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Abstract
BACKGROUND 
Patients with colorectal cancer (CRC) undergo surgery, as well as perioperative 
chemoradiation or adjuvant chemotherapy primarily based on the tumor–node– 
metastasis (TNM) cancer staging system. However, treatment responses and 
prognostic outcomes of patients within the same stage vary markedly. The 
potential use of novel biomarkers can improve prognostication and shared 
decision making before implementation into certain therapies.
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AIM 
To investigate whether SUMF2, ADAMTS5, and PXDN methylation status could be associated 
with CRC prognosis.

METHODS 
We conducted a Taiwanese cohort study involving 208 patients with CRC recruited from Tri-
Service General Hospital and applied the candidate gene approach to identify three genes 
involved in oncogenesis pathways. A methylation-specific polymerase chain reaction (MS-PCR) 
and EpiTYPER DNA methylation analysis were employed to detect methylation status and to 
quantify the methylation level of candidate genes in tumor tissue and adjacent normal tissue from 
participants. We evaluated SUMF2, ADAMTS5, and PXDN methylation as predictors of prognosis, 
including recurrence-free survival (RFS), progression-free survival (PFS), and overall survival 
(OS), using a Cox regression model and Kaplan–Meier analysis.

RESULTS 
We revealed various outcomes related to methylation and prognosis. Significantly shorter PFS and 
OS were associated with the CpG_3+CpG_7 hypermethylation of SUMF2 from tumor tissue 
compared with CpG_3+CpG_7 hypomethylation [hazard ratio (HR) = 2.24, 95% confidence 
interval (CI) = 1.03-4.85 for PFS, HR = 2.56 and 95%CI = 1.08-6.04 for OS]. By contrast, a 
significantly longer RFS was associated with CpG_2 and CpG_13 hypermethylation of ADAMTS5 
from normal tissue compared with CpG_2 and CpG_13 hypomethylation [HR (95%CI) = 0.15 
(0.03-0.71) for CpG_2 and 0.20 (0.04-0.97) for CpG_13]. The relationship between the methylation 
status of PXDN and the prognosis of CRC did not reach statistical significance.

CONCLUSION 
Our study found that CpG_3+CpG_7 hypermethylation of SUMF2 from tumor tissue was 
associated with significantly shorter PFS and OS compared with CpG_3+CpG_7 hypomethylation. 
CpG_2 and CpG_13 hypermethylation of ADAMTS5 from normal tissue was associated with a 
significantly longer RFS compared with CpG_2 and CpG_13 hypomethylation. These methylation-
related biomarkers which have implications for CRC prognosis prediction may aid physicians in 
clinical decision-making.

Key Words: DNA methylation; Biomarkers; Tumor tissue; Adjacent normal tissue; Prognosis prediction; 
Colorectal cancer

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our research revealed that differential DNA methylation of candidate genes in tumor tissue and 
adjacent normal tissue can be used to evaluate colorectal cancer prognosis. Certain CpG sites and the 
methylation status of SUMF2 and ADAMTS5 were significantly associated with colorectal cancer 
recurrence, progression, and survival. We recommend using our findings to investigate prognostic 
biomarkers applicable to patients with colorectal cancer.
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INTRODUCTION
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the fourth leading 
cause of cancer-related deaths worldwide[1]. According to global estimations, in 2018, 1.8 million new 
cases of CRC were diagnosed, and 0.8 million people died from CRC that year[2]. By 2030, the 
worldwide CRC burden is predicted to increase by 60%; in 2030, it is expected that 2.2 million patients 
will be newly diagnosed as having CRC and 1.1 million CRC-related deaths will occur worldwide[1]. 
The treatment and survival of patients with CRC are closely related to cancer staging systems. The 
classification of CRC stages is based on the tumor– node–metastasis (TNM; T, size of the primary tumor; 
N, nearby affected lymph nodes; M, distant metastasis) staging system from the Eighth Edition of the 
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American Joint Committee on Cancer Staging Manual[3]. However, the heterogeneity of CRC means 
that patients with the same CRC stage may have different treatment responses and survival times[4]. 
Although breakthroughs in surgery, chemotherapy, radiotherapy, targeted therapy, and immuno-
therapy have improved the survival of patients with CRC, the 5-year survival of patients with stage IV 
disease is as low as 14% owing to CRC’s heterogeneous nature and association with diverse molecular 
alterations, which are involved in cancer cell progression[5]. Intensive postoperative surveillance 
programs are proposed after tumor resection to detect asymptomatic recurrence in advance and prolong 
the survival patients who may be suited to further curative therapy[6]. Therefore, identifying molecular 
biomarkers for predicting patient prognoses or monitoring cancer relapse is crucial.

Several studies have focused on identifying new prognostic indicators for CRC[7]. Prognostic 
biomarkers can be employed as personalized indicators to predict disease progression, such as early 
recurrence, metastasis, and mortality[8]. These biomarkers are associated with molecular patterns of 
genomic mutations and epigenetic alterations that lead to CRC carcinogenesis[9]. DNA methylation 
alterations play a pivotal role in CRC progression and metastasis[10]. Promoter DNA hypermethylation 
silences genes such as MLH1, CDKN2A, MGMT, RUNX3, TPEF, VIM, and SFRP1/2/4/5, which play 
crucial roles in the cell cycle, DNA repair, and signal transduction[11]. Consequently, DNA methylation 
of genes may be a novel epigenetic indicator of patient prognosis.

SUMF2 was regarded as one of the frequently mutated genes in CRC, and SUMF2 mutation 
frequently altered pathways in the tumorigenesis of CRC[12]. ADAMTS5 was found upregulated in 
CRC, which was associated with tumor progression and even unfavorable clinical outcomes[13]. To 
determine the effect of the DNA methylation of selected genes on CRC prognosis over 5 years, we 
examined methylation status and extent in tumor tissue and tumor-free areas adjacent to such tissue. 
We propose that the differential DNA methylation of candidate genes in tumor samples and in matched 
adjacent normal tissue could assist in prognosis prediction and the optimization of CRC treatment.

MATERIALS AND METHODS
Patient and specimen collection
In this retrospective cohort study, we analyzed the data of patients diagnosed as having CRC from 2006 
to 2010 and who underwent surgical treatment at Tri-Service General Hospital (TSGH), Taiwan, to 
assess their 5-year prognosis. All participants signed informed consent forms before their involvement 
in this research. Then surgeons gathered specimens in patients including colorectal cancer tissue and 
adjacent normal regions during surgery. The tissue were deposited at -80 ℃ ultra-low temperature 
freezers for further analysis. The study was approved by the TSGH Institutional Review Board 
(TSGHIRB approval numbers 098-05-292 and 2-105-05-129). According to the clinical practice guidelines 
of the Division of Colon and Rectal Surgery of TSGH, patients with CRC should return to the outpatient 
department for a follow-up every 3 mo in the first year after surgery and once every 3 to 6 mo 
afterward. The clinical and demographic characteristics of enrolled patients, including sex, age at 
surgery, clinical staging, tumor size, histological grade, lymph node count, tumor location, and adjuvant 
chemotherapy as well as follow-up information on recurrence, metastasis, and survival were acquired 
from the cancer registration database of TSGH.

Recurrence-free survival (RFS), progression-free survival (PFS), and overall survival (OS) were 
calculated from the date of surgery to disease progression (inclusive of cancer recurrence or metastasis), 
death from any cause, or until the final follow-up date before December 31, 2010. In total, 208 patients 
who met the inclusion criteria were enrolled. A flow diagram of the study’s design is presented in 
Figure 1.

Gene selection and DNA extraction
The candidate gene approach was applied for genetic association studies, which has been widely used 
to investigate novel prognostic biomarkers related to CRC[14]. First, we searched for genes whose 
expression might influence CRC prognosis by browsing PubMed (https://pubmed.ncbi.nlm.nih.gov/), 
University of California, Santa Cruz Genome Browser (https://genome.ucsc.edu/) and Prediction of 
Clinical Outcomes from Genomic Profiles (https://precog.stanford.edu/). Subsequently, we confirmed 
gene methylation differences in CRC tissue and normal tissue using the Shiny Methylation Analysis 
Resource Tool website (http://bioinfo-zs.com/smartapp/). We then searched PubMed (https://
pubmed.ncbi.nlm.nih.gov/) to review related literature with the keyword "gene name + colorectal 
cancer". If the number of results was less than 30, it was thought that the gene had been rarely studied 
for colorectal cancer. Those genes which met the above three conditions were included in this study. 
Therefore, we chose 16 candidate genes include CFLAR, RBM44, ABCG1, WDR74, ZNF292, EFHA2, 
PXDN, TEC, CDH2, ADAMTS5, COL4A2, PCGF2, EMID2, GRPEL2, DKK2 and SUMF2. Because of the 
limited resources and experimental results, we narrowed down to SUMF2, ADAMTS5, and PXDN. 
These three candidate genes involved in the pathways associated with cancer stages and prognosis, 
such as inflammation, epithelial–mesenchymal transition, tumor migration, and angiogenesis.

https://pubmed.ncbi.nlm.nih.gov/
https://genome.ucsc.edu/
https://precog.stanford.edu/)
http://bioinfo-zs.com/smartapp/)
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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Figure 1 The study design flow-diagram. CRC: Colorectal cancer; TSGH: Tri-Service General Hospital; SUMF2: Sulfatase modifying factor 2; ADAMTS5: 
ADAM metallopeptidase with thrombospondin type 1 motif 5; PXDN: Peroxidasin; RFS: Recurrence-free survival; PFS: Progression-free survival; OS: Overall 
survival.

In accordance with the manufacturer’s instructions, cellulose-coated magnetic beads were used to 
extract genomic DNA from the samples by using the Genomic DNA Tissue Kit (Catalog No. 69504; 
Qiagen, Taipei, Taiwan). We used sterile blades to cut about 10 mg tissue minced into the 1.5 mL 
microcentrifuge tube, and 200 μL Lysis Buffer and 6 μL Proteinase K were prepared and added. The 1.5 
mL microcentrifuge tube was placed at 56℃ water bath machine for 8-10 h after orbital shaker and 
centrifuge use. We confirmed that tissues were dissolved as clarified liquid, and then the tissue would 
have a vortex and centrifugation. Next, we used pipette to put tissue lysate into the 96 Deep Well Plate 
of the MagCore Compact Automated Nucleic Acid Extractor (Catalog No. MCA0801; RBC Bioscience, 
Taipei, Taiwan). Subsequently, we used the EZ DNA Methylation Kit (Zymo Research Corporation, 
Orange, CA, United States) to modify isolated DNA using sodium bisulfite.

Methylation-specific polymerase chain reaction and EpiTYPER DNA methylation analysis
The gene methylation statuses of SUMF2, ADAMTS5, and PXDN were evaluated through a 
methylation-specific polymerase chain reaction (MS-PCR). The total volume of the reaction solution was 
20 μL, and it contained HotStart Taq Premix (RBC Bioscience, Taipei, Taiwan) (9 μL for SUMF2 and 
PXDN; 10 μL for ADAMTS5), 0.5 μL of forward and reverse primers, 1 μL of bisulfite-modified DNA, 
and pure water (9 μL for SUMF2 and PXDN; 8 μL for ADAMTS5).

For MS-PCR, the oligonucleotide primers, annealing temperature of each primer used for 
amplification, and PCR product sizes were described in Table 1. PCR cycling was performed as follows: 
10 min at 95 °C, 38 cycles of denaturation for 30 s at 95 °C, 30-s annealing at a gene-appropriate 
temperature, 30-s elongation at 72 °C, final extension for 7 min at 72 °C, and holding at 4 °C. After 
amplification, PCR products were mixed with a loading buffer, electrophoresed (100 V for 28–30 min) 
on 2.75%-4% agarose gels using 1–2 μL of gel-stained dye, and visualized using an ultraviolet transillu-
minator. To confirm our experiment results were without error, we used SssI-treated DNA as positive 
control, and sterile water as negative control. Figure 2 showed that the methylation-specific polymerase 
chain reaction (MS-PCR) results of PXDN gene in CRC patients. Negative control, positive control and 
sterile water represent unmethylation-specific reaction, methylation-specific reaction and no 
contaminant reaction for PCR, respectively.

We further identified the CpG sites of SUMF2 and ADAMTS5 (Figure 3) and analyzed DNA 
methylation changes by using an Agena Bioscience MassARRAY system with EpiTYPER biochemistry 
(Agena Bioscience, San Diego, CA), an advanced method for quantitative DNA analysis.

The oligonucleotide primers, annealing temperature of each primer used for amplification, and PCR 
product sizes used in the EpiTyper assay were described in Table 1. The PCR cycling protocols were as 
follows: 15 min at 95 °C, 38 cycles of denaturation for 30 s at 95 °C, 30-s annealing at a gene-appropriate 
temperature, 30-s elongation at 72 °C, final extension for 10 min at 72 °C, and holding at 4 °C. In vitro 
transcription and base-specific cleavage were performed using the MassCLEAVE kit (Agena 
Bioscience). In total, 0.22 μL of T cleavage mix, 3.14 mmol/L DTT, 20 U of T7 RNA and DNA 
polymerase, and 0.09 mg/mL RNase A were prepared and added to a 7 μL reaction solution with 
shrimp alkaline phosphatase inactive PCR product. The final product was stored at 37 °C for 3 h. After 
the addition of a cation exchange resin to remove salt that remained after the reactions, the EpiTYPER 
reaction products were loaded onto the matrix pad of a SpectroCHIP Array (Agena Bioscience). The size 
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Table 1 Primer sequences, annealing temperature and product size for MS-PCR and EpiTYPER DNA methylation analysis of target 
genes

Genes Forward primer (5’ → 3’) Annealing 
temperature (°C)

Product size 
(bp)

F:TTTGATTATGGTCGGTTTTGCM

R:GACTACTTACAACTCCCCTAACGAC

59.4 191

F:TTTTTTGATTATGGTTGGTTTTGTGU

R:CCCAACTACTTACAACTCCCCTAACA

60.6 198

F:TTTGTTATAGAGGGATGGGAGATAG aggaagagag

SUMF2

Q

R:CAAAATAAACAACACTCCAAATTCA cagtaatacgactcactatagggagaaggct

60 232

F:GTTATTGTCGTGGAGCGTTAGCM

R:CCTACCTCCCGTACTTCCCG

59.4 170

F:TTATTGTTGTGGAGTGTTAGTGTTTU

R:CCTACCTCCCATACTTCCCACAT

59.4 169

F:aggaagagagTTGAAATTGTTATTGTAGGATGGTATG

ADAMTS5

Q

R:cagtaatacgactcactatagggagaaggctAATTAAAACAAAAATACAAAAAAACAACC

61.3 245

F:TATGCGGGACGAGAACGAGAM

R:ACTTAAACAACTCCGTAACAATACGAT

61.6 137

F:GTGTATGTGGGATGAGAATGAGAG

PXDN

U

R:CAACTTAAACAACTCCATAACAATACAA

60.4 142

MS-PCR: Methylation-specific polymerase chain reaction; SUMF2: Sulfatase modifying factor 2; ADAMTS5: ADAM metallopeptidase with 
thrombospondin type 1 motif 5; PXDN: Peroxidasin; M: Methylation; U: Unmethylation; Q: Quantitative analysis.

Figure 2 The methylation-specific polymerase chain reaction results of PXDN gene in colorectal cancer patients. Negative control, positive 
control and sterile water represent unmethylation-specific reaction, methylation-specific reaction and no contaminant reaction for polymerase chain reaction, 
respectively. CRC: Colorectal cancer.

and mass of the resulting cleavage products varied based on sequence changes. The fragment contained 
CpG sites had two kinds of molecular weight (GC or AC) because of the methylation status. There are 
16 Daltons of signal divergence between the methylated and unmethylated sequence, which was 
observed by the mass spectrometry. These differences provided quantitative information on each target 
fragment, which was acquired using the MassARRAY Analyzer 4 (Agena Bioscience). Signal shifts of 
fragments indicated methylation events at single CpGs or small groups of CpGs (CpG units), and signal 
intensity was linked to DNA methylation extent, which was analyzed using EpiTYPER software (Agena 
Bioscience).

Statistical analysis
For each candidate gene, different DNA methylation statuses related to RFS, PFS, and OS were invest-
igated using univariate Cox proportional hazards analyses. The resultant multivariate Cox proportional 
hazards regression model was then used to verify the independent prognostic effects of gene 
methylation status after adjustment for various clinical variables (sex, age at surgery, stage, and lymph 
node counts). The 5-year RFS, PFS, and OS curves for the methylation status of the selected genes were 
presented using a Kaplan–Meier survival analysis and compared using a log-rank test. We used SPSS 
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Figure 3 The location of informative CpG sites in the (A) SUMF2 and (B) ADAMTS5 promoter region.

version 23 (IBM SPSS Statistics 23) for statistical analyses. All P values were calculated from two - sided 
tests, and P value below 0.05 represented statistical significance.

RESULTS
Patient characteristics
In total, 208 patients diagnosed as having CRC at TSGH were recruited to participate. We analyzed 
tumor samples and adjacent nontumorous tissue of enrollees. The correlation of the candidate genes’ 
methylation status and extent with the demographic and clinicopathological characteristics of patients 
was assessed, and the results are presented in Table 2. Normal tissue with SUMF2 methylation 
significantly belonged to poor or undifferentiated histological grade. Tumor tissue with PXDN 
methylation significantly belonged to lower stages and had less lymphovascular invasion. No other 
associations were found between the methylation statuses of these three genes and the demographic or 
clinicopathological variables of the participants.

Quantitative analysis of genes
Although the selected genes were methylated in both tumor tissue and matched normal tissue (SUMF2, 
50% vs 52.9%; ADAMTS5, 75.0% vs 62.9%; PXDN, 78.2% vs 72.4%), we observed that the differential 
DNA methylation of candidate genes, especially SUMF2 and ADAMTS5, tended to affect patient 
prognosis according to the Kaplan–Meier method. To further investigate the extent and patterns of gene 
methylation in patients with CRC, we analyzed SUMF2 and ADAMTS5 methylation levels in primary 
CRC tissue samples and in adjacent normal samples. A higher percentage of SUMF2 genes methylation 
at loci CpG_1, CpG_2, CpG_3 and CpG_7 was detected in primary CRC samples compared with 
adjacent normal tissue. We also found a higher level of ADAMTS5 genes methylation at loci CpG_1, 
CpG_2, CpG_9, CpG_10.11, CpG_12, CpG_13, CpG_14.15, and CpG_16 in CRC tissue than in adjacent 
normal samples. Both findings reached statistical significance (Table 3).

Relationship between gene methylation and prognosis 
The correlation between the methylation status of each gene and the 5-year RFS, PFS, and OS of patients 
with CRC was analyzed. We did not observe a significant correlation of the SUMF2, ADAMTS5, and 
PXDN methylation statuses of normal and tumor tissue and with patients’ 5-year RFS, PFS, and OS in 
univariate and multivariate Cox proportional hazards regression analyses. The methylation of SUMF2 
in normal tissue was associated with poorer 5-year PFS and OS in a Kaplan–Meier survival analyses (P 
= 0.500 and 0.260, respectively). In a univariate analysis, we observed that patients with a stage III+IV 
disease had a poor RFS, PFS, and OS [hazard ratio (HR) = 4.68 and 95% confidence interval (95%CI) = 
2.09-10.46 for RFS, 2.21 (1.25-3.91) for PFS, and 1.90 (1.00-3.61) for OS], even after adjustment for 
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Table 2 Characteristics and distribution of methylation status in patients with colorectal cancer (n = 208)

Methylation status

SUMF2 ADAMTS5 PXDNCharacteristics Total

Normal Tumor Normal Tumor Normal Tumor

Sex

Male 103 (49.5) 20 (60.6) 27 (55.1) 28 (60.9) 44 (77.2) 35 (76.1) 44 (77.2)

Female 105 (50.5) 17 (45.9) 25 (45.5) 38 (64.4) 49 (73.1) 41 (69.5) 53 (79.1)

χ2 (P value) 0.97 (0.324) 0.62 (0.432) 0.03 (0.866) 0.1 (0.755) 0.28 (0.596) < 0.01 (0.969)

Age at surgery

mean ± SD 64.3 ± 14.6 64.9 ± 14.2 66.9 ± 15.8 66.4 ± 14.8 67.7 ± 15.5 65.0 ± 14.4 66.2 ± 15.0

< 65 103 (49.5) 17 (51.5) 26 (53.1) 28 (58.3) 43 (72.9) 34 (70.8) 46 (78.0)

≥ 65 105 (50.5) 20 (54.1) 26 (47.3) 38 (66.7) 50 (76.9) 42 (73.7) 51 (78.5)

χ2 (P value) < 0.01 (1.00) 0.15 (0.694) 0.46 (0.498) 0.1 (0.755) 0.01 (0.915) < 0.01(1.00)

Stage 

I 29 (13.9) 7 (58.3) 7 (50.0) 9 (50.0) 12 (63.2) 12 (66.7) 17 (89.5)

II 77 (37.0) 13 (48.1) 17 (45.9) 21 (56.8) 33 (75.0) 29 (78.4) 39 (88.6)

III 68 (32.7) 13 (65.0) 21 (63.6) 22 (68.8) 31 (75.6) 22 (68.8) 27 (65.9)

IV 34 (16.3) 4 (36.4) 7 (35.0) 14 (77.8) 17 (85.0) 13 (72.2) 14 (70.0)

χ2 (P value) 2.77 (0.429) 4.5 (0.212) 4.06 (0.255) 2.5 (0.476) 1.17 (0.760) 8.69a (0.034) 

5-yr recurrence1

No 141 (82.0) 28 (51.9) 35 (49.3) 43 (56.6) 61 (70.9) 54 (71.1) 71 (82.6)

Yes 31 (18.0) 4 (40.0) 9 (60.0) 12 (80.0) 14 (82.4) 11 (73.3) 12 (70.6)

χ2 (P value) 0.12 (0.731) 0.22 (0.639) 1.98 (0.160) 0.45 (0.504) < 0.01 (1.00) 0.65 (0.421)

5-yr all-cause death

No 168 (80.8) 29 (54.7) 43 (51.8) 50 (61.0) 79 (78.2) 59 (72.0) 77 (76.2)

Yes 40 (19.2) 8 (47.1) 9 (42.9) 16 (69.6) 14 (60.9) 17 (73.9) 20 (87.0)

χ2 (P value) 0.07 (0.786) 0.24 (0.625) 0.26 (0.611) 2.15 (0.142) < 0.01 (1.00) 0.71 (0.399)

5-yr progression

No 155 (74.5) 28 (56.0) 39 (50.0) 45 (58.4) 73 (76.8) 56 (72.7) 74 (77.9)

Yes 53 (25.5) 9 (45.0) 13 (50.0) 21 (75.0) 20 (69.0) 20 (71.4) 23 (79.3)

χ2 (P value) 0.32 (0.570) < 0.01(1.00) 1.75 (0.185) 0.38 (0.540) < 0.01 (1.00) < 0.01 (1.00)

Lymphovascular invasion1

No 106 (52.5) 20 (48.8) 25 (48.1) 32 (56.1) 46 (73.0) 41 (71.9) 55 (87.3)

Yes 96 (47.5) 16 (57.1) 27 (51.9) 34 (72.3) 47 (78.3) 34 (72.3) 41 (68.3)

χ2 (P value) 0.19 (0.662) 0.04 (0.845) 2.26 (0.133) 0.23 (0.634) < 0.01 (1.00) 5.44a (0.02) 

Histological grade1

Well or moderately 156 (89.7) 27 (48.2) 35 (47.3) 52 (64.2) 67 (74.4) 58 (71.6) 67 (74.4)

Poor or undifferentiated 18 (10.3) 6 (100.0) 9 (64.3) 7 (70.0) 14 (82.4) 9 (90.0) 13 (76.5)

χ2 (P value) 3.94a (0.047) 0.76 (0.382) < 0.01 (0.99) 0.15 (0.697) 0.75 (0.387) < 0.01 (1.00)

Lymph node counts1

0-11 34 (18.4) 7 (63.6) 7 (50.0) 12 (80.0) 15 (83.3) 13 (86.7) 16 (88.9)

≥ 12 151 (81.6) 29 (52.7) 40 (50.0) 50 (61.7) 70 (73.7) 58 (71.6) 70 (73.7)

χ2 (P value) 0.07 (0.786) < 0.01 (1.00) 1.14 (0.287) 0.33 (0.568) 0.81 (0.368) 1.18 (0.278)
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Tumor location1

Colon 147 (79.9) 28 (50.0) 38 (50.7) 53 (67.9) 62 (70.5) 60 (76.9) 68 (77.3)

Rectum 37 (20.1) 8 (80.0) 9 (47.4) 9 (50.0) 23 (92.0) 11 (61.1) 18 (72.0)

χ2 (P value) 1.99 (0.158) < 0.01(1.00) 1.35 (0.245) 3.76 (0.052) 1.17 (0.280) 0.08 (0.780)

Adjuvant chemotherapy1

No 54 (29.3) 10 (58.8) 12 (42.9) 15 (55.6) 25 (73.5) 20 (74.1) 29 (85.3)

Yes 130 (70.7) 26 (53.1) 35 (53.0) 47 (68.1) 60 (75.9) 51 (73.9) 57 (72.2)

χ2 (P value) 0.02 (0.898) 0.46 (0.499) 0.85 (0.358) 0.01 (0.971) < 0.01(1.00) 1.59 (0.207)

1The total number of colorectal cancer patients does not correspond because of missing data.
aP < 0.05. SUMF2: Sulfatase modifying factor 2; ADAMTS5: ADAM metallopeptidase with thrombospondin type 1 motif 5; PXDN: Peroxidasin; SD: 
Standard deviation.

Table 3 Methylation level of sulfatase modifying factor 2 and ADAM metallopeptidase with thrombospondin type 1 motif 5 in normal 
tissue and tumor tissue (n= 208)

Normal Tumor

n1 Median mean ± SD2 n1 Median mean ± SD2
P value

SUMF2

CpG_1 69 0.40 0.43 ± 0.15 104 0.53 0.55 ± 0.17 < 0.001

CpG_2 70 0.56 0.56 ± 0.11 104 0.76 0.73 ± 0.13 < 0.001

CpG_3 70 0.38 0.39 ± 0.11 104 0.54 0.54 ± 0.17 < 0.001

CpG_7 48 0.64 0.64 ± 0.15 80 0.87 0.81 ± 0.20 0.001

ADAMTS5

CpG_1 66 0.06 0.08 ± 0.07 95 0.19 0.25 ± 0.20 < 0.001

CpG_2 70 0.06 0.08 ± 0.06 105 0.20 0.24 ± 0.18 < 0.001

CpG_9 69 0.06 0.07 ± 0.06 91 0.21 0.25 ± 0.18 < 0.001

CpG_10.11 69 0.08 0.10 ± 0.09 103 0.30 0.34 ± 0.22 < 0.001

CpG_12 65 0.09 0.10 ± 0.08 98 0.19 0.24 ± 0.21 0.001

CpG_13 63 0.07 0.12 ± 0.14 94 0.15 0.22 ± 0.22 0.009

CpG_14.15 71 0.32 0.33 ± 0.05 105 0.43 0.44 ± 0.11 < 0.001

CpG_16 71 0.10 0.11 ± 0.04 105 0.19 0.22 ± 0.12 < 0.001

1The total number of colorectal cancer patients does not correspond because of missing data.
2Represent the ratio of DNA methylation.
SD: Standard deviation; SUMF2: Sulfatase modifying factor 2; ADAMTS5: ADAM metallopeptidase with thrombospondin type 1 motif 5.

confounding factors in the multivariable analysis of tumor tissue [HR (95%CI) = 9.85 (2.20-44.15) for 
RFS, 4.08 (1.49-11.14) for PFS, and 4.70 (1.50-14.74) for OS]. Methylation of ADAMTS5 in normal or 
tumor tissue was associated with a poor 5-year RFS (P = 0.144 for normal tissue and 0.332 for tumor 
tissue), and ADAMTS5 methylation in normal tissue was associated with a poor 5-year PFS (P = 0.176). 
Patients with a stage III+IV disease had a poor RFS, PFS, and OS even after adjustment for confounding 
factors in the multivariable analysis [HR (95%CI) = 4.82 (1.33-17.48) for RFS (normal tissue), 7.37 (2.11-
25.83) for RFS (tumor tissue), 2.83 (1.19-6.74) for PFS (tumor tissue), and 2.63 (1.02-6.81) for OS (tumor 
tissue)]. Finally, no relationship was observed between PXDN methylation status and CRC prognosis.

We assessed the associations of SUMF2 and ADAMTS5 with prognosis using a quantitative analysis 
(Table 4). To enhance statistical power, we classified the methylation level of candidate genes into 
hypermethylation and hypomethylation groups according to the median value shown in Table 3, which 
functioned as the threshold value. On the basis of consecutive 5-year RFS, PFS, and OS Kaplan–Meier 
plot validation, a clear trend of differences was observed between hypermethylation and 
hypomethylation of the SUMF2 gene at CpG_3 and CpG_7 Loci from tumor tissue. We further focused 
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Table 4 Multivariate 5-year progression and survival analysis of SUMF2 and ADAMTS5 gene

RFS PFS OS

cHR (95%CI) aHR (95%CI)1 cHR (95%CI) aHR (95%CI)1 cHR (95%CI) aHR (95%CI)2

SUMF2 in tumor tissue

CpG_3+CpG_7

Hypomethylation 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Hypermethylation 2.37 (0.86-6.55) 1.64 (0.55-4.89) 2.24 (1.03-4.85)a 2.05 (0.91-4.62) 2.56 (1.08-6.04)a 3.53 (1.35-9.26)a

ADAMTS5 in normal tissue

CpG_2

Hypomethylation 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Hypermethylation 0.15 (0.03-0.71)a 0.17 (0.03-0.95)a 0.57 (0.24-1.37) 0.54 (0.21-1.41) 0.82 (0.31-2.16) 0.94 (0.31-2.85)

CpG_13

Hypomethylation 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Hypermethylation 0.20 (0.04-0.97)a 0.16 (0.03-0.85)a 0.48 (0.19-1.19) 0.45 (0.17-1.18) 0.50 (0.19-1.30) 0.72 (0.24-2.15)

1Adjusted for sex, age, and stage.
2Adjusted for sex, age, stage, and lymph node counts.
aP < 0.05. RFS: Recurrence-free survival; PFS: Progression-free survival; OS: Overall survival; cHR: Crude hazard ratio; aHR: Adjusted hazard ratio; CI: 
Confidence interval; SUMF2: Sulfatase modifying factor 2; ADAMTS5: ADAM metallopeptidase with thrombospondin type 1 motif 5.

on the methylation statuses at CpG_3+CpG_7 to evaluate their relationship with patient prognosis. The 
5-year PFS and OS curves revealed a significant difference between the hypermethylation and 
hypomethylation of the SUMF2 gene at CpG_3+CpG_7 Loci from tumor tissue (P = 0.026 for PFS and 
0.036 for OS; Figure 4). Compared with the CpG_3+CpG_7 hypomethylation of tumor tissue, a 
significantly shorter PFS and OS were observed for CpG_3+CpG_7 hypermethylation [HR (95%CI) = 
2.24 (1.03-4.85) for PFS and 2.56 (1.08-6.04) for OS]. After adjustment for confounders in the 
multivariable analysis, the shorter OS associated with CpG_3+CpG_7 hypermethylation remained 
significant [HR (95%CI) = 3.53 (1.35-9.26)], whereas the shorter PFS associated with CpG_3+CpG_7 
hypermethylation did not [HR (95%CI) = 2.05 (0.91-4.62)] (Table 4).

The 5-year RFS curves showed a significant difference between hypermethylation and 
hypomethylation of the ADAMTS5 gene at CpG_2 and CpG_13 from normal tissue (P = 0.006 for CpG_2 
and 0.026 for CpG_13; Figure 5). Compared with CpG_2 and CpG_13 hypomethylation of normal tissue, 
a significantly longer RFS was observed for CpG_2 and CpG_13 hypermethylation [HR (95%CI) = 0.15 
(0.03-0.71) for CpG_2 and 0.20 (0.04-0.97) for CpG_13]. After adjustment for confounders in the 
multivariable analysis, the longer RFS associated with CpG_2 and CpG_13 hypermethylation remained 
significant [HR (95%CI) = 0.17 (0.03-0.95) for CpG_2 and 0.16 (0.03-0.85) for CpG_13] (Table 4).

DISCUSSION
The TNM staging system based on tumor depth, nodal status, and metastasis guides treatment 
strategies and improves the accuracy of predicting prognosis. However, the etiologically heterogeneous 
characteristics of CRC contributes to differences in survival between patients with the same TNM stage 
of CRC. Because of this heterogeneity, TNM staging of CRC requires further classification for better 
disease management. Therefore, combining other classifications related to several biologic mechanisms 
with TNM staging is required[15].

Aberrant DNA methylation of certain loci is involved in the aberrant expression of oncogenes 
through the hypomethylation of CpG islands in promoters. On the other hand, transcriptional silencing 
by the hypermethylation of CpG islands in promoters is observed in tumor-suppressor genes[16]. 
Aberrant DNA methylation elicits apoptosis[17], metastasis[18], cell adherence[19], tumor progression
[18,20], and resistance to current anticancer therapies[21]. Hypermethylation at CpG islands of genes 
has promise as a robust and valid diagnostic method for CRC[22]. Additionally, methylation-based 
molecular markers can be employed as prognostic or predictive biomarkers for CRC to improve clinical 
management; such markers can predict malignant tumor potential and survival outcomes[23].

Globally acquired DNA hypomethylation profiles represent a key step in the development and 
advancement of CRC because hypomethylation triggers genomic instability and the global loss of 
imprinting[24]. This epigenetic change contributes to the activation of oncogenes and mainly affects 
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Figure 4 Kaplan–Meier survival curves depicting the effect of hypermethylation and hypomethylation of SUMF2 at CpG_3+CpG_7 from 
tumor tissue on 5-year (A) progression-free survival and (B) overall survival of colorectal cancer patients. 

Figure 5 Kaplan–Meier survival curves depicting the effect of hypermethylation and hypomethylation of ADAMTS5 at (A) CpG_2 and (B) 
CpG_13 from normal tissue on 5-year recurrence-free survival of colorectal cancer patients.

repetitive transposable elements, such as long interspersed nuclear element-1 (LINE-1 or L1), which 
represent 17% of the human genome[25]. LINE-1 is more hypomethylated in CRC tumors compared 
with adjacent normal tissue, and this is linked to metastasis. Moreover, LINE-1 is more 
hypermethylated in the neoplastic tissue of patients treated for CRC compared with untreated patients, 
and after neoadjuvant treatment, poor survival was observed in patients with tumor LINE-1 
hypomethylation[26]. The results of a meta-analysis also support the idea that LINE-1 hypomethylation 
is considerably associated with the shortened OS and disease-free survival (DFS) of patients with CRC
[27].

In this study, we analyzed 208 of each tumor tissue samples and normal-appearing tissue samples 
from patients with CRC. CpG_3+CpG_7 hypermethylation of SUMF2 in tumor tissue was strongly 
related to poorer 5-year PFS and OS according to a Cox proportional hazards regression model and 
Kaplan–Meier curves. By contrast, CpG_2 and CpG_13 hypermethylation of ADAMTS5 in adjacent 
normal tissue was significantly associated with better 5-year RFS than CpG_2 and CpG_13 
hypomethylation of ADAMTS5 in adjacent normal tissue. Finally, no correlation was observed between 
the promoter methylation status of PXDN and patient prognosis regardless of the tissue type analyzed.

Therefore, our findings indicate that SUMF2 could be a tumor-suppressor gene, whereas ADAMTS5 
may be classified as a CRC oncogene. These findings can be applied along with current staging to 
modify the treatment of patients with CRC, and the genes discussed identified herein can serve as 
appropriate biomarkers to identify patients at a higher risk of having a poor prognosis and to indicate 
requirements for intensive follow-up.
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We revealed that ADAMTS5 methylation status in tumor-free areas adjacent to tumors was 
significantly associated with the prognosis of patients with CRC. The progressive accumulation of 
genetic mutations and DNA methylation changes in normal tissue around tumors lead to the 
development and progression of adenomas, which might become adenocarcinomas. Such alterations are 
a result of field cancerization[28]. Studies have demonstrated that the aberrant methylation of cancer-
related genes could serve as epigenetic markers for CRC risk owing to the field of susceptibility[29], and 
such findings are consistent with our finding that compared with abnormal DNA methylation in tumor 
tissue, abnormal DNA methylation in adjacent normal tissue is highly correlated with an unfavorable 
prognosis after surgical resection.

SUMF2, located in the luminal space of the endoplasmic reticulum, is a member of the formylglycine-
generating enzyme family and regulates the activity of sulfatase and the formation of formylglycine
[30]. According to a whole-genome microarray expression study, Ala62Thr changes in ZNF365 isoform 
D are related to the altered expression of SUMF2 in patients with Crohn disease[31]. According to Liang 
et al[32], SUMF2 was one of the main genes with significant mutation in CRC. No report has examined 
the association between SUMF2 methylation status and the prognosis of patients with CRC. ADAMTS 
family members containing disintegrin domains, metalloproteinases, and thrombospondin motifs likely 
contribute to malignant transformation such as cancer cell adhesion, fusion, migration, proliferation, 
and metastasis in CRC through their modification of the structure and function of the extracellular 
matrix (ECM)[33] and desmoplastic reactions (the overgrowth of fibrous connective tissue around 
carcinoma cells)[34]. The expression level of ADAMTS5 was increased in late CRC stages, and 
ADAMTS5 may have served as the fundamental component of tumor invasion through degrading ECM 
so as to promote tumor progression to more advanced stages of CRC[35]. The ratios of lymphatic 
invasion and lymph node metastasis were significantly higher in patients with CRC and high 
ADAMTS5 expression, but such expression did not affect OS and DFS[36]. However, Li et al[37] 
suggested that ADAMTS5 overexpression inhibited the invasion and migration of CRC, and ADAMTS5 
was more hypermethylated in tumor tissue compared with normal tissue, corresponding to poor OS 
and DFS. This result was not observed in our research. PXDN, which regulates cell plasticity and 
remodels the ECM by encoding ECM protein with peroxidase activity[38], engages in epithelial 
mesenchymal transition(EMT)[39]. EMT is a process by which epithelial cells lose cell polarity and 
cell–cell adhesion and acquire migratory and invasive capabilities to become mesenchymal cells; this 
activity has shown to occur during the initiation of metastasis[40]. A few studies have studied PXDN in 
the context of cancer; for example, the increased expression of PXDN has been shown in patients with 
melanoma[41] as well as in patients with brain[42], breast[43], ovarian[44] or prostate[45] cancer. No 
reports have examined the correlation between PXDN expression and the prognosis of patients with 
CRC. Thus, we investigated whether PXDN methylation status had an impact on CRC. We did not 
identify any correlation of PXDN methylation status in tumor tissue or adjacent normal tissue with CRC 
prognosis.

Our study has several advantages. The candidate gene approach was used in a rigorous approach 
comprising three steps. We further conducted quantitative analysis determined by what we observed 
from an MS-PCR. EpiTYPER DNA methylation analysis is a quantitative method of assessing 
methylation status. It also can confirm the degree of methylation at different CpG sites, which might be 
conductive to accurately identifying sites that affect CRC prognosis. This study was not without 
limitations. The results should be interpreted with caution on account of the small sample size. In the 
future, a larger prospective cohort study should be conducted to confirm our results. Furthermore, the 
participants were recruited from a single medical center in Taiwan. The effectiveness of the candidate 
genes as prognostic biomarkers for CRC should be validated in other ethnic populations. Finally, we did 
not detect the expression levels of selected genes, meaning we could not prove that the status or extent 
of methylation directly influenced gene expression.

CONCLUSION
Current clinical staging systems do not allow physicians to precisely evaluate the prognosis and 
outcomes of patients with CRC. Novel methylation biomarkers in tumor tissue and adjacent normal 
samples were identified in our study, providing a novel insight into how these markers could be used 
for CRC prognosis estimations. We anticipate that large-scale and independent cohort studies will 
clarify the utility of these novel markers and address whether clinical management can be adjusted 
based on supplementary information on the RFS, PFS, and OS of patients with CRC. We propose invest-
igating these new biomarkers in patients with CRC to assist with clinical decision-making.
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ARTICLE HIGHLIGHTS
Research background
The tumor–node–metastasis (TNM) cancer staging system provides clinical guidelines for the classi-
fication of tumors and prediction of outcomes. However, patients within the same stage can have 
markedly different outcomes. For example, some patients with an early disease stage of colorectal 
cancer (CRC) experience relapse after surgical treatment. Prognostic factors related to relapse or 
progression should be considered to improve treatment selection. The combination of several novel 
prognostic biomarkers involving epigenetic changes may aid CRC prognosis predictions.

Research motivation
To investigate the impact of the differential DNA methylation of novel candidate genes on CRC 
prognosis.

Research objectives
This study focused on the association between CRC prognosis and the status and level of differential 
DNA methylation of candidate genes.

Research methods
In total, 208 patients with CRC were recruited to assess the relationship between the methylation status 
of selected genes and clinical outcomes after surgical resection. The methylation statuses of SUMF2, 
ADAMTS5, and PXDN in tumor tissue and tumor-free adjacent areas were evaluated through a 
methylation-specific polymerase chain reaction (MS-PCR), and the methylation degrees of SUMF2 and 
ADAMTS5 were assessed using EpiTYPER DNA methylation analysis. The relationships of gene 
methylation with recurrence-free survival (RFS), progression-free survival (PFS), and overall survival 
(OS) were evaluated using a Cox proportional hazards model and Kaplan–Meier survival curves.

Research results
CpG_3+CpG_7 hypermethylation of SUMF2 from tumor tissue was associated with significantly shorter 
PFS and OS compared with CpG_3+CpG_7 hypomethylation. CpG_2 and CpG_13 hypermethylation of 
ADAMTS5 from normal tissue was associated with a significantly longer RFS compared with CpG_2 
and CpG_13 hypomethylation. No significant difference was noted in the association between the 
methylation status of PXDN in both tissue types and CRC prognosis.

Research conclusions
These results can be applied to develop useful prognostic biomarkers of CRC, especially the methylation 
of certain CpG islands of candidate genes. The results can add value to current cancer staging systems.

Research perspectives
Examining the differential DNA methylation of candidate genes could aid in clinical decision-making 
related to CRC. Further validation and investigations involving larger cohorts are required to confirm 
the utility of these new epigenetic biomarkers and determine whether they can be used to improve the 
RFS, PFS, and OS of patients with CRC.
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