figure 4).

Inflammatory profile between high viremia and viral suppression conditions: As 
known, gut microbial dysbiosis is linked to aberrant immune responses, as alterations 
in the GM may induce the interruption of gut epithelial barrier integrity with 
subsequent microbial translocation, increased inflammation, and immune activation, 



Russo E et al. Gut “microbiome-immunity” axis in HIV-1 infected patients

WJG https://www.wjgnet.com 643 February 14, 2022 Volume 28 Issue 6

Figure 3 Segment plots depicting taxa with significantly differences between high viremia (time point 0) and viral suppression (time point 
24) conditions. Lines connect paired samples and highlight the differences in normalized abundance for the indicated rank. Orange or blue colors highlight 
decrease or increase, respectively. Numbers in the top-left corner represent counts of increased (orange) and decreased (blue) measurement for paired samples.

Figure 4 Boxplots showing statistically different levels of serum short-chain fatty acids between high viremia and viral suppressor 
patients, assessed by the Wilcoxon test. P value < 0.05 was considered statistically significant.

which are often accompanied by abnormal differentiation of immunological cells[6,
50]. Since we detected significant variations of microbial communities between high 
viremia and viral suppression conditions, we decided to characterize also the serum 
immunological profile by evaluating a panel of 27 cytokines between the two 
mentioned conditions. Among the 27 cytokines examined, we detected a significant 
reduction of IP-10 (P = 0.0244) and a significant increment of IL-8 levels (P = 0.0547) in 
the high viremia setting (Figure 5).

Association of GM composition and metabolic and inflammatory profiles with CD4+ 

T-cell counts
Correlation between fecal microbiota and CD4/CD8 ratio: In the second part of our 
study, we divided our cohort of patients into two groups: Immunological responders 
(IRs) and immunological non-responders (INRs), based on the CD4/CD8 ratio > 1 or < 
1. In this condition, the analysis of microbiota revealed that, considering only taxa with 
an overall abundance higher than 1%, members of the Faecalibacteria genus were 
significantly reduced (adj. P < 0.05, logFC = 1.32) while members of the Alistipes genus 
were significantly increased in responders (adj. P < 0.05, logFC = 2.5) (Figure 6).

Different branched SCFA profiles in serum and fecal samples between IRs and 
INRs: As we observed significant variations in the composition of the fecal microbiota 
between IRs and INRs, we assessed if there were any other alterations in the fecal and 
serum microbial metabolites as linear and branched SCFAs derived from bacterial 
metabolism. We documented significant changes in isobutyric (P = 0.01), isovaleric (P 
= 0.04), and 2-methylbutyric (P = 0.04) acids, which were increased in IR fecal samples 



Russo E et al. Gut “microbiome-immunity” axis in HIV-1 infected patients

WJG https://www.wjgnet.com 644 February 14, 2022 Volume 28 Issue 6

Figure 5 Boxplots showing statistically different levels of serum cytokines between high viremia and viral suppressor patients, assessed 
by the Wilcoxon test. A P value < 0.05 was considered statistically significant.

Figure 6 Boxplots showing the results of taxa-level differential abundance analysis between immunological responders and 
immunological non-responders at 24 wk. Plot titles report the shrunk Log2 fold change (according to the DESeq2 function lfcShrink). All results have a P 
value < 0.05. NR = INRs, R = IRs. IRs: Immunological responders; INRs: Immunological non-responders.

while we did not detect significant differences in serum samples (Figure 7).

Inflammatory profile shows no significant differences between IRs and INRs: Since 
we detected significant variations of microbial communities between IRs and INRs, we 
also evaluated the serum immunological profile. However, cytokine levels did not 
show significant variations between the IRs and INRs.

DISCUSSION
Currently, the mechanisms regulating the interplay between the host immune system 
and HIV-1, as well as the exact changes occurring in the GM composition and 
functionality, remain to be defined. To clarify the intricate relationships between the 
actors of the “microbiota-immunity” axis, we examined microbiota composition and 
functionality (SCFAs), serum inflammatory response, and FFA composition in 
individuals undergoing ART in different HIV infection settings.

Today, many studies on microbiota have been performed chiefly comparing HIV-
infected and uninfected individuals, revealing a reduced GM diversity (the so-called 
HIV-associated dysbiosis) and an independent association between alpha-diversity of 
microbiota and peripheral levels of CD4+ T cell count in treatment-naïve HIV-infected 
patients[28]. However, cross-sectional studies may not be suitable to provide 
information about cause-and-effect relationships, whereas longitudinal ones could be 
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Figure 7 Boxplots showing statistically different fecal short-chain fatty acid abundances between immunological responders and 
immunological non-responders, assessed by the Mann-Whitney test. aP value < 0.05 was considered statistically significant.

more valid for examining such relationships. Besides, there is a lack of human longit-
udinal observations of the “microbiota-immunity” axis before and after first ART 
administration. Only in few longitudinal studies, where HIV-1-infected participants 
were followed after ART starting, data obtained on bacterial flora showed that shifts in 
the fecal microbiota persisted in a number of patients[10,28]. On the other hand, a 
recent study by Dillon et al[14] failed to find a significant change in a single time point 
study of the stool of HIV-1-infected patients.

In this study, we first performed a longitudinal investigation evaluating the GM 
before the treatment and after “viral suppression” (T24). According to the longitudinal 
study conducted by Dillon et al[14], our results showed modest changes in the GM 
composition after ART; indeed, we did not assess significant differences in phylum 
composition. However, the paired comparison of the abundance of single bacterial 
taxa revealed a significant alteration at the genus level between the two sample groups 
(Figure 3). In particular, the genera of Ruminococcus, and Succinivibrio were 
significantly increased after ART and the viral suppression. Conversely, the genus of 
Intestinibacter was significantly decreased in the same condition. We hypothesize that 
the slight change between the two groups may be due to persistent inflammation 
(related to microbial translocation and reduced immunoregulatory function), HIV 
latency throughout the gut, and direct effects of antiretroviral drugs on the bacterial 
population. Moreover, our results are in accordance with other longitudinal previous 
studies in non-human primates, which allowed to control for confounders affecting 
human studies[51,52]. We also reported an increase of the genus Succinivibrio (Proteo-
bacteria phylum) between the two samples groups. In addition, in agreement with our 
data, the proportion of the rare genus Succinivibrio, was also found considerably high 
in the stool of Japanese patients treated with ART[53]. One of the possible reasons for 
the contradictory results reported in the examined different studies may include the 
cross-sectional nature of the study, the used sampling method (stool swab vs stool), 
and the microbial taxon level applied.

Based on our findings, the 24 wk of ART inhibited HIV-1 viral replication effectively 
(indeed, all enrolled patients reached viral suppression), but did not heavily affect the 
overall bacterial composition of the gut microenvironment. The modest GM diversity 
that we observed between the two sample groups might be associated with the 
lowering of viremia. However, there was evidence that ART also induces changes in 
the gut microbiome, unrelated to HIV infection. Some authors have implied that ART 
may enhance dysbiosis, which is consistent with the high frequency of gastrointestinal 
side effects of this treatment[28,54].

As the GM influences the immune system through their bacterial metabolites, like 
SCFAs[55,56], we measured SCFA levels in blood and stool samples, in order to have a 
more accurate assessment of microbial metabolism after the ART. As known, the main 
SCFAs include, in order of proportion, acetic, propionic, and butyric acids that are 
produced by fibres fermentation by gut bacteria, particularly by members of the 
Firmicutes phylum[57]. Interestingly, for the first time, we observed a significant 
change of two serum SCFAs after the ART. In particular, propionic and butyric acids 
were increased in “viral suppression” condition. This altered SCFA profile may 
indicate a potential role for the SCFA synthesis pathway in the regulation of the HIV 
“microbiota-immunity” axis during effective ART. Notably, we did not observe any 
significant SCFA changes in stool samples, probably because in the colon, about 95% 
of the produced SCFAs are rapidly absorbed by large intestinal mucosal cells while the 
remaining 5% are secreted in the feces[58]. Propionate is only present at a low concen-
tration in the periphery because it is metabolized in the liver[59]. It has been shown 
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that butyrate may reduce gut inflammation by inducing the regulatory T cells (Tregs) 
and modulating activation of antigen-presenting cells[17]. We may speculate that 
bacterial flora responds reciprocally to inflammation by increasing the biosynthesis of 
anti-inflammatory and pro-solving lipid mediators that circulate in the bloodstream. 
Altogether, it is plausible that immune system-bacteria synergism mediates solutions 
to inflammation. On the contrary, as previously reported, some studies have found 
that butyrate-producing bacteria are selectively reduced in stool samples from HIV-
infected compared to non-infected subjects[17,54]. In particular, Serrano-Villar et al[60] 
found that HIV-infected individuals had a distinct SCFA profile in stool compared to 
HIV-negative controls, with increased propionate and lower levels of acetate. No data 
from the literature are available regarding SCFA levels in HIV+ serum samples, except 
a study of Segal et al[61] reporting that higher values of serum SCFAs, in consequence 
of an increased abundance of pulmonary anaerobic bacteria in HIV+ patients on ART, 
inhibited the immune response to M. tuberculosis, likely enhancing tuberculosis 
susceptibility. They observed that baseline serum butyrate and propionate were 
associated with the subsequent increasing hazard of tuberculosis. Moreover, we also 
evaluated serum FFA composition before and after ART treatment. Indeed, increased 
levels of FFA and proinflammatory cytokines have been reported in some HIV-
infected patients under ART (reviewed in reference[62]). However, we did not 
appreciate any difference at the examined two time points.

Regarding the inflammation tone, there is consensus that a pro-inflammatory status 
remains active even after ART initiation in most patients[63,64]. Since the HIV life 
cycle is suppressed through ART in treated patients, the chronic inflammatory status 
observed in patients is maintained by factors secondary to HIV replication, including 
microbial translocation and reduced immunoregulatory function. In order to evaluate 
the inflammatory status after ART, we measured a panel of selected multifunctional 
effector molecules of the immune response in serum. Among the measured cytokines, 
we observed a decrease of IP-10 (P = 0.0244) after the treatment, confirming the 
downregulation of this chemokine production in patients with HIV infection during 
ART[65-69]. IP-10 is involved in trafficking immune cells to inflammatory sites, and it 
is considered an important pro-inflammatory factor in the HIV disease process. It has 
been observed that its levels can be reduced, but not to normal levels, by ART 
administration. Interestingly, IP-10 was consistently associated with HIV disease 
progression (based on CD4+ counts) during the period[70], suggesting its potential for 
use as an indicator of HIV infection and/or a therapeutic target for HIV treatment[71]. 
On the other hand, in agreement with recent data, we observed a significant increased 
trend of IL-8 levels (P = 0.0547) with suppressed viral load after 24 wk of ART. Indeed, 
increased IL-8 levels were observed in HIV-infected individuals on ART[72]. It has 
been shown that during HIV-1 infection, IL-8 plays an important role in the 
recruitment of CD4+ T cells to the lymph nodes, thus generating more targets for viral 
replication. Our results may suggest that increased IL-8 Levels may represent a 
hallmark of chronic inflammation in HIV+ patients on ART. In accordance with our 
findings, Wada et al[73] observed significantly higher circulating IL-8 levels in HIV+ 

men on ART with suppressed viral load in comparison to HIV-uninfected men.
It is now established that the gut microbiome may play a crucial role in the immune 

activation in HIV-infected patients treated with ART[5,64,73-75]. Recently, several 
studies have reported that GM is associated with CD4+ T cell recovery in HIV-infected 
patients, playing an essential role in the reconstitution of immune function[76-78]. The 
potential mechanism includes the formation of a virus shelter, resistance to ART, 
promotion of intestinal mucosal barrier damage, and further entry of intestinal 
bacteria and their metabolites into the circulatory system, resulting in long-term 
immune activation, inflammation, and metabolic disorders such as cardiovascular 
diseases, diabetes mellitus, liver steatosis, and lastly, cancer[8]. Although it remains 
unclear whether an altered immunity after HIV infection drives dysbiosis or vice versa, 
the gut dysbiosis, immune dysfunction, epithelial damage, and microbial translocation 
are still evident even in the setting of ART-mediated viral suppression, which might be 
the treatment dilemma for HIV infection at present. Despite numerous studies of the 
microbiota in HIV-infected patients, there are relatively few reports discussing the 
compositional GM changes in patients with different immune responses to ART[79,
80].

To investigate the role of GM in immunomodulation and immune reconstitution 
and which bacterial metabolites are implicated, in the second part of the study, we 
divided the patients into two groups: Patients with CD4/CD4 ratio < 1 with insuf-
ficient reconstitution of CD4+ T cells despite achieving virological suppression after 24 
wk of ART and those with CD4/CD8 ≥ 1 who reached a robust reconstitution of CD4+ 

T cells. We found that the Anaerostipes genus was significantly augmented in IRs; on 
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the contrary, the Faecalibacterium genus was significantly increased in INRs. Notably, 
Faecalibacterium has been reported as the anti-inflammatory commensal genus[81]. It 
has been positively correlated with the CD4/CD8 ratio and anti-correlated with 
inflammation markers and LPS in a recent study in HIV-infected patients[82].

Regarding microbial metabolites, we detected a significant increase in fecal 
isobutyric, isovaleric, and 2-methylbutyric acids in the IRs. However, we found that 
the changes associated with the IR group were not evident in the blood. Based on our 
results, we hypothesized that changes at the genus level in the gut ecosystem in HIV-
infected patients undergoing ART might thus be both a consequence and a potential 
cause of the recovery of systemic immunity.

Our study had some limitations. First, a low number of patients were enrolled to 
investigate the elements of the microbiota-immunity axis and it cannot determine 
whether the altered GM contributed to or was caused by immune dysfunction. Second, 
only the effects of 24-wk ART were observed in our study, and to establish a more 
meaningful connection between GM and microbial/immune parameters, future 
studies should investigate the GM alterations and the restoration of immune function 
after long-term effective ART. Finally, the microbiota of feces was a proxy for GM in 
this study, which was the only realistic sample for a non-invasive study. However, 
fecal microbiota may only represent the GM composition in the lumen rather than on 
the mucosal surfaces, which is an important distinction because the mucosa-associated 
microbiota potentially interacts with the gut-associated lymphoid tissue in HIV-1-
infected patients directly.

CONCLUSION
Our results provided an additional vision about the impact of HIV infection, ART, and 
immune recovery in the microbiota-immunity axis at the metabolism level, which are 
an indicator of the active processes occurring in the gastrointestinal tract. In summary, 
we demonstrated that patients infected by HIV-1, after reaching virological 
suppression with ART, displayed a fecal microbiota with unchanged overall bacterial 
diversity except for few genera. Although 24 wk of treatment with ART was effective, 
the systemic inflammatory tone was not completely restored despite the anti-inflam-
matory serum butyrate increment. In addition, we confirmed the role of the GM in 
immune reconstitution, with the possible implication of bacterial metabolites; 
however, changes in the gut ecosystem in HIV+ patients undergoing 24 wk of ART 
may thus be both a consequence and a potential cause of the recovery of systemic 
immunity.

Future larger-scale, long-term ART and longitudinal studies that include functional 
metagenomic and metabolomic approaches to identify the roles of the specific differ-
ential phylotypes are required to better define the relationship between microbiota-
immunity axis and HIV-1 infection and to provide new insights into the targeted 
treatment, improving the immune recovery and dampening inflammation.

ARTICLE HIGHLIGHTS
Research background
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by persistent 
systemic inflammation and immune activation, even in patients receiving effective 
antiretroviral therapy (ART). Converging data suggest that gut microbiota (GM) 
changes can occur throughout including human immunodeficiency virus (HIV) 
infection treated by ART.

Research motivation
ART has increased the life expectancy of HIV-infected patients; however, chronic 
inflammation and gut microbiota alterations persist in patients virologically 
suppressed by ART. These data suggest that re-shaping the microbiota may be an 
adjuvant therapy in patients commencing successful ART.

Research objectives
The purpose of this prospective observational study was to compare for the first time 
the fecal microbial composition, serum and fecal microbial metabolites, and serum 
cytokine profile of treatment-naïve patients before starting ART and after reaching 
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virological suppression (HIV RNA < 50 copies/mL) after 24 wk of ART.

Research methods
The authors enrolled 12 treatment-naïve HIV-infected patients receiving ART. Fecal 
microbiota composition was assessed through next generation sequencing, and a 
comprehensive analysis of a broad spectrum of cytokines in blood was performed 
through a multiplex approach. In addition, serum free fatty acid (FFA) and fecal short 
chain fatty acid (SCFA) levels were measured through GC-MS.

Research results
The authors compared microbiota signatures, FFA levels, and cytokine profile before 
starting ART and after reaching virological suppression. Modest alterations were 
observed on microbiota composition; moreover, in the same condition, we also 
observed augmented levels of serum propionic and butyric acids. A reduction of 
serum IP-10 and an increase of IL-8 level were detected in the viral suppression 
condition. Thereafter, the same components were compared between immunological 
responders and non-responders. Concerning the microflora population, we detected a 
reduction of Faecalibacterium and an increase of Alistipes in immunological non-
responders. Simultaneously, fecal isobutyric, isovaleric, and 2-methylbutyric acids 
were also increased in immunological non-responders.

Research conclusions
The results provid an additional perspective about the impact of HIV infection, ART, 
and immune recovery on the “microbiome-immunity axis” at the metabolism level. 
These factors can act as indicators of the active processes occurring in the 
gastrointestinal tract.

Research perspectives
Future larger-scale, long-term ART and longitudinal studies that include functional 
metagenomic and metabolomic approaches to identify the roles of the specific differ-
ential phylotypes are required to better define the relationship between microbiota-
immunity axis and HIV-1 infection and to provide new insights into the targeted 
treatment, improving the immune recovery and dampening inflammation.
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