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Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a 
worldwide prevalence of approximately 1%. Both disorders present chronic and 
deteriorating prognoses that impose a large burden, not only on patients but also 
on society and health systems. These mental illnesses share several clinical and 
neurobiological traits; of these traits, oligodendroglial dysfunction and alterations 
to white matter (WM) tracts could underlie the disconnection between brain 
regions related to their symptomatic domains. WM is mainly composed of heavily 
myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping 
membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment 
allows fast and efficient conduction of nerve impulses through the nodes of 
Ranvier, improving the overall function of neuronal circuits. Rapid and precisely 
synchronized nerve impulse conduction through fibers that connect distant brain 
structures is crucial for higher-level functions, such as cognition, memory, mood, 
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and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes 
have been found in postmortem samples from patients with schizophrenia or bipolar disorder, 
and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic 
level in both disorders. In this work, evidence regarding these multilevel alterations in 
oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key 
functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is 
highlighted. The molecular components of the axo-myelin unit could be important targets for 
novel therapeutic approaches to schizophrenia and bipolar disorder.
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Core Tip: Schizophrenia and bipolar disorder are multifactorial neuropsychiatric entities that share clinical 
manifestations as well as alterations to brain structure and function, genetic characteristics, and neurobio-
logical pathways. Among the main pathophysiological mechanisms shared by these conditions is 
oligodendroglial dysfunction. Scientific evidence that ranges from the microscale cellular and subcellular 
levels to the macroscale connectomic level strongly supports overall myelin dysfunction and brain 
disconnection as hallmarks of schizophrenia and bipolar disorder.
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INTRODUCTION
Currently, it is widely understood that optimal functioning of the central nervous system (CNS) 
depends on synaptic connections and multidirectional interactions between neuronal and glial cells. 
One of the closest glial-neuronal interactions in the CNS occurs between oligodendrocytes and neurons 
through myelination. Myelin ensheathment induces axonal compartmentalization to form nodes of 
Ranvier, i.e., specialized domains that increase the conduction speed of action potentials. The saltatory 
propagation and speed of these electrical impulses depends on axon caliber, but primarily on myelin 
features such as the number and length of internodes as well as myelin width and compaction[1]. 
Therefore, myelination allows neuronal circuits to be finely tuned and synchronized and, as such, plays 
a key role in maintaining the proper connectivity between brain structures to support higher integrating 
processes, such as perception, memory, or cognition. Furthermore, through myelination, oligodendr-
ocytes also provide metabolic support to axons[2,3], contributing to their structural and functional 
integrity, which is a requirement for homeostasis of the human brain.

Myelination is a neurodevelopmental process that begins during the third trimester of pregnancy and 
increases steadily during childhood and early youth until it reaches a slow-increasing plateau in adult 
life[4,5]. This process is adaptive, with neural activity being one of the main factors driving myelin 
plasticity[6]. Moreover, because the myelin sheath is a specialized structure made up of multiple layers 
of plasma membrane, from which most cytoplasm is extruded, its composition is enriched with lipids 
(approximately 70% of its content) and proteins[7]. These proteins have important functional roles, such 
as providing anchorage between myelin lamellae, attaching axons and myelin at paranodal regions, 
signaling and interacting with cytoskeletal elements within oligodendrocytes[7,8]. As with any other 
cell type, the plasma membrane in oligodendrocytes is subject to homeostatic turnover; thus, to manage 
this large energy requirement, their metabolic rate is higher than that of other cell types[9]. This charac-
teristic renders myelinating oligodendrocytes more vulnerable to cellular stress and oxidative damage 
generated by reactive oxygen/nitrogen species[10]. In the case of injury and myelin loss (demyeli-
nation), endogenous repair mechanisms are triggered and remyelination occurs. For either develop-
mental/adaptive myelination or remyelination to occur, oligodendrocyte precursor cells (OPCs) 
distributed along the brain must differentiate and mature to acquire myelinating capacity[11,12]. 
Oligodendrogenesis involves differential expression of proteins and other molecules and a dramatic 
increase in morphologic complexity, which implies crucial and extensive rearrangements of the 
oligodendroglial cytoskeleton[13,14].
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Due to the intrinsic complexity of oligodendrocyte morphology and functioning and the importance 
of myelination/remyelination processes for CNS homeostasis, impairments in oligodendroglial lineage 
may be associated with brain disorders. Within the last two decades, great effort has been made to 
determine and describe neuronal and glial alterations that contribute to the etiology of mental illnesses
[15-18]. Of the studied mental disorders, we focused on schizophrenia and bipolar disorder because 
these neuropsychiatric illnesses present a chronic and deteriorating course that imposes a large burden, 
not only on patients but also on society and health systems. These disorders are long-lasting, severe 
mental health conditions that share genetic characteristics and alterations to brain structure and 
function, and neurobiological pathways[19-21]. Among the main pathophysiological mechanisms 
shared by these conditions is glial dysfunction[22,23], specifically related to myelination, which is the 
focus of this text.

Taking the above information into account, the aim of this work was to gather and discuss the 
evidence that myelin dysfunction at the cellular and subcellular levels may underlie the white matter 
(WM) macroscale connectome alterations evidenced by neuroimaging in schizophrenia and bipolar 
disorder, thereby supporting the disconnection hypothesis that explains the symptomatic domains of 
these clinical entities. For this purpose, we first provide a brief overview of the main structural features 
of myelin. Next, we present the evidence of myelin alterations at the microscale levels (cellular and 
subcellular) found in postmortem samples from schizophrenia and bipolar disorder patients. Then, we 
briefly compare the main findings at these levels. Finally, we review evidence at the macroscale level 
from neuroimaging techniques and find consistent support for dysconnectivity among key brain regions 
in these disorders. These neuroimaging techniques are the main methods that allow us to obtain 
information about brain structure and function from patients during the course of their illnesses.

BRIEF OVERVIEW OF MYELIN STRUCTURAL FEATURES
Each myelin internode is a specialized structure of multiple membrane lamellae. The first membrane 
layer-closest to the axon-is called the adaxonal membrane. Between the axon and the adaxonal 
membrane is the periaxonal space[7]. Flanking each internode, paranodal loops make contact with the 
axon through the cell adhesion proteins neurofascin 155 (NF155; on the oligodendrocyte) and contactin-
associated protein 1 (Caspr1)/contactin 1 (on the axon). In juxtaparanodal regions, myelin-axon 
interactions are mediated by contactin 2 and Caspr2, and the voltage-gated K+ channels Kv1.1/1.2 are 
enriched at the axolemma. Contactin’s cytoplasmic domains provide anchors for scaffold molecules of 
the paranodal-nodal-paranodal cytoskeleton, specifically for the 4.1B protein, the αII/β2SP heterotet-
ramers (both actin-interacting proteins) and ankyrin B (AnkB)[24].

In a mature myelin internode, the adaxonal layer is relatively loose compared with the tightly 
compacted myelin lamellae, and its cytoplasmic content is slightly higher, which allows the functional 
presence of signal transduction molecules and oligodendroglial cytoskeletal components such as septin 
filaments[25]. These components are also present at paranodal loops. In contrast, the structure of 
compact myelin is almost withdrawn from the cytoplasm; thus, intracellular membranes are in tight 
apposition, with myelin basic protein (MBP) playing a key role in regulating the hydrophobic forces 
between them[7].

As previously mentioned, the molecular composition of myelin is highly enriched in lipids, which 
account for approximately 70% of its wet weight. Myelin membranes have a higher cholesterol content 
than other membranes (at approximately 1.6-fold) and are characteristically enriched with galactosphin-
golipids and plasmalogens, which are asymmetrically distributed among the bilayer leaflets. The 
extracellular leaflet is enriched in galactosylceramide and its sulfated form, sulfatide, as well as 
phosphatidylcholine and sphingomyelin, whereas the intracellular leaflet is rich in ethanolamine 
plasmalogen and other phospholipids. The lipid components of the extracellular leaflet form discrete 
domains known as lipid rafts, which often contain membrane proteins and are frequently involved in 
signaling and/or myelin component turnover. For further review of myelin lipids, see[26,27].

Myelin-specific structural proteins also are distributed according to their functions. Interestingly, at 
least five out of eleven CNS myelin-specific proteins are categorized as intrinsically disordered proteins. 
This set of physicochemical attributes accounts for their flexibility and multifunctionality, which are 
important for a plastic structure such as myelin[28]. An exhaustive description of the structural and 
functional features of every myelin-specific protein is beyond the scope of this review and has been 
further addressed elsewhere[8,29]. Figure 1 illustrates the main CNS myelin-specific proteins at their 
common locations in the myelin sheath, as well as the lipidic composition of myelin membranes.

EVIDENCE OF MYELIN ALTERATIONS AND OLIGODENDROGLIAL DYSFUNCTION IN 
POSTMORTEM SAMPLES OBTAINED FROM SCHIZOPHRENIA PATIENTS
The analysis of postmortem samples provides valuable information about the structural and 
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Figure 1 Myelin in the central nervous system. Left, a schematic representation of central nervous system (CNS) cells and their multidirectional interactions. 
Right, the main protein and lipid components of CNS myelin. Proteomic studies have revealed altered expression of myelin proteins in postmortem brain samples 
from patients with schizophrenia or bipolar disorder. MBP: Myelin basic protein; CNP: 2’,3’-cyclic nucleotide 3’-phosphodiesterase; PLP: Proteolipid protein; MOG: 
Myelin-oligodendrocyte glycoprotein; MAG: Myelin-associated glycoprotein.

biochemical alterations present in the brains of patients with neuropsychiatric disorders. In the last 20 
years, several reports by Uranova et al[30] have described the main ultrastructural alterations in 
oligodendrocytes and myelinated fibers found in patients with schizophrenia.

With electron microscopy and morphometry or with a stereological approach and Nissl-stained 
sections, they extensively analyzed the prefrontal cortex (PFC), specifically the gray matter layers of 
Brodmann’s area 9 (BA9) and BA10[30-33] and their adjacent WM[34-36], as well as the caudate nucleus
[21,33,37,38], hippocampus[33,38,39] and anterior putamen[40].

Their analysis of myelinated fibers found concentric lamellar bodies and interlamellar abnormal 
inclusions, swelling of periaxonal oligodendrocyte processes and ultrastructural signs of axonal atrophy
[21,33,38,39]. They characterized six types of abnormal myelinated fibers that were present in patients 
with schizophrenia and that could correlate with the predominant presence of positive or negative 
symptoms, age or illness duration[35].

Oligodendrocytes showed consistent signs of dystrophia, apoptosis and/or necrosis, and in most of 
the studies, their numerical density was significantly reduced in patient samples[31,33,37,40]. 
Oligodendrocyte clusters, which are thought to be involved in activity-dependent myelination, were 
also consistently reduced[37,40]. In the oligodendrocytes, mitochondria were the main altered organelle, 
with a significant reduction in numeric and volume density and even intramitochondrial accumulation 
of lipofuscin granules[30,34,36,38]. These findings suggest that not only is the numerical density of 
oligodendrocytes affected in schizophrenia, but that their energy and redox metabolism is also 
compromised.

Interestingly, both perineuronal and pericapillar oligodendrocytes showed signs of dystrophy in 
patient samples[33,34] suggesting that oligodendrocytes may be involved both in the disrupted 
transmission of neuronal information and in metabolic dysregulation. In addition, these studies found 
dystrophic ameboid microglia adjacent to dystrophic oligodendrocytes[30,34] and myelin concentric 
lamellar bodies engulfed by astrocytes[21], implying the involvement of other glial cells in myelin 
pathology in schizophrenia patients.

Hof et al[41,42] found a significant decrease in both the total number of oligodendrocytes and the 
number of oligodendrocytes expressing the 2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP) marker 
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in cortical layer III of BA9 and the WM of the superior frontal gyrus with a stereological analysis on 
samples from patients with schizophrenia. Additionally, the number of oligodendrocyte clusters in the 
WM was significantly reduced[42]. Other studies reported a decreased number of oligodendrocytes in 
the anterior principal thalamic nucleus[43,44], centromedian thalamic nucleus[44], thalamic internal 
capsule[45], hippocampus[46,47] and anterior cingulate WM[48] of schizophrenia patient samples. In 
the latter structure, oligodendrocytes expressing disintegrin and metalloproteinase domain-containing 
protein 12 (ADAM12) were examined[48]. ADAM12 is predominantly expressed in oligodendrocytes 
and has been suggested to play a role in myelination and neurodevelopmental processes, as well as in 
higher cognitive functions[49].

Not all neuropathological studies of postmortem schizophrenia brain samples showed significant 
differences in oligodendrocyte densities, e.g., in the cingulum bundle[50], BA9 adjacent WM[23,51], and 
BA10 adjacent WM[34], no changes in oligodendrocyte cell densities were found between schizophrenia 
and control samples. In contrast, an increased density of prohibitin(+)-oligodendrocytes was reported in 
the right dorsolateral prefrontal WM of schizophrenia patients[52]. The authors suggested that 
prohibitin may be upregulated in oligodendrocytes as a result of mitochondrial stress and/or 
dysfunction in schizophrenia.

mRNA expression of neural/glial antigen 2 (NG2) was augmented in the putamen of schizophrenia 
patients[53], suggesting that there could be an increased density of OPCs. Additionally, a study by 
Kerns et al[45] supported the hypothesis that in schizophrenia OPCs may fail to exit the cell cycle and 
differentiate into mature myelinating oligodendrocytes. In BA9 WM, there was no significant difference 
in NG2(+)-cells but a significant reduction in cells expressing oligodendrocyte transcription factor 2 
(OLIG2), suggesting an overall reduction in the oligodendroglial lineage[54].

MYELIN SUBCELLULAR/BIOCHEMICAL ALTERATIONS IN POSTMORTEM SAMPLES OF 
PATIENTS WITH SCHIZOPHRENIA
Proteomic approaches have been used to determine that the main myelin structural proteins are differ-
entially expressed in schizophrenia postmortem brain samples; in most of the studies, these proteins 
were significantly downregulated. For most of the myelin structural proteins, altered transcriptomic 
levels have consistently been reported[53,55-57], and in some cases, single-nucleotide polymorphisms 
(SNPs) at their codifying genes have been associated with schizophrenia (Table 1). This is the case for 
MBP[58-61], CNP[57,60-63], proteolipid protein (PLP)[60,62,64], myelin-associated glycoprotein (MAG)
[62,64,65], and transferrin[66-68]. The latter is not a structural myelin protein, but is essential for 
oligodendrocyte homeostasis and survival[69,70]. Downregulation of myelin oligodendrocyte 
glycoprotein (MOG)[58,60-62,71] and claudin-11[62,64] at the proteomic and transcriptomic levels has 
been reported, although no SNPs of the corresponding codifying genes have been associated with 
schizophrenia. Several brain regions have been analyzed by proteomic studies, such as the dorsolateral 
PFC BA46[59,62,71], PFC BA9 gray and WM[68], PFC BA10[60], anterior PFC[65], orbitofrontal cortex
[64], anterior temporal lobe[58], corpus callosum[61], cerebellum, posterior cingulate cortex and caudate 
nucleus[63].

Consistent with findings of overall downregulation of myelin-specific proteins, mRNA levels of 
OLIG1[22], OLIG2[22,55,72-74] and SOX10[22,55,72], corresponding to oligodendroglial lineage trans-
cription factors, were significantly reduced in postmortem schizophrenia brain samples. Additionally, 
the expression of the NG2, PGDFRA and GALC genes (the former two coding for markers of OPCs and 
the latter for a marker of immature oligodendrocytes), was consistently downregulated in patient 
samples[22]. Quaking (QKI), an RNA-binding protein with a key role in the posttranscriptional 
regulation of myelin-specific genes, mRNA levels were significantly reduced in postmortem samples of 
schizophrenia patients[72,75-77]. Moreover, SNPs in both OLIG2 and QKI genes have been associated 
with this mental disorder.

In addition to the previously mentioned gene association studies, a functional glial-specific gene set 
analysis based on genome-wide association data reported three main oligodendroglial gene sets, i.e., 
lipid metabolism, gene transcription and oxidation–reduction, which were strongly associated with an 
increased risk for schizophrenia[78]. Furthermore, gene expression profile analysis of CNP(+)-cells 
revealed nine differentially regulated signaling pathways associated with oligodendrocyte differen-
tiation[54], strongly suggesting oligodendrogenesis impairment in schizophrenia.

Proteomic studies of schizophrenia-derived postmortem brain samples have also consistently 
revealed that many cytoskeletal components are differentially expressed in this disorder. Dynamic 
cytoskeletal rearrangements are crucial for oligodendrogenesis since this process implies a dramatic 
increase in oligodendroglial morphologic complexity. Additionally, actin-cytoskeleton dynamic 
assembly and disassembly are critical for axon ensheathment during the myelination process[79-81]. 
Several actin-interacting proteins are involved in these rearrangements, including gelsolin and cofilin, 
actin filament-severing proteins that drive actin cytoskeleton disassembly, which is essential for proper 
myelin wrapping[79]. Gelsolin is specifically expressed in myelin-forming cells[82] and is present in the 
different stages of oligodendroglial lineage differentiation[83]. Transcriptomic and proteomic analyses 
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Table 1 Studies that reported single-nucleotide polymorphisms associated with schizophrenia in myelin/oligodendrocyte genes

Protein name Gene SNPs Ref.

Myelin basic protein MBP rs12458282; rs2008323; rs721286 Baruch et al[185], 2009 

Peirce et al[186], 2006

Voineskos et al[187], 2008

2’,3’-Cyclic nucleotide 3’-phosphodiesterase CNP rs2070106

Voineskos et al[175], 2013

Proteolipid protein PLP rs475827 Qin et al[188], 2005

Wan et al[189], 2005

Yang et al[190], 2005

Myelin-associated glycoprotein MAG rs720308; rs720309; rs756796; rs2301600

Voineskos et al[187], 2008

Qu et al[191], 2008Transferrin TF rs3811655; rs448115

Huo et al[192], 2019

Georgieva et al[73], 2006 

Voineskos et al[175], 2013

Huo et al[192], 2019

Oligodendrocyte lineage transcription factor 2 OLIG2 rs1059004; rs9653711 

Komatsu et al[74], 2020

Quaking QKI rs2784865 Voineskos et al[175], 2013

SNP: Single-nucleotide polymorphisms.

of postmortem brain samples have shown that both gelsolin[61,68,72] and cofilin[59,63,64] are dysreg-
ulated in schizophrenia. Similarly, the oligodendrocyte-specific protein ermin, also known as 
juxtanodin, is downregulated in the anterior temporal lobe and upregulated in the dorsolateral PFC in 
patients with schizophrenia[58,59]. Ermin is an F-actin binding protein that is expressed at late stages of 
oligodendrocyte maturation. It may play a key role in the formation of multiple oligodendroglial 
processes and the dramatic changes in morphology as these cells acquire the capacity for myelination
[84,85].

Septin heteromeric filaments (SEPT2/SEPT4/SEPT7/SEPT8) form at the adaxonal myelin layer and 
at paranodal loops. These filaments act as molecular scaffolds, mediating axo-glial signaling and 
compartmentalization of mature myelin. Their loss or deficit has been associated with the formation of 
myelin outfoldings that impair the rapid propagation of nerve impulses[25,86,87]. The four septins 
involved in these filaments are differentially expressed in proteomic analyses of postmortem schizo-
phrenia brain samples[62,63].

α/β-Spectrin oligomers are important components of the membrane-bound cytoskeleton at the 
axolemma. At the paranodal and juxtaparanodal regions of the axon beneath a myelin internode, these 
oligomers interact with proteins such as 4.1B, adducin and AnkB to form a scaffold that mediates the 
interaction of the cytoplasmic tails of contactins and other axo-glial adhesion molecules with the actin 
filaments and the actin rings found along the axon. These proteins are also relevant because they are 
crucial for the paranodal-nodal-paranodal cytoskeleton, which is a specific arrangement of cytoskeletal 
protein oligomers and polymers underlying the proper assembly and plasticity of the nodes of Ranvier
[24]. All of these proteins are differentially regulated in schizophrenia postmortem brain samples[58,59,
62-64].

Neurofilaments are important axonal cytoskeletal components. They belong to the intermediate 
filament IV category, and their composition is heteromeric, with light (NEFL), medium (NEFM) and 
heavy (NEFH) polypeptides as their main constituents. Internexin (INA) is also a component of these 
axonal structural filaments. Repelling forces among negatively charged phosphorylated residues on the 
neurofilaments contribute to the enlargement of axon caliber, e.g., at internodes (Figure 2). Thus, 
phosphorylation/dephosphorylation of neurofilament polypeptides is a mechanism that regulates axon 
caliber, which influences molecular trafficking as well as the speed of nerve impulse conduction. 
Proteomic studies have found that the three neurofilament polypeptides NEFL, NEFM, and NEFH, as 
well as INA, are differentially regulated in postmortem brain samples from schizophrenia patients[57,
61-64].

As expected, the actin and tubulin monomeric components of microfilaments and microtubules, 
respectively, as well as various microtubule-associated proteins, are altered in schizophrenia brain 
samples[58,61-63]. The cytoskeleton mediates the essential functions of every cell in the organism. In the 
axo-myelin functional unit[88], the cytoskeleton is crucial for the following: Oligodendrogenesis; myelin 
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Figure 2 Main cytoskeletal components of the myelinated axon. Proteomic approaches revealed alterations in most of these components in postmortem 
brain samples of schizophrenia patients.

formation, turnover and plasticity; assembly and remodeling of axonal specialized domains, such as the 
axon initial segment and nodes of Ranvier; myelin and axonal compartmentalization; anchorage for cell 
adhesion molecules involved in axo-glial junctions; and scaffolds for molecules involved in signal 
transduction.

As most of the myelin structural proteins are affected by schizophrenia and most of the cytoskeletal 
components are dysregulated, it is plausible to infer that overall dysfunction of the axo-myelin unit may 
underlie the compromised integrity of gray and WM and thus the functional disconnection observed in 
schizophrenia.

Metabolic dysfunction in schizophrenia has been suggested by positron emission tomography (PET) 
and magnetic resonance imaging (MRI), and mitochondrial alterations have been documented as 
mentioned above. At the proteomic level, dysregulation in the expression of enzymes involved in 
energy metabolism and the antioxidant system has been observed. For example, Martins-de-Souza et al
[59,89] found alterations in proteins involved in glycolysis (fructose-bisphosphate aldolase C and 
phosphoglycerate kinase 1), the Krebs cycle (citrate hydrolyase), the malate-aspartate shuttle (cytosolic 
malate dehydrogenase) and oxidative phosphorylation (mitochondrial ATP synthase F1 and F0 
complexes) in postmortem dorsolateral PFC samples from schizophrenia patients[59,89]. In addition, 
four subunits of mitochondrial respiratory complex I (NADH dehydrogenase [ubiquinone] (NDU) 
flavoprotein 2 (NDUFV2), iron-sulfur protein 3 (NDUFS3) and 6 (NDUFS6), and 1 beta subcomplex 
subunit 5 (NDUFB5)) are downregulated in the anterior temporal lobe of schizophrenia patients[58,89].

Increased amounts of oxidative reactive species are produced under high energy demand or 
mitochondrial dysfunction, as is suggested to occur in schizophrenia. Therefore, antioxidant enzymatic 
systems in schizophrenia are expected to be upregulated to counteract oxidative damage. However, the 
expression levels of three members of the glutathione transferase (GST) family (GSTM3, GSTTLp28, and 
GSTP1), carbonyl reductase 1 (CBR1), carbonyl reductase 3 (CBR3) and quinoid dihydropteridine 
reductase (QDPR), are reduced in the thalamus and PFC of schizophrenia patients (reviewed in[89]). As 
these results were obtained from brain homogenates, an interesting follow-up would be to assess 
whether these metabolic and redox alterations are present in oligodendrocytes. For this purpose, 
enriched cultures of patient-derived oligodendrocytes differentiated from induced pluripotential stem 
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cells (iPSCs) and/or cocultures of these induced oligodendrocytes with neurons and other glial cells 
could be useful in vitro tools for studying alterations in the oligodendroglial lineage in schizophrenia.

MYELIN ALTERATIONS AND OLIGODENDROGLIAL DYSFUNCTION EVIDENCE IN 
POSTMORTEM SAMPLES OBTAINED FROM BIPOLAR DISORDER PATIENTS
Uranova et al[51] also analyzed samples from patients with bipolar disorder, examining BA9 of the PFC, 
layers III and VI and the adjacent WM, BA10, the caudate nucleus and the anterior putamen. A 
stereological approach with Nissl-stained samples revealed a significant reduction in the numerical 
density of oligodendrocytes in the caudate nucleus and in the gray matter layers of BA9[32,37,51]. In the 
adjacent WM, they found no difference between bipolar disorder samples and samples from control 
subjects[51]. The number of oligodendrocyte clusters was also significantly reduced in the caudate 
nucleus[37] and in the anterior putamen, but the latter difference was observed only in male subjects
[40]. Electron microscopy analysis of the samples showed ultrastructural signs of apoptosis and necrosis 
of oligodendrocytes[21].

Oligodendrocyte numbers were significantly reduced in the thalamic anterior principal and centro-
median nuclei, in postmortem samples from bipolar disorder patients with a clinical history of psychotic 
episodes[44]. The age-related increase in oligodendrocyte number observed in control subjects was 
attenuated in this group of patients. The latter effect was also observed by Vostrikov and Uranova[90]. 
Vostrikov and Uranova[90] also found significantly reduced oligodendrocyte densities in samples from 
BA9 Layer VI from bipolar disorder patients younger than 50 years old compared with those from 
corresponding age-matched controls[90]. Hayashi et al[91] found a significant reduction in OLIG2(+)-cells 
using a flow cytometry approach in unfixed postmortem gray matter BA10 samples from bipolar 
disorder patients, which suggests an overall deficit in the oligodendroglial lineage. S100B(+)-
oligodendrocyte density was decreased in the left alveus of the hippocampus from bipolar disorder 
patients[92]. In contrast, Hercher et al[23] found increased oligodendrocyte density and CNP protein 
levels in BA9-adjacent WM in bipolar disorder patients compared with control samples. A further study 
also showed an increase in oligodendrocyte density along with deficits in axonal markers in prefrontal 
WM in bipolar disorder patients[93]. In a systematic review of postmortem brain studies in bipolar 
disorder, Gigase et al[94] found no difference in either neurons or glial cells and suggested that findings 
from existing studies should be validated.

Significantly less intense myelin staining of the deep prefrontal WM was shown in bipolar disorder 
patients than in control subjects[95]. Additionally, MBP immunostaining revealed decreased 
myelination of the hippocampal formation in female bipolar disorder patients than a corresponding sex-
matched control group[96]. In contrast, male patients showed increased MBP staining in the superior 
medullary lamina, which suggests sex differences in myelin alterations[96]. To the best of our 
knowledge, no ultrastructural analysis of myelinated fibers has been conducted on bipolar disorder 
postmortem samples.

Perineuronal oligodendrocytes are located in the cerebral gray matter in close proximity to neuronal 
perikarya and less frequently near dendrites and neurites. Although their morphology is indistin-
guishable from that of other oligodendrocytes, it remains unknown whether perineuronal oligo-
dendrocytes have a similar or different cell signature from that of typical myelinating oligodendroglial 
cells[97]. Bipolar disorder patients showed cytochemical abnormalities of prefrontal perineuronal 
oligodendrocytes, correlating with cytochemical alterations of calbindin-containing GABAergic neurons 
and changes in gene expression levels[98].

MYELIN SUBCELLULAR/BIOCHEMICAL ALTERATIONS IN POSTMORTEM SAMPLES OF 
PATIENTS WITH BIPOLAR DISORDER
Myelin structural proteins MBP, CNP, PLP and MOG were downregulated in postmortem brain 
samples from bipolar disorder patients[60]. Consistent downregulation at the transcriptomic level was 
reported for MBP and CNP, and at this level MAG, PLP, CLDN11, MOG, and MOBP were also downreg-
ulated[22]. Reduced mRNA levels were also reported for TF[22,53]. The gene expression of the 
oligodendroglial lineage transcription factors OLIG1, OLIG2 and SOX10 was downregulated. 
Additionally, transcript levels of NG2 and GALC, which correspond to markers of OPCs and immature 
oligodendrocytes, respectively, were significantly lower in bipolar disorder samples than in control 
samples[22].

Differential expression of cytoskeletal components of the axo-myelin unit has been reported in 
postmortem brain samples of bipolar disorder patients. In the WM adjacent to BA9, the β-tubulin 
protein level assessed by Western blot was significantly lower in patient samples than in controls[93]. A 
proteomic approach found that the NEFL level was downregulated in bipolar disorder samples of BA10
[60]. Similarly, the neurofilament units NEFL and NEFM and INA, α-spectrin (SPTAN1), SEPT11 and 



Valdés-Tovar M et al. Myelin dysfunction in SZ and BD

WJP https://www.wjgnet.com 272 February 19, 2022 Volume 12 Issue 2

tubulin polymerization-promoting protein (TPPP) were downregulated, whereas β-actin (ACBT) and 
the ARPC5 subunit of the actin-binding Arp2/3 complex were upregulated in hippocampal samples 
from bipolar disorder patients[99,100]. The actin-bundling protein fascin (FASC) was also dysregulated 
in these samples[99]. In samples of the dorsolateral PFC, NEFL, NEFM and INA were consistently 
downregulated, while α- and β-tubulins as well as SEPT5, SEPT6 and SEPT11 were upregulated[67].

As in schizophrenia, alterations in metabolic and redox pathways have been described for bipolar 
disorder. Studies using magnetic resonance spectroscopy have found a reduction in phosphocreatine 
and ATP in the frontal lobes and basal ganglia, while an increase in lactate levels was reported in 
postmortem gray matter samples from bipolar disorder patients. In addition, mitochondrial structure is 
altered, and mutations or polymorphisms in mitochondrial DNA associated with the respiratory chain 
have been reported[101]. Furthermore, high levels of lipid peroxidation, nitric oxide concentration, and 
DNA and RNA oxidative damage were found in patient samples[102]. There is evidence of dysfunc-
tional attachment of the hexokinase 1 protein to the outer mitochondrial membrane in patient samples, 
which results in abnormal generation of mitochondrial reactive oxygen species and cellular oxidative 
stress[103]. Additionally, impairment of redox modulation pathways in the frontal cortex is found in 
bipolar disorder patients[104]. The antioxidant molecule glutathione has been reported at low concen-
trations in some brain regions and could contribute to oxidative stress[105,106]; however, some patients 
present a significant increase in this molecule in the anterior cingulate cortex[107]. These apparently 
contradictory results could reflect differential redox regulation or antioxidant capacity in diverse brain 
regions.

Due to their high metabolic rate and high lipid content in myelin-forming membranes, oligo-
dendrocytes are especially vulnerable to oxidative stress. Therefore, a microenvironment prone to the 
generation of high amounts of oxidative molecules and an impaired antioxidant capacity, which seems 
to be characteristic of patients with schizophrenia or bipolar disorder, would certainly contribute to the 
dysfunction of the axo-myelin unit and subsequently impact the proper conduction of nerve impulses.

COMPARISON OF ALTERED FEATURES OF OLIGODENDROCYTES AND MYELIN IN 
SCHIZOPHRENIA AND BIPOLAR DISORDER
Several features are similarly altered by schizophrenia and bipolar disorder at the cellular level. 
Ultrastructural studies have revealed signs of oligodendrocyte apoptosis and necrosis[21], 
oligodendrocyte numerical density was significantly reduced in the caudate nucleus[37] and in BA9 
gray matter layers of the PFC[32,51], and significantly fewer oligodendrocyte clusters were found in the 
caudate nucleus[37] and the anterior putamen[40]. In BA9-adjacent WM, a stereological analysis found 
no differences in oligodendrocyte numerical density in either schizophrenia or bipolar disorder patients 
compared to that of the control samples[51]. However, in schizophrenia, studies have reported 
decreased oligodendrocyte numerical density in the BA9- and BA10-adjacent WM[33,108], a significant 
reduction of OLIG2(+)-cells in the former[54], and a significant decrease in both total and CNP(+)-
oligodendrocytes in the WM of the superior frontal gyrus[41,42]. Additionally, significantly fewer 
ADAM12(+)-oligodendrocytes were found in the anterior cingulate WM[48]. In contrast, two different 
studies reported increased oligodendrocyte density in the prefrontal WM in postmortem samples from 
bipolar disorder patients[23,93]. One of these studies reported a concomitant decrease in axonal markers
[93], which may imply axonal degeneration due to demyelination, which is consistent with an increase 
in oligodendrocytes at early stages of differentiation. In schizophrenia-derived samples, significantly 
more oligodendrocytes expressing prohibitin were found in the right dorsolateral prefrontal WM[52]. 
Although prohibitin proteins can be found in other cell compartments, such as the nucleus or plasma 
membrane, their role in the inner mitochondrial membranes is key for modulating cell proliferation or 
apoptosis and for overall mitochondrial homeostasis[109-112]. Therefore, altered oligodendroglial 
prohibitin expression is consistent with a previous work suggesting dysregulation of the cell cycle in 
oligodendrocytes in schizophrenia[113]. Based on the findings of that work, Katsel et al[113] suggested 
that postmitotic oligodendrocytes may abnormally re-enter the cell cycle, while a significantly increased 
level of NG2 in the putamen of schizophrenia patients suggested that OPCs failed to exit the cell cycle. 
Dysregulation of p57Kip2 gene expression in schizophrenia patient samples[113] could also be related 
to impaired oligodendrocyte maturation, since this protein has been characterized as an 
oligodendroglial differentiation competence marker[114-116].

At the subcellular level, proteomic analyses have revealed that the four most abundant myelin 
structural proteins[117] (PLP, MBP, CNP, and MOG) are significantly reduced in schizophrenia and 
bipolar disorder. At the transcriptomic level, almost all myelin structural proteins, as well as the main 
oligodendroglial lineage markers and OPC markers, were significantly downregulated. This evidence 
strongly suggests that the oligodendroglial lineage is compromised at all differentiation stages in these 
disorders. Moreover, several axonal and oligodendroglial cytoskeletal components and cytoskeletal-
interacting proteins are dysregulated in both schizophrenia and bipolar disorder. A deficit of myelin 
structural and cytoskeletal proteins in the axo-myelin functional unit may compromise myelin 
formation, compaction, remodeling and its overall integrity and functionality, which may imply a 
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concomitant compromise in the assembly and functioning of the nodes of Ranvier and other axonal 
functional rearrangements. If nervous impulses are not properly conducted in terms of speed and 
precise timing, some connections would not be reinforced and could be lost, influencing the local 
connectome. At the macroscale connectomic level, which comprises long-range tracts, fine-tuning and 
synchronization of nervous impulse conduction is crucial, and even subtle alterations of myelin 
structural and functional features may have a detrimental impact on information processing and thus 
on cognitive functions and behavior.

These findings suggest that altered myelination, loss of oligodendrocytes and compromised energy 
and redox metabolism in oligodendrocytes of schizophrenia and bipolar disorder patients could 
correlate with the WM alterations observed by neuroimaging techniques. These mechanisms could 
explain, at least partially, the clinical manifestations observed in schizophrenia and bipolar disorder 
patients. The relationship between myelin and oligodendrocytes, WM and symptom domains can be 
systematically studied. In the following sections, we will address the evidence from imaging studies on 
dysfunctions in the nervous tracts and how the main symptoms correlate with these alterations, giving 
rise to the hypothesis of disconnection in mental disorders.

EVIDENCE OF WM ALTERATIONS IN SCHIZOPHRENIA AND BIPOLAR DISORDER IN 
BRAIN IMAGING STUDIES
Structural and functional neuroimaging findings provide evidence of connectivity alterations that might 
be related to myelin dysfunction; the most extensive evidence comes from MRI studies[118]. In the field 
of structural magnetic resonance imaging (sMRI), WM volume and density have been measured using 
techniques such as voxel-based morphometry (VBM)[119]. VBM studies have found diminished WM 
volume and density in several brain regions of patients with schizophrenia, with main decreases in the 
frontal and temporal regions. A meta-analysis of VBM studies reported decreased WM in 150 foci. The 
affected tracts included the corpus callosum, internal capsule, fornix, anterior commissure, and an 
additional sixteen tracts[120].

Additionally, WM alterations have been detected by diffusion tensor imaging (DTI); this method 
evaluates subtle changes in WM, determining fractional anisotropy (FA). FA expresses the diffusion of 
water molecules along neural fibers. Water movement is inhibited when myelin sheaths are thick and 
well preserved (FA = 1); in contrast, water moves easily along fibers in any direction when the myelin 
sheath is damaged (FA = 0)[118]. Although FA can indeed reflect changes in myelination, it could also 
reflect other tract properties, such as axonal ordering and axonal density[121]. Therefore, Jones et al[121] 
urge caution when interpretating DTI-based measurements and not assume that they are direct 
indicators of WM integrity[121]. Bearing this in mind, DTI studies have reported that patients with 
schizophrenia have a widespread decrease in FA[122]. For instance, the ENIGMA-Schizophrenia DTI 
group analyzed 4321 individuals and found widespread FA reductions in 20 of the 25 analyzed regions 
in schizophrenia patients when compared with those of the controls[123]. In addition, at least three 
meta-analyses have reported reduced FA in schizophrenia patients; they conclude that the tracts more 
frequently affected in these patients are the anterior corona radiata, the corpus callosum, the cingulate 
bundle, and the uncinate and arcuate fascicles[120,123,124] (Figure 3). Furthermore, functional MRI 
(fMRI) studies have also reported connectivity alterations in several circuits connecting frontal, limbic, 
temporal, and parietal regions in schizophrenia subjects, as well as alterations to the default network
[125,126].

As the evidence is extensive and complex, we will discuss the neuroimaging evidence of WM 
alterations in schizophrenia based on each of its main clinical domains. This will integrate the findings 
and highlight the importance of WM. The structural and functional WM alterations associated with the 
psychotic domain of schizophrenia include tracts and circuits that connect the frontal, temporal, and 
parietal cortexes[127]. For instance, the arcuate fasciculus (AF) is frequently studied in regard to the 
psychotic domain; the AF connects temporal and parietal regions with the frontal lobe and is considered 
the main language processing tract of the brain because it connects Wernicke’s and Broca’s areas[128]. 
DTI studies on schizophrenia patients have reported diminished FA on the AF when compared with 
that of controls[123]. Additionally, some studies have related the decrease in AF integrity with thought 
disturbances, language alterations, and auditory hallucinations[129-131].

Furthermore, psychotic symptoms are related to functional connectivity alterations in the fronto-
striatal, frontotemporal, and frontoparietal circuits[132]. The frontostriatal circuit comprises the 
connections between the PFC and basal ganglia[128]. These regions have been extensively studied in 
relation to the dopaminergic hypothesis of schizophrenia[133]. Some studies of resting-state fMRI 
analysis have indicated functional dysconnectivity between the dorsolateral PFC and basal ganglia in 
patients with schizophrenia, which is related not only to psychotic symptoms but also to cognitive 
alterations[134]. In contrast, the frontotemporal circuit comprises connections from the PFC to temporal 
structures, including the auditory cortex and Wernicke’s area[128]. Functional connectivity alterations in 
this circuit have been related to auditory hallucinations and the perceived reality of those hallucinations
[134].
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Figure 3 White matter alterations in schizophrenia. Solid lines represent the path of the affected white matter tracts, whereas shadowed areas (purple and 
yellow) show brain regions with diminished white matter density.

Alterations to the cingulum bundle, fornix, and inferior fronto-occipital fascicle are related to 
cognitive symptoms of schizophrenia[127,135]. The cingulum bundle is a major connector between 
limbic, paralimbic, and neocortical structures, including the dorsolateral PFC, amygdala, paralimbic 
gyrus, and cingulate gyrus. This tract is implicated in self-monitoring, spatial orientation, and memory
[128]. Subjects with schizophrenia have lower FA on the cingulum bundle than controls, which has also 
been linked with executive dysfunction and impaired working memory in these same patients[136,137]. 
The fornix is another WM structure implicated in cognitive function; this tract connects the 
hippocampus with other cortical structures and is implicated in memory and spatial learning[128]. 
Patients with schizophrenia have compromised fornix integrity and disrupted functional connectivity 
between the PFC and the hippocampus[138,139]. Further analysis of functional connectivity has 
provided evidence of alterations in the frontostriatal and frontoparietal circuits that are also related to 
cognitive dysfunctions in schizophrenia subjects[132].

Connectivity alterations have been associated with altered tract integrity of the uncinate fascicle; this 
tract connects the orbitofrontal and anterior dorsolateral cortex with the temporal lobe and is related to 
negative symptoms[128]. At least two studies have demonstrated an association between low FA of this 
tract and flattened affect and lack of social engagement[140,141]. As WM decline can be a consequence 
of demyelination, all of these neuroimaging results (that report WM reduction in important tracts 
underlying highly integrative brain functions) support the hypothesis that demyelination may be a key 
factor in explaining, at least in part, the symptoms of schizophrenia.

There are also extensive data on gray and WM changes that are associated with clinical character-
istics, genetics, functional impairment, and treatment response for bipolar disorder[142,143]. Currently, 
one of the main hypotheses about the neurobiology of this disease centers on the disconnection of 
prefrontal-subcortical networks and limbic structures associated with mood regulation[144]. Diverse 
prefrontal-striatal-thalamic circuits that regulate the expression of sensorial, cognitive, and emotional 
data from cortical regions are altered in bipolar disorder patients. It is believed that the dysfunction of 
these networks explains the cognitive, behavioral, and affective manifestations of this disorder[145]. The 
current fronto-limbic circuit disconnection model highlights the importance of WM in bipolar disorder. 
Evidence of WM alterations can be provided through structural or functional findings from 
neuroimaging techniques, with the most extensive evidence coming from MRI studies.

White matter hyperintensities (WMHs) are evident bright areas on T2 MRI sequences. These 
alterations are one of the most replicated findings in bipolar disorder[144]. WMHs are lesions that are 
associated with vascular anomalies and neurodegenerative processes, such as demyelination, axon loss, 
or necrosis[146]. These lesions are frequently found around the lateral ventricles (periventricular), deep 
WM, and subcortical gray matter (basal ganglia, thalamus)[147,148]. At least three meta-analyses have 
linked the presence of WMHs with bipolar disorder, and it is estimated that approximately 39% of 
bipolar disorder patients have these lesions, compared with 18% of controls[149-151]. The presence of 
WMHs in patients has been associated with the worst outcomes of the disease, such as hospitalizations, 
psychotic symptoms, suicide attempts, cognitive impairment, and treatment resistance[151-155].
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In addition to WMH, there is also extensive evidence about WM volume alterations from different 
methodologies[156]. Two meta-analyses that used a region-of-interest (ROI) approach reported a 
volume reduction in the corpus callosum of bipolar disorder patients, which is a structure of crucial 
importance for interhemispheric connectivity and is implicated in higher cognitive functions such as 
attention, memory, and language[124,156,157]. However, no clear association was found between 
altered corpus callosum volumes and psychotic symptoms or suicidal ideation in patients[157-159]. In 
contrast, Lavagnino et al[160] reported an association between volume reduction of the posterior corpus 
callosum and a higher number of affective episodes, hospitalizations, and incomplete remission of 
symptoms in female patients[160]. Other studies and meta-analyses used VBM to evaluate the whole 
brain and reported a reduction in WM volume of the corpus callosum, corona radiata, posterior 
cingulum, and inferior longitudinal fasciculus in bipolar disorder[142,161] (Figure 4).

DTI studies of bipolar disorder have reported diffuse WM microstructural alterations[124,162,163], 
which are evident when tract integrity and WM volume are measured. Recent meta-analyses have 
found FA reductions in all major classes of WM tracts (commissural, association and projection fibers) 
with frequent reports of alterations in temporoparietal WM, the inferior fronto-occipital fasciculus, 
inferior longitudinal fasciculus, and left cingulum[124,164]. A mega- and meta-analysis of the ENIGMA 
group revealed decreased FA in 29 ROIs, with the greatest effect sizes in the corpus callosum and 
cingulum of patients compared with those of controls[162]. Voxel-based analysis of DTI (VBA-DTI) data 
has also found clusters of decreased FA and WM volume in prefrontal, temporal and parietal regions
[164-166]. Emsell et al[165] conducted a study on euthymic bipolar disorder patients and found a cluster 
extending from the prefrontal WM to the splenium of the corpus callosum and posterior cingulum 
bundle[165], whereas a VBA-DTI meta-analysis reported another two clusters in areas involved in 
emotional processing[164]. Nortje’s meta-analysis identified a large cluster of decreased FA and mean 
diffusivity in the right temporoparietal WM, a region that is crossed by the inferior longitudinal 
fasciculus and inferior fronto-occipital fasciculus[164]. The evidence suggests that the posterior WM 
contributes to cognitive deficits, while the alterations of anterior fibers are associated with affective 
symptoms of bipolar disorder[164,167]. In conclusion, the previously discussed evidence suggests not 
only alterations to fronto-limbic connectivity but also dysfunction in parietal, fronto-occipital and 
interhemispheric connections, which may explain the cognitive and emotional manifestations of this 
disorder[167].

THE DISCONNECTION PARADIGM AND WM DYSFUNCTION IN SCHIZOPHRENIA AND 
BIPOLAR DISORDER
Taken together, the evidence discussed above highlights the importance of oligodendroglial cells for 
brain function; through myelin formation, they are involved in the precise synchronization of electrical 
impulses that propagate along nerve fibers connecting brain structures[168-170]. Most long-distance 
connecting tracts in the CNS are heavily myelinated and comprise the WM. Although structural and 
functional WM alterations have been described in other mental illnesses, such as major depression, 
obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, 
Alzheimer’s disease, and drug addiction[16,171], in this review, we focused on schizophrenia and 
bipolar disorder because these two neuropsychiatric illnesses share several clinical and patho-
physiological features.

As can be inferred from the previously mentioned findings, the focus of investigations on the 
pathophysiology of schizophrenia and bipolar disorder has changed from alterations in specific regions 
to dysfunction in the connectivity of brain structures. This shift occurred first for schizophrenia, when 
the disconnection hypothesis was postulated more than twenty years ago, in response to the fact that 
several manifestations of schizophrenia, such as negative symptoms, cannot be fully explained by 
structural alterations to a specific cortical area[172-174]. Researchers subsequently hypothesized that the 
clinical domains of schizophrenia might be due to widespread network dysfunction instead of only 
specific morphological alterations of specialized cortical regions[125]. This paradigm shift in schizo-
phrenia research quickly translated to other psychiatric conditions, and many studies have since tested 
the disconnection hypothesis in bipolar disorder[153]. Functional MRI and DTI studies have reported an 
association between compromised WM integrity and clinical manifestations of these disorders[126,167].

In the following years, many neuroimaging studies have associated WM alterations found in 
psychiatric patients with executive function, functional impairment, affective symptoms, treatment 
response or resistance, suicidal thoughts and attempts, and the severity of symptoms, to name only a 
few traits[123,145,161,175]. This overwhelming evidence has helped researchers to frame schizophrenia 
and bipolar disorder as multidimensional conditions with strong brain correlates at the macroscale 
connectomic level[125]. Undoubtedly, further research from a neuroglial integrative perspective is 
necessary to unravel the anomalies at the cellular/subcellular level, i.e., the microscale connectomic 
level that may underlie the complex clinical manifestations of these patients.
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Figure 4 White matter alterations in bipolar disorder. Solid lines represent the path of the affected white matter tracts.

PERSPECTIVES: MYELINATION IS NOT AN EXCLUSIVE OLIGODENDROGLIAL-
NEURONAL RELATIONSHIP
The axo-myelin interaction is so close that, by itself, it constitutes a functional unit with a complex and 
deeply intermingled physiology. However, both astrocytes and microglia interact with axo-myelin units 
and influence their function[176-179]. Metabolic homeostasis and de novo formation or plasticity of 
myelin internodes and nodes of Ranvier are modulated by astrocytes and microglia. The main glial-
mediated modulatory mechanisms of myelin homeostasis include physical intercellular interactions 
through gap junctions, secretion of soluble factors and clearance of myelin debris. Dysregulation of 
these modulatory mechanisms may also underlie the pathophysiology of mental illnesses such as 
schizophrenia and bipolar disorder; however, scientific research on this topic is still limited.

During the last two decades, great advances have been made in our understanding of human CNS 
physiology and pathophysiology, and glial cells have been recognized as key players in neuropsy-
chiatric disorders[15,180-182]. Nevertheless, scientific psychiatry and patients with mental disorders 
would definitely benefit from a more integrative point of view at all research levels.

CONCLUSION
Schizophrenia and bipolar disorder are multifactorial neuropsychiatric illnesses that share clinical 
manifestations and alterations to brain structure and function, genetic characteristics, and neurobio-
logical pathways. Both are chronic and severe conditions that cause disability, reduce lifespan and 
impose a high burden on patients and society. The disconnection hypothesis of the pathophysiology of 
these two disorders is supported by alterations in WM tracts revealed by neuroimaging techniques. 
Alterations at the macroscale connectome level strongly correlated with the multidimensional clinical 
manifestations of these disorders; however, to better understand the correlates at the cellular and 
subcellular levels, it is necessary to obtain deeper insight into the main components of WM, i.e., 
myelinated axons. Therefore, the pathophysiology of both the neuronal and oligodendroglial 
components of neural circuits and networks needs to be investigated. Twenty years since the first 
hypothesis implying oligodendrocyte/myelin failure as a hallmark of schizophrenia[183], a large 
amount of evidence at the connectomic, microscopic, proteomic, transcriptomic and genomic levels has 
accumulated for overall dysfunction of the axo-myelin functional unit in these patients. Although 
oligodendrocyte/myelin dysfunction has also been consistently reported in bipolar disorder, the same 
amount of scientific knowledge about axo-myelin pathophysiology in this psychiatric disorder is 
lacking, at least at the cellular and subcellular levels. Further research on schizophrenia and bipolar 
disorder is needed to better understand the axo-myelin molecular pathways that are dysregulated and 
to identify potential targets for the development of novel therapeutic alternatives. Several recent studies 
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have focused on the effects of commonly prescribed antipsychotic drugs on oligodendrocytes/myelin
[184]. However, testing the effects of novel compounds intended to induce oligodendrogenesis and 
(re)myelination[116] in preclinical models of schizophrenia and bipolar disorder could also hold great 
promise for future research.
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