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Abstract
As we cycle between the states of wakefulness and sleep, a bilateral cholinergic 
nucleus in the pontine brain stem, the laterodorsal tegmentum (LDT), plays a 
critical role in controlling salience processing, attention, behavioral arousal, and 
electrophysiological signatures of the sub- and microstates of sleep. Disorders 
involving abnormal alterations in behavioral and motivated states, such as drug 
dependence, likely involve dysfunctions in LDT signaling. In addition, as the LDT 
exhibits connectivity with the thalamus and mesocortical circuits, as well as 
receives direct, excitatory input from the prefrontal cortex, a role for the LDT in 
cognitive symptoms characterizing attention-deficit/hyperactivity disorder 
(ADHD) including impulsivity, inflexibility, and dysfunctions of attention is 
suggested. Prenatal nicotine exposure (PNE) is associated with a higher risk for 
later life development of drug dependence and ADHD, suggesting alteration in 
development of brain regions involved in these behaviors. PNE has been shown 
to alter glutamate and cholinergic signaling within the LDT. As glutamate and 
acetylcholine are major excitatory mediators, these alterations would likely alter 
excitatory output to target regions in limbic motivational circuits and to thalamic 
and cortical networks mediating executive control. Further, PNE alters neuronal 
development and transmission within prefrontal cortex and limbic areas that send 
input to the LDT, which would compound effects of differential processing within 
the PNE LDT. When taken together, alterations in signaling in the LDT are likely 
to play a role in negative behavioral outcomes seen in PNE individuals, including 
a heightened risk of drug dependence and ADHD behaviors.
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Core Tip: Offspring of women who used nicotine-containing products while pregnant exhibit risk factors 
for later-life development of cognitive deficits, including attention deficit/hyperactivity disorder and drug 
dependence. This suggests that circuits that play a role in cognition are being altered by nicotine. The 
laterodorsal tegmental nucleus of the pons plays a role in attention, motivation, and other cognitive-
related processes, and nicotine during gestation has been shown in animal studies to alter functioning of 
this nucleus. In this review, we discuss the human and animal literature that indicate that alterations in 
functioning of the laterodorsal tegmental nucleus could arise following prenatal nicotine exposure, and 
that these alterations could play a role in the negative risks associated with early-life nicotine exposure.
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INTRODUCTION
Prenatal nicotine and the contribution of the laterodorsal tegmentum to executive control
Smoking during pregnancy exposes the fetus to a variety of chemicals known to have effects on 
development. Arguably, the most influential of these is nicotine, which crosses the placenta and 
sequesters within the fetal compartment, which is unfortunate as nicotine is a known teratogen likely 
involved in differences seen in the development of neural structures characterized in functional imaging 
studies (for review, see[1]). Many of the brain regions that have been found to be altered are known to 
play a role in cognitive processing and behavioral control, and differences in their development 
associated with prenatal nicotine exposure (PNE) could underlie negative cognitive and other 
behavioral outcomes. Clinically, among other maladaptive, neurally-based behavioral outcomes, PNE 
individuals exhibit a higher degree of drug dependence[2-6], impulsivity[7,8], and dysfunctions in 
attention[9-12]. Given the occurrence of these later two behaviors in PNE, an association between 
attention-deficit/hyperactivity disorder (ADHD) and PNE has been explicitly examined, with studies 
suggesting that there is a higher incidence of ADHD in offspring of women who smoked while 
pregnant[10,12-14]. Although few studies have addressed the topic, some reports detail sex-based 
differences in behavioral outcomes following PNE, which could be due to hormonally-based differential 
sensitivities to nicotine’s ability to alter structural development[15]. In studies examining the damaging 
neural effects of nicotine that could underlie negative behavioral outcomes, the focus has been directed 
to changes within neural structures well known to play a role in cognition- and motivation control, such 
as the prefrontal cortex (PFC), amygdala, hippocampus, and mesoaccumbal circuits comprising the 
nucleus accumbens (NAc) and the ventral tegmental area (VTA). Unsurprisingly, the role of changes 
imposed by PNE in the brain stem in PNE-associated behavioral risks has been much less well studied.

While the literature supporting a role of the brain stem in cognitive functioning is scant, since the 
1930s, it has been known that damage to the brain stem causes dysfunctions in executive control, 
suggesting that the brain stem transmits signals that are incorporated into high-order, cognitive 
processing[16,17]. While sparse, anatomical lesion, pharmacological, and stimulation data began to 
emerge supporting the interpretation that the brain stem plays a role that extends beyond simply 
receiving information, and its role may include participation as an inherent functional player in shaping 
cognitive function. Thanks in large part to the advent of optogenetics, which allows selective dissection 
of cellular contributions to behavior, the amount of data showing a role of the laterodorsal tegmentum 
(LDT) in cognitive-based behaviors has exploded, and when taken together, suggest that the brain stem 
is an integral functional component of the circuits that are involved with executive functions[18-20]. 
Specifically, determination of the role played by neurons within the LDT of the pons in motivation, 
attention, and other facets of goal-directed behaviors[21-25] suggests that a re-evaluation is warranted 
of the perception that the brain stem receives input from top-down circuits and passively transmits it 
onwards. At this time, it appears clear that the LDT is not a region that passively complies with and 
executes commands from higher order centers, but rather that the LDT plays a significant role in the 
coding of information in associative circuits in a bottom-up direction. Further, data suggest that the LDT 
could be involved in behavioral and mental behaviors known to be altered in PNE individuals. In this 
review, we discuss data from recent studies that should lead to redefinitions of the extent of control of 
behavior played by what is considered the most ancestral region of the brain, the brain stem. In 
addition, results from these studies should raise alarm that early life exposures to nicotine could alter 
the way by which the LDT responds to input, which would subsequently impact LDT output. This 
alteration could participate in the generation of PNE-associated behavioral abnormalities in motivation 
and executive control.
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COGNITION RELIES ON ACETYLCHOLINE, AND ONE OF THE MAJOR SOURCES OF 
ACETYLCHOLINE IS THE LDT
Cognitive functioning, including that involved in attention, relies on acetylcholine (ACh) acting at 
neuronal nicotinic ACh receptors (nAChRs) and muscarinic ACh receptors. Cholinergic dysfunction has 
been correlated with impairment of long-term memory[26-28], and manipulations of cholinergic 
systems have been shown to play a role in attentional states[29]. In humans, augmentation of 
cholinergic signaling at nAChRs in individuals not sensitized by nicotine has been shown to improve 
cognitive functions, such as memory and attention[30,31]. Transdermal nicotine delivery in non-
smoking subjects increases attention by reducing omission errors and response time variability in the 
human continuous performance task[32]. Further, nicotine has been shown to improve attentional 
performance in a variety of cognitive disorders in non-sensitized adults, including ADHD[33], 
Alzheimer’s disease[34], and schizophrenia[35]. These and other studies have focused on the 
development of cognitive enhancing drugs based upon agonism or potentiation of nAChRs.

While nicotine is an excellent agonist for the nAChR, endogenous signaling at nAChRs is mediated 
by ACh. The majority of neuronal ACh is sourced from two main clusters in the brain, one within the 
forebrain and another within the pontine brain stem, with both clusters sending diffuse projections to a 
variety of targets. The LDT and the pedunculopontine tegmental nucleus (PPT) comprise the cholinergic 
cluster in the pontine brain stem and send ACh projections widely to both caudal and rostral targets. 
Both the PPT and the LDT participate in the reticular activating system and, as part of it, exert 
cholinergic control over the thalamus, which has been implicated in behavioral state control and electro-
encephalographic states of arousal and attention. Both cholinergic brain stem nuclei also play a role in 
sensorimotor integration, reinforcement, and learning; however, their contribution to the control of 
these processes differs, which is supported by the distinct segregation in the projection patterns of the 
two nuclei and by divergent functional outcomes upon stimulation[18,36]. The PPT appears particularly 
involved in control of gait and posture, which is supported by a heavy innervation of structures 
involved in motor functions, and findings that, when stimulated, the PPT modulates activity in the basal 
ganglia as well as in the formation and updating of action-outcome associations and rapid decision 
making[37,38]. The LDT does send projections to the substantia nigra, suggesting it could participate in 
control of movement; however, optogenetic stimulation of this projection did not result in locomotion, 
which provides functional evidence in line with the interpretation that the projection from the LDT to 
the portion of the striatum involved in motor control is not as involved as the PPT projections are in 
movement control[18,25]. The LDT appears to be more involved than the PPT in the control of cognition 
and behavior, as suggested from a plethora of anatomical, behavioral, and stimulation studies. This 
control appears to be exerted directly via connectivity of the LDT to limbic structures as well as 
indirectly via synapses within specific thalamic nuclei (Figure 1).

Role of LDT cholinergic transmission in thalamic control
Projections from the LDT synapsing within the principle relay nuclei of the thalamus suggest control of 
the LDT over thalamic cellular activity that would impact output to cortical regions via thalamo-cortical 
tracts. Thalamo-cortical radiations are involved in relaying information critical in mediation of 
consciousness, arousal, and alertness. While thought to be a passive relay station, recent evidence 
suggests the possibility that the thalamus may govern amplification of cortical signaling and therefore 
be involved more centrally in cognitive behaviors, including behavioral flexibility, than previously 
appreciated. The more active role emerging of the thalamus in cognitive processes highlights that 
afferent input to the thalamus, such as that sourcing from the LDT, likely plays a modulatory role in 
cognitive control[39]. Retrograde studies revealed that the major cholinergic input into the thalamus, 
particularly in the cognitive-relevant anterior, reticular, ventroposterior, mediodorsal, and central 
medial nuclei, sources from LDT neurons through both ipsi- and counter-lateral projections[40-43]. 
Double retrograde labeling approaches showed that many of the LDT neurons that send projections to 
the thalamus also send collaterals to extra thalamic targets. One of these extra thalamic targets is the 
VTA, which is also involved in cognitive and limbic functioning through dopamine (DA)-mediated 
transmission in the mesoaccumbal and mesocortical pathways[18]. Since both the thalamus and VTA 
project to the NAc, a central nucleus in limbic processing that sends input both to the thalamus and to 
cortical targets via the mesocortical pathway, this collateralized projection pattern provides the LDT 
with direct and indirect control of striatal regions that project to and release DA within the cortex. 
Therefore, regulation of cognitive functions via variations in DA levels in the PFC, which exerts 
executive functioning, could occur via LDT actions within the thalamus or, more indirectly, via LDT 
collaterals in the VTA, suggesting a complex potential for LDT control over DA transmission. However, 
this dual projection pattern is not consistently seen in all LDT thalamic targets.

The anterior thalamus, which is known to be involved in alertness, learning, and memory, receives 
cholinergic projections from the LDT that arise from a different population of cholinergic LDT cells than 
those sending input to the VTA, suggesting presence of distinct sub-populations of LDT cells[44].

Functional activation of the LDT-thalamic pathway has been shown. LDT cholinergic neurons fire 
action potentials most vigorously during rapid eye movement sleep and aroused wakefulness[45,46], 
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Figure 1 Overview of laterodorsal tegmental nucleus efferent to reward-related brain areas and to thalamic centers involved in 
modulating cortical function. PFC: Prefrontal cortex; Thal: Thalamus; NAc: Nucleus accumbens; VTA: Ventral tegmental area; LDT: Laterodorsal tegmental 
nucleus.

which has been shown with in vivo micro dialysis to result in increases in the levels of ACh within the 
thalamus during these states[47]. Functional connections between the LDT and different thalamic 
centers have also been shown by in vivo electrophysiology, combined with pharmacological approaches. 
Electrical stimulation of the LDT, as well as pharmacological stimulation of the thalamus via application 
of the muscarinic ACh receptor agonist carbachol, enhanced firing rates of ventroposterior medial 
thalamic cells, indirectly modulating sensory-related cortical areas involved in selective attention[19,
48]. Actions of cholinergic agonists in the ventroposterior medial thalamus were associated with 
modulation of tonic firing patterns and activation of thalamic-cortical projecting centers, such as the 
somatosensory cortex responsible for processing sensory perception[49,50]. Lesions of the mediodorsal 
thalamic nucleus, one of the thalamic regions that receives the heaviest cholinergic inputs from the LDT 
and exhibits reciprocal innervation with the PFC, resulted in working memory deficits in rats, as 
assayed by impaired radial maze performance[51]. Injection of cholinergic agents enhanced 
mediodorsal thalamus-PFC synaptic plasticity and inhibited mechanisms underlying depotentiation, 
which is a mechanism behind the weakening of strength of synapses[52]. Weak in vivo stimulation of the 
LDT nucleus was shown to eliminate spontaneous and evoked burst-firing in the reticular nucleus of the 
thalamus in anesthetized rats, whereas strong LDT activation induced discharge within this region[53]. 
In addition, pulse trains injected within the LDT enhanced the responsiveness of anterior thalamic 
neurons to cortical stimuli[54]. Further, lesions of the anterior or central thalamic nuclei reduced 
performance in memory testing and diminished attention, which were effects also seen upon local 
infusion of cholinergic antagonists at these sites, thereby linking the deficits in ACh in the thalamus to 
working memory and attentional impairments[55-57]. Functional imaging studies in humans have 
shown that the improvement of attention induced by nicotine is associated with increased activation of 
the thalamus[58,59], and, furthermore, functional magnetic resonance imaging has provided evidence 
that more general cognitive improvements observed upon nicotine exposure could be due to activation 
of nAChRs in the thalamus[60]. When taken together, it is clear that cholinergic actions in the thalamus 
are involved in attention and cognition, and cholinergic input is provided by a functional connection 
between the LDT and the thalamus. Therefore, LDT-thalamic cholinergic projections confer upon the 
LDT an indirect control of cortical excitability through thalamic relay centers and could be involved in 
amplification of cognitive processing controlled by the thalamus.

Role of cholinergic and GABAergic transmission from the LDT to limbic control pathways
Besides participating in cholinergic modulation of cortico-thalamic circuits, ultrastructural, immunola-
beling, and optogenetic studies indicate that the LDT exerts a cholinergic modulatory role within 
structures and circuits associated with the limbic system that underlie motivation and salience, 
including the VTA and the NAc[61,62]. The LDT has been shown to be the main source of cholinergic 
inputs into the NAc core and the VTA, and studies have suggested that LDT cholinergic inputs onto 
VTA cells modulate activity of DA-containing VTA neurons that participate in both the mesocortical 
and mesoaccumbal pathways[61-65]. The LDT has been shown to form mainly asymmetric, putatively 
excitatory, synapses within the striatal complex, particularly onto DA-containing VTA cells and within 
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the NAc core[64]. While the majority of VTA neurons are DA-containing, 35% of the cells in the VTA are 
non-dopaminergic, with 25 % of these being inhibitory gamma-aminobutyric acid (GABA)ergic neurons
[66]. GABAergic VTA neurons in both mesoaccumbal and mesocortical pathways were found to receive 
symmetric synapses, putatively inhibitory inputs, from LDT projections, which led to the suggestion 
that the LDT could participate in disinhibitory mechanisms by inhibiting striatal GABAergic 
interneurons[22,63]. This point was reinforced by findings that following optogenetic activation of LDT 
cholinergic cells projecting to DA VTA neurons, a late activation could be observed, consistent with a 
rebound excitation after the stimulation of GABAergic interneurons[18]. Inhibitory input from the LDT 
directed to GABAergic cells of the mesocortical pathways could also participate in disinhibitory 
processes occurring indirectly between the LDT and PFC[63], which could occur in combination with 
thalamic inhibitory input. Interestingly, symmetric synapses from the LDT were selectively found on 
DA neurons in the mesocortical pathway, as there was no evidence for their presence in mesoaccumbal 
DA neurons, indicating that directly mediated, inhibitory influences of the LDT on limbic DA output are 
mainly targeted to mesocortical DA pathways[63].

ROLE OF DA, THE VTA, AND THE LDT IN DRUG DEPENDENCE
Activation of the mesoaccumbal DA system resulting in DA output to the NAc is involved in reward 
reinforcement to natural stimuli including sex[67], social interaction[68], and food[69]. Large rises in DA 
encode a positive valence to these triggering stimuli, which is reinforcing and leads to incentive for 
repeat of behaviors leading to acquisition of the triggering stimulus. However, in addition to activation 
of this system by stimuli promotive of health and continuation of our species, drugs of abuse also 
activate this system and do so to a greater extent than natural stimuli, leading to rises in DA of several 
fold greater than those evoked by non-drug stimuli[70]. All drugs of abuse share the common ability to 
activate the mesoaccumbal system, whereas this property is not shared by the majority of drugs that do 
not exhibit dependence-inducing effects[70]. While drugs of abuse lead to rises in DA, diverse pharma-
cologic properties across drug classes confer differences in the way by which rises in DA are elicited. 
The pharmacologic actions leading to rises in DA can be directly-mediated excitatory cellular effects on 
DA cells, or actions can be indirectly-mediated via afferent input to DA cells, which can include cells 
within the VTA that are not DA-containing neurons, including GABAergic cells and glutamate cells[71] 
or non VTA sourced projections. Following a large body of studies showing the critical role of VTA DA 
in incentive salience, the central paradigm regarding the neural processes underlying development of 
dependence to drugs of abuse involves a high degree of drug-induced DA activation of the mesoac-
cumbal pathway via actions on the heterogenous VTA cell population but also activation of extra-VTA 
input terminating in the VTA or NAc.

Excitatory LDT cells
Extensive evidence shows that the connectivity of the LDT to the VTA and NAc plays a role in drug 
addiction behaviors suggestive of drug actions on the LDT-VTA-NAc circuit. Early microdialysis 
studies showed that electrical stimulation of the LDT resulted in large rises in DA in the NAc, which 
was reduced by intra-VTA application of nAChR, muscarinic ACh receptor, and ionotropic glutamate 
receptor antagonists, suggesting ACh and glutamate output from the LDT play a role in DA rises[21]. 
Further, rises in DA induced by morphine were reduced in LDT lesioned rats[72]. Behaviorally relevant, 
large rises in DA were found to result from high frequency, burst firing of VTA DA neurons, which was 
a firing pattern impossible to elicit in VTA brain slices[73-76]. This finding suggested that afferent input 
severed in the slice preparation was crucial for firing activity of VTA DA-neurons. Consistent with this, 
in vivo studies revealed that DA VTA burst firing was reliant on an intact LDT, since pharmacologic 
inactivation of the LDT eliminated this firing pattern[77]. The influence of the LDT was thought to be 
mediated via cholinergic inputs[77], and further work showed that cholinergic output from the LDT 
shapes the firing of VTA neurons and biases VTA activity towards a burst pattern from a more 
disorganized discharge that likely results in higher release of DA to levels sufficient to underlie the 
encoding of value of stimulus value, as the rises were associated with evidence of changes in motivated 
behaviors[18].

Initial optogenetic studies of the role of the LDT in motivated behaviors showed that stimulation of 
the LDT engendered conditioned place preference (CPP), a model of both associative learning and drug-
dependent behavior, which was an effect attributed to the demonstrated presence of glutamatergic 
output in the LDT-VTA circuit, albeit direct in vivo evidence of the role of this circuit in behavioral 
outcome was not provided[22]. Further optogenetic work confirmed the ability of stimulation of the 
LDT to induce CPP, and a role of the cholinergic LDT population was shown[64,78]. The role of the 
cholinergic LDT cells in motivated behaviors mediated by the VTA was additionally supported by loss 
of CPP conditioning to cocaine when associated with pharmacologic inactivation of the cholinergic LDT 
cells as well as failure to induce CPP when muscarinic and nicotinic receptors were blocked in the VTA
[79]. In addition, photo excitation of LDT cholinergic terminals in the VTA was shown to cause positive 
reinforcement as subjects spent more time in the compartment in which they received photo 
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stimulation, which was an effect similar to that induced when cholinergic LDT-NAc input was activated
[25]. In a study designed to tease apart the relative contribution of excitatory LDT neurons to motivated 
behavior, the role in CPP of both glutamate and cholinergic LDT cell populations was examined under 
identical laboratory conditions[80]. Selective activation of either the glutamate or cholinergic LDT 
projections to the VTA by light pulses resulted in induction of CPP in mice, leading to the conclusion 
that both glutamate and cholinergic LDT inputs to the VTA play a role in the net rewarding effects of 
drugs of abuse[80]. However, the role played by the two excitatory transmitters was found to differ, 
suggesting that glutamatergic LDT projections may be important for initial reinforcement of place 
preference, whereas cholinergic mechanisms underlie continued reinforcement, as longer stays in the 
light drug-paired chamber were seen upon stimulation of cholinergic LDT projections[80]. Glutama-
tergic neurons, which exhibit very different connectivity to limbic structures and different firing 
patterns due to differences in intrinsic membrane properties to that exhibited by cholinergic neurons, 
likely do play a role in the control of VTA neurons, but that role is probably complementary to that 
served by ACh-containing cells[18,80]. Whether or not the ACh or the glutamatergic LDT afferents to 
the VTA play a more relevant role in drug dependence behaviors remains an open and very interesting 
question to address, especially vis a vis treatment targets; however, what is clear from the data is that 
the LDT can control DA efflux from the VTA in a behaviorally relevant fashion via both major excitatory 
transmitter systems that project to the mesoaccumbal pathway.

Inhibitory LDT cells
The role of the GABAergic LDT neurons, which can be local or projecting, and their impact on eventual 
VTA DA efflux have been less well examined. A role of LDT-mediated disinhibition of VTA GABAergic 
cells, especially those within mesocortical circuits, has been proposed[63]. Stimulation of GABAergic 
VTA cells was found to inhibit firing of DA cells, whereas their optogenetic activation led to conditioned 
place aversion, a behavioral model of aversive stimulation, suggesting that their inhibition would be 
promotive of DA release and the encoding of stimuli with a positive valence[81,82]. However, excitation 
of GABAergic LDT neurons was found to mediate innate fear responses following exposure to predator 
odorant in rodents[81]. This action was found to be mediated by the lateral habenula, which sends input 
to the VTA and the GABAergic rostromedial tegmental nucleus, also identified as the tail of the VTA, 
known to mediate aversive responses. While direct evidence is needed, this raises the interpretation that 
GABAergic LDT neurons projecting to the VTA do not play a functionally relevant role in inhibiting 
GABAergic VTA cells, leading to rises in DA sufficient for reinforcement. It is also possible that they 
inhibit a subset of the remaining 75% of the non-GABAergic VTA population, and/or LDT input 
directed to the lateral habenula and rostromedial tegmental nucleus supersedes any effect of local VTA 
disinhibition. A non-mutually exclusive possibility is that different populations of LDT GABAergic 
projection neurons exist. The role of the local GABAergic interneurons in the LDT, which abut the 
cholinergic neurons, and their impact on excitatory output are unexplored. When taken together, while 
it remains to be determined how the three main neuronal phenotypes of the LDT work in concert as a 
whole, output from the LDT results in significant changes in DA-VTA neuronal activity. As rises in DA 
efflux from the VTA are involved in reward prediction of salient stimuli and the LDT has been shown to 
control DA VTA output, the LDT is believed to be critically involved in DA-mediated striatal-control of 
behavior[83].

Role of DA and the LDT in PFC-controlled behaviors: A role of the LDT in ADHD?
In addition to the heavy projections in the mesoaccumbal pathway, the LDT also provides the major 
cholinergic input to VTA neurons participating in the mesocortical pathway, which suggests the LDT 
has control over DA output to cortical regions as the direct projection from the striatum to the PFC of 
the mesocortical pathway provides the major DA innervation of the PFC. Connections from PFC back to 
limbic regions are present, creating a striatum cortical loop that is importantly involved in controlling 
behavioral flexibility and decision making[22,63,65]. Two such loops, comprised of dorsolateral PFC-
striatum and anterior cingulate cortex-striatum connections, are suggested to control sustained and 
selective attention, respectively[84-86]. Dysfunctions within the mesocortical loop have been associated 
in humans with the expression of ADHD cardinal phenotypes. ADHD is a predominantly childhood 
mental disorder characterized by a combination of persistent maladaptive behaviors, including 
hyperactivity as well as cognitive impairments leading to failure to sustain directed attention and 
impulsivity, which involves decision making before full cognitive processing has occurred[87,88]. The 
classic triad of symptoms can manifest in several different negative ways, however, effects on 
emotionality and cognition tend to become exacerbated with age, likely due to increased stresses, 
whereas motor overactivity tends to abate in adulthood, which are clinical features relevant to note in 
animal experimentation of ADHD mechanisms[88].

Given the role of striatal cortical loops in control of behavior and the role of DA within behavioral 
controlling networks, DA dysfunctions within the PFC have been hypothesized to be involved in 
ADHD[87,89,90]. One of the most compelling findings supporting the hypothesis of a role of DA in 
ADHD is that stimulants of catecholaminergic systems have been among the most successful treatment 
of ADHD patients[90]. In addition, reductions in striatal DA transmission have been reported in ADHD 
patients[91]. Several animal studies have implicated DA function in mesocortical circuits encompassing 
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the PFC as involved in control of executive functions shown to be altered in ADHD as well as in the 
control of one of the hallmarks of ADHD, hyperactivity. Lesions of DA-containing mesocortical inputs 
to the PFC were associated with a hyperactive phenotype in rats[92]. Extracellular DA levels were 
increased in the PFC during the training phase of a radial maze task in rats, which assays working 
memory performance[93]. In addition, DA depletion in the PFC was associated with working memory 
deficits in a T-maze paradigm[94], and similar cognitive deficits were seen after intra-PFC adminis-
tration of type I DR receptor (DR1) antagonists[95,96]. Depletion of DA release into the PFC was shown 
to induce cognitive deficits in rhesus monkeys[97], and subsequent studies found that application of 
D1R antagonists into the PFC promoted deficits in oculomotor delay responses and working memory 
tasks[98,99]. Behavioral flexibility and decision making were reduced following antagonism of D1R and 
type 2 DA receptors in the PFC[65]. Interestingly, while D1R agonists injected at low doses within the 
PFC increased visual attentional performance in rats[100], increased activation by higher concentrations 
of the D1R agonists impaired performance in both rodents and primates, suggesting optimal D1R 
activation in the PFC is necessary for proper working memory performance[101-104]. These data 
support the hypothesis that DA levels within the PFC exert cognitive effects; however, this control is 
likely exerted in an “inverted U shape” manner, as originally suggested more than 100 years ago[105]. 
According to this suggestion, optimal dopamine levels within the PFC are believed to be associated with 
maximum behavioral performance, and either hyper- or hypo-DA function in this brain region 
compromises executive behaviors[106].

Since PFC-projecting DA VTA neurons contribute to the DA tone of cortical circuits brain regions, 
which modulate mesocortical VTA activity, the LDT could indirectly contribute to cortical DA 
functioning. Therefore, activity in the LDT could be indirectly involved in ADHD behaviors via the 
control exerted on mesocortical pathways via excitatory synapses on DA mesocortical VTA cells directed 
to the PFC. A role of the LDT in control of PFC DA levels is indirectly supported by findings that local 
infusions of nAChR antagonists in the rat VTA resulted in deficits in PFC-controlled behaviors that are 
DA dependent[107]. Further, control of PFC DA levels could be exerted by the LDT via disinhibitory 
mechanisms mediated by inhibitory LDT inputs directed to GABAergic mesocortical neurons 
controlling PFC function[63]. In addition, non-DA control of the LDT in ADHD behaviors could be 
mediated by LDT-thalamic connections, since thalamic-cortical circuits associated with ADHD-related 
hyperactivity receive input from the LDT[84-86,88]. In addition, the LDT could be involved in other 
ADHD features, including impulsive behavior. This conclusion is supported by findings that reductions 
in activation in thalamic relay nuclei are seen in gamblers exhibiting poor impulse control[108]. When 
taken together, altered neurotransmitter signaling from the LDT could be involved in increasing 
susceptibility for dysfunctions of attention and cognition. Thus, although no direct evidence has linked 
LDT function or dysfunction with ADHD-related phenotypes, studies investigating dysfunction of DA 
mesocortical, mesostriatal, and thalamo-cortical pathways in working memory and other cognitive-
related behaviors support the assumption that alterations in the LDT-VTA and LDT-thalamic circuitry 
could contribute to ADHD-related behavioral deficits. In support of this hypothesis, the brain stem 
reticular activating system has been suggested to contribute to attention and filtration of interfering 
stimuli and, accordingly, was thought to play a potential role in disorders involving disorganization in 
cognitive processes[109]. However, detection of structural abnormities in the brain stem of human 
patients suffering from ADHD-associated cognitive dysfunctions awaits as these structures have proven 
to be more challenging than forebrain structures to image[87].

AFFERENT INPUT TO THE LDT IS LIKELY TO INFLUENCE LDT OUTPUT
When taken together, anatomical and functional studies suggest a complex and regulatory role of LDT 
neurons on VTA functioning and provide further support of the influence of the LDT on mesoaccumbal 
DA transmission as a relevant step in encoding the valence of environmental stimuli[21]. In addition, 
these data suggest that the LDT plays a regulatory role in other cognitive functions via actions in PFC 
through direct striatal influence on DA transmission or through indirect actions mediated by thalamic 
relay centers. However, the circuits in which the LDT participates are not one way, and the LDT 
receives dense afferent input from many extra-LDT regions throughout the brain (Figure 2). A high 
number of LDT inputs were shown to source from pontine and midbrain nuclei, including the PPT, 
central gray, and deep mesencephalic nucleus[61]. In addition, afferents sourcing from cerebellum, 
spinal cord, basal ganglia, medulla, the bed nucleus of the stria terminalis, and the hypothalamus, 
particularly from the lateral hypothalamus that houses neurons importantly involved in state-control, 
were noted[61,110]. Relevant to circuits involved in motivated behaviors and cognition, substantial 
projections sourced from the VTA as well as the cerebral cortex, including the medial and orbitofrontal 
PFC[61,111]. These studies demonstrate that LDT afferents source from cortical, limbic, and somato-
sensory systems, which do, in some cases, themselves receive projections from the LDT. If the LDT 
passively transmitted information from higher order brain regions, alterations in LDT functioning 
would not be expected to have a significant impact on downstream signals. However, as the LDT 
processes signals before they are transmitted, alterations in LDT functioning would be expected to have 
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Figure 2 Overview of input sourcing from cognitive and limbic regions synapsing within the laterodorsal tegmental nucleus. PFC: 
Prefrontal cortex; Hippoc: Hippocampus; NAc: Nucleus accumbens; VTA: Ventral tegmental area; LDT: Laterodorsal tegmental nucleus.

an exponential effect on signal transmission if processing occurs on signals that themselves are altered. 
Therefore, in dysfunctional conditions, the effect of alterations in LDT functioning would be expected to 
have a high degree of impact via alteration of input and output transmission within networks important 
in behavioral outputs.

PNE EFFECTS ON COGNITIVE-BASED BEHAVIORS THAT COULD INVOLVE THE LDT
PNE animal models
PNE has been associated with a higher risk of several adverse behaviors that are controlled by signaling 
in the striatum, thalamus, and PFC. Functional and anatomical studies have shown that molecular, 
cellular, and structural changes present in these regions are found following PNE. Control over these 
regions is exerted by the LDT either via direct or indirect pathways. When taken together with the fact 
that there is currently no human data available regarding structural development within the LDT 
associated with PNE, experimentally examining the issue of PNE-associated changes in the LDT is 
warranted if we wish to understand fully the mechanisms underlying the higher risk of these 
maladaptive, cognitive-based behaviors in PNE individuals. While three-dimensional human-derived 
brain organoid models have recently been used to examine effects on neural development of environ-
mental factors, including nicotine, they do not allow for examination of behavioral associations[112] (for 
review, see[113]). Accordingly, for studies examining synaptic changes that could underlie behavioral 
outcomes, we require animal models of PNE in which both cellular and behavioral studies can be 
conducted. However, PNE animal models vary in several very important factors, making it difficult to 
choose the model best suited for translational significance.

One major difference in PNE models to date in the choice and breed of animal that have been used, 
which is a not insignificant confound as different species, and strains within the same species can 
respond with diverse behavioral outcomes suggestive of different cellular changes[114]. PNE studies 
also have varied in the experimental design regarding the method by which nicotine was applied, which 
has included subcutaneous application either via injection or implantation of osmotic mini pumps, 
intravenous application, intraperitoneal injection, or inhalation of cigarette smoke. In a less invasive 
approach, nicotine can be applied via the drinking water of the pregnant dams. Each of these methods 
would be expected to result in blood nicotine levels that are different and perhaps not similar in kinetics 
to those seen in humans, as nicotine concentrations in the blood of regular smokers are usually constant 
during periods of wakefulness in order to abate symptoms of withdrawal.

Other variations in the model utilized have sourced from differences in the nicotine dose utilized, the 
age at which the animal behaviors were assessed, the behavioral tests which were employed, and the 
time during pregnancy at which nicotine exposure occurred. This later point is relevant to physiological, 
peripheral effects engendered by first time exposures to nicotine, and concern of induction of stress, 
which is known to induce neural changes in offspring and maternal behaviors, as nicotine can be 
aversive in drug naïve individuals. If the first-time exposure occurs to the pregnant dam during the 
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gestational period, which has been necessary in experimental designs when pumps with limited 
lifetimes have been utilized, the confound of stress’ role in physiological responses complicate 
attribution of effects to nicotine. As it is known that sex plays a role in PNE behavioral outcomes, 
interpretation of data where sexes have been pooled, or extrapolation to the opposite sex when single 
sex selective studies have been conducted, limits applicability of the data. These and other variables 
inherent to any laboratory study with rodents make it difficult to compare results across studies and 
further complicate determination as to which is the superior model in order to make conclusions 
relevant to the human situation [see[115] for a full discussion of the issue].

Despite these complications, examination of results from many PNE studies has led to the conclusion 
that the most robust rodent model of PNE is the oral nicotine intake method during pregnancy[115]. 
Arguments for this model include that it reflects pharmacodynamics/kinetics observed in human 
smokers, ADHD- and addiction-related behaviors have been seen in the rodent offspring with features 
similar to those seen in humans exposed to nicotine in utero, the nicotine exposure pattern is very 
similar to that seen in humans as it occurs during wakefulness, and stress levels are minimized, as no 
manipulations or surgical procedures are required. Finally, it avoids the issue of first-time exposure to 
nicotine to the dam occurring during gestational periods, which could introduce confounding factors. 
Accordingly, this model has been utilized by many laboratories to examine alterations in excitatory 
signaling within several brain regions associated with PNE. Further, in work conducted in the LDT, an 
outbred strain of mouse, the Naval Medical Research Institute (NMRI) mouse, was used in our investig-
ations in order to attempt to reflect better the genetic diversity of the human population.

Behavioral alterations in PNE rodent models and in humans exposed gestationally to nicotine
Validation of the PNE NMRI model via maternal drinking water model was provided by evaluation and 
detection of high cotinine levels in newborn PNE pups, confirming the gestational nicotine exposure of 
the fetus following maternal ingestion of nicotine via the drinking water[116]. Behavioral tasks were also 
employed in order to characterize the behavioral phenotype associated with early-life exposure to 
nicotine via the drinking water[116]. Although an extensive review of the behavioral deficits associated 
with PNE treatment in rodents is beyond the scope of this article, it is of interest when comparing 
dysfunctions of behaviors in which the LDT plays a role to compare sex-based findings of PNE-
associated effects on affective state, cognition, and locomotion in the NMRI mouse exposed to nicotine 
via maternal drinking water with data from other laboratories using different PNE models, and with 
human clinical data, in order to evaluate the face validity of the oral NMRI PNE model.

Anxiety and PNE: Within young adulthood [postnatal day (PND)42-48], PNE treatment in NMRI mice 
was associated with anxiety-like behaviors that were effects only seen in male offspring[116]. In inbred 
C57BL/6J mice exposed to nicotine via maternal drinking water, anxiety levels of males have been 
reported to be increased[114,117]. However, it appears that the nicotine concentration is relevant for the 
anxiolytic action, since in another study using lower concentrations PNE did not alter anxiety levels in 
the offspring[118]. The method of nicotine administration is also likely important, as failure to detect 
anxiolytic-like behavior is common in studies in which nicotine was administered subcutaneously[119-
121]. Early life exposures to nicotine have been suggested to heighten the risk of anxiety disorders in 
humans[122]. However, very few studies have been conducted examining the influence of smoking 
during pregnancy on anxiety in offspring, and in those conducted, mixed results have been reported 
with no gender segregation[123-125]. In perhaps the largest and well-characterized cohort examined, 
the Norwegian Mother and Child Cohort (1999-2009), maternal smoking was associated with an 
increase in externalizing behaviors, including anxiety; however, unfortunately, sex-based effects were 
not taken into account[122]. Interestingly, a larger impact was noted when the amount of cigarettes was 
considered as well as the time during gestation when smoking was present, with a more negative effect 
on anxiety the earlier nicotine was present in the pregnancy. This later finding was supported by a 
study of a much smaller population of Australian mother and child pairs[124-126]. In conclusion, while 
an enhanced risk of anxiety-like behavior remains a point to be examined in both human and animal 
studies, available data suggest that the PNE mouse model, in which nicotine is provided in the drinking 
water, represents a reasonable, translational model that can be used to study the mechanistic neural link 
between anxiety and PNE.

Hyperactivity and PNE: The oral administration method of PNE in NMRI mice was associated with 
hyperactivity in the offspring of both sexes in the open arena test (PND42-48)[116]. When nicotine was 
delivered via drinking water to pregnant rodent dams in other studies, PNE treatment was associated 
with hyperactivity in males, albeit some data showed that this effect could be present in both sexes or it 
could be linked to the genetic background of the mouse employed[114,127-130]. Differences can also be 
due to strain, as in a study using outbred mice, hyperactivity was seen in male PNE Swiss mice during 
late adolescence[119]. Further, it is relevant to consider the nicotine concentrations employed to draw 
associations between PNE and locomotor behavior, as no locomotor effects were seen in both sexes in a 
study employing a lower nicotine level before and during pregnancy[118], contrasting with previous 
findings showing PNE hyperactivity in similar models and ages investigated when higher doses of 
nicotine were utilized[116,127,130,131]. Although one study reported greater hyperactivity in 3-year-old 
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boys following exposure to tobacco during gestation[132], another study suggested that prenatal 
tobacco exposure could have a causal relationship with hyperactivity seen in both adolescent and adult 
women[8]. Thus, the sex-dependency of hyperactive effects on offspring following PNE in experimental 
studies and prenatal tobacco exposure in clinical investigations is still unclear. Further, sex-dependent 
effects on motor activity of nicotine exposure via e-cigarette usage during pregnancy need to be 
examined as neurobehavioral evaluation of a small population of neonates exposed to e-cigarettes 
reported abnormal motor reflexes linked to later life motor development that were similar to those seen 
in prenatally cigarette exposed infants[133]. The small sample size precluded sex-based comparisons.

Cognitive deficits, ADHD, and PNE: In the oral PNE NMRI model, poorer outcomes have been 
detected in the spontaneous alternate behavior test, which is a Y-maze based test quantifying 
performance of a cognitive-dependent behavior. Scores indicative of cognitive impairments and 
working memory deficits were found in both sexes in young adult NMRI PNE offspring. In the outbred 
NMRI PNE model, both male and female offspring displayed deficits in the percentage of correct 
alternate behavior in the Y-maze, suggesting deficits in hippocampal-dependent working memory[116]. 
Moreover, this same model was associated with performance impairments in the rodent continuous 
performance task, particularly in scores related with learning, impulsivity, and attention, but only male 
offspring were investigated[134]. In inbred mice in which nicotine was delivered via drinking water of 
pregnant dams, deficits in the spontaneous alternate behavior performance assessed in adult offspring 
were seen only in males[118,135]. However, another study using twice the concentration of nicotine in 
the same inbred strain found that PNE cognitive deficits in this test were present in both PNE males and 
females[131], suggesting that the concentration of nicotine given could play a role in the sex-dependent 
outcomes. Further, young adult rats exposed prenatally to nicotine through the drinking water 
displayed impaired performance in another test of working spatial memory, the radial maze test. This 
effect was seen in both sexes[136], but little or no effect was found in PNE models using minipumps or 
subcutaneous injections[137-139]. A higher risk of cognitive deficits has been found in children born 
from pregnant smokers[9,12,140]. This association was also found in a study with a cohort of 574 
children born from mothers who used NRTs during pregnancy[141]. Additionally, children prenatally 
exposed to smoke exhibited alterations in cognitive control circuitry and exhibited attention 
dysfunctions[142]. When taken together, the data strongly support the conclusion that nicotine during 
the prenatal period is associated with cognitive deficits. PNE individuals show up to a three-fold higher 
risk of ADHD, and a strong association has been made between nicotine levels in the mother during the 
first and second trimesters and diagnosis of ADHD[9]. Interestingly, ADHD has shown a sex bias, with 
reports of the male/female ratio being 4:1. However, carefully controlled, large population studies 
indicate the ratio is more likely 2:1 in adolescence, which was a proportion maintained into adulthood, 
leading the authors to suggest the possibility that males exhibit a greater level of hyperactivity/ 
impulsive symptoms that are disruptive than manifestations of these behaviors in females, and that 
female ADHD behaviors tend to be more cognitive-based and require more probing to detect[143]. 
Although clinical studies have employed both sexes to draw associations between prenatal tobacco 
exposure and ADHD, sex-dependent effects in the offspring were not taken into consideration to date in 
these studies, as genders were pooled together[144]. Our findings and others suggest that perhaps more 
clinical investigative attempts to identify and better recognize ADHD symptoms, especially in females, 
are warranted.

Conclusions on the animal models of PNE: In conclusion, we found a greater level of anxiety, 
locomotion, and cognitive deficiencies, with sex-specificity regarding emotional behaviors, in young 
adult NMRI mice prenatally exposed to nicotine via the drinking water[116,134]. The behavioral associ-
ations seen reproduced some of the relevant features observed in ADHD patients, which are associated 
with exposures prenatally to nicotine. When taken together, behavioral outcomes associated with PNE 
models in which gestational nicotine exposure occurs via maternal drinking water suggest that this 
model provides reasonable face validity relative to others by recapitulation of risk outcomes of 
individuals exposed to prenatal tobacco which have been seen in epidemiological investigations. This 
conclusion leads us to suggest that this model displays high translational potential for research focused 
on the connection of developmental exposure to nicotine to later-life appearance of ADHD-associated 
symptoms,= as well as in the search of relevant brain circuit alterations that could contribute to this 
phenotype. Studies using other rodent models of PNE have provided data that these models do exhibit 
characteristics of drug dependence and in some cases, recapitulate sex-differences seen in humans[3,
145-147]. However, whether the NMRI PNE drinking water model exhibits features seen related to drug 
dependence and whether sex-based differences exist remains an open question which must be experi-
mentally addressed.

SYNAPTIC AND CELLULAR ALTERATIONS IN PNE LDT NEURONS
The oral administration PNE NMRI model has demonstrated many of the behavioral risks associated 
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with gestational nicotine exposure in humans that could involve the LDT, and other models of PNE 
have shown the heightened risk of drug dependency, suggesting a role of nicotine in this outcome. This 
model has been utilized to explore the molecular changes occurring in the LDT during development 
when nicotine is present in order to gain insight into alterations that could contribute to the behavioral 
risks found in PNE individuals in which this brain stem nucleus is implicated.

Cholinergic signaling is altered in PNE LDT neurons
We have reported that gestational exposure to nicotine induces cellular changes in cholinergic signaling 
within the LDT that are findings in line with other studies, which have shown alterations in players in 
cholinergic transmission in diverse regions of the brain using alternative PNE models[145,148]. Indeed, 
reductions in the expression of nAChRs in different regions of the PNE brain, including the brain stem= 
as well as lower striatal and cortical DA levels[149-151], led to the suggestion that alterations in nAChRs 
induced by PNE are involved in dysfunctions in DA functioning in these regions underlying the higher 
drug dependence and ADHD risks in PNE individuals[152], which could involve changes in function of 
nAChRs in the LDT. Consistent with this, we have provided evidence that PNE is associated with 
alterations in functioning of nAChRs in the LDT. Nicotine application ex vivo in LDT-containing brain 
slices resulted in significantly smaller rises in calcium in LDT cells from PNE individuals when 
compared to rises elicited in control LDT cells. Further, in the PNE LDT, a reduced proportion of cells 
responded with rises in calcium upon nicotine application[153]. Although the mechanism of altered 
nAChR-stimulated calcium was not examined, changes in calcium responses seen could be due to 
reductions in numbers of nAChRs and/or could be due to alterations in nAChR subunit composition, as 
the subunit composition determines calcium permeability.

Glutamate signaling is altered in LDT neurons of PNE mice
Glutamate transmission was also altered in the LDT of PNE mice, which has been seen in other regions 
of the rodent brain examined across several different PNE models. Glutamate mediates fast excitatory 
transmission via actions at three ionotropic receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA), N-methyl-D-aspartate (NMDA), and kainate. AMPA receptors (AMPARs) are tetramers 
composed of different assemblies of subunits (GluA1-4)[154], exhibit widespread expression in the 
brain, and are the major mediators of fast glutamate synaptic transmission[155]. Further, expression of 
AMPAR subunits follows a distinct ontogenetic pattern, which suggests specific functional roles at 
different periods during development. In the rat hippocampus, GluA1 expression remains constant 
until young adulthood, whereas GluA3 increases, and both GluA2 and GluA4 expressions are reduced 
over time[156], with GluA2 expression mostly limited to interneurons[157]. Within the VTA, electro-
physiological evidence has suggested that GluA2-lacking AMPARs are abundant during the first 
postnatal days with a reduction in functional presence across age, with similar findings in cortical 
pyramidal cells and other brain areas[158-160]. NMDA receptors (NMDARs) are composed of 
heteromeric assemblies of GluN1-3 subunits, with obligatory presence of GluN1 with four GluN2 
(GluN2A, GluN2B, GluN2C and GluN2D) and two GluN3 (GluN3A and GluN3B) possible isoforms. 
NMDAR subunit expression levels also shift during ontogeny, particularly among GluN2 and GluN3 
subunits. GluN2A expression starts after birth, with a steady rise during development so that levels are 
at their highest in the adult brain. GluN2B/D subunits are expressed during the intra-uterine period, 
with GluN2B expression maintained at high levels up to the first postnatal week, and progressively 
decreasing in expression across age, culminating gradually in a limited restriction of presence within the 
forebrain, whereas GluN2D is markedly reduced in expression immediately after birth. GluN2C 
subunits appear late during development, at PND10, and exhibit a restricted expression and are 
primarily found within cerebellum and olfactory bulb. Finally, GluN3A subunits increase expression 
following birth, but thereafter, decline progressively to low levels; whereas, conversely, GluN3B 
expression shows a slow and steady increase throughout development[161-164].

Investigations from other laboratories have reported alterations in glutamate receptor subunit 
expression from expected patterns in the PNE brain. Differences in levels of expression of the GluA2, 
GluN1, and GluN2C subunits were seen in the PNE hippocampus at PND63 following osmotic pump-
mediated PNE for 14 gestational days, whereas changes in glutamate signaling-related molecules were 
observed at younger ages[165]. Using a similar PNE model in which nicotine exposure was also 
provided by osmotic minipumps, a reduced expression of GluA1 subunits, smaller amplitudes in 
glutamate-mediated, miniature postsynaptic excitatory currents, reduced long-term potentiation, and 
increased long-term depression in hippocampal CA1 neurons associated with PNE treatment were 
reported[166-168]. As changes in synaptic strength are mediated by alterations in AMPA and NMDA 
receptor functioning, PNE-associated differences in long-term potentiation and long-term depression 
suggest changes in the functionality of glutamate receptors. Further, PNE from gestational day 5 was 
associated with a reduced frequency of excitatory postsynaptic currents and altered AMPA-mediated 
synaptic transmission in hypoglossal motoneurons in brain slices from rat neonates[169,170]. In 
addition, reduced glutamatergic input was found in the PNE auditory brainstem[171]. Finally, 
gestational nicotine exposure was associated with suppression of progenitor cell differentiation in the 
glutamatergic-projecting granule cells within the hippocampal dentate gyrus at PND21 in rats[172] as 
well as with the impairment of progenitor cell proliferation during gestation, resulting in reductions in 
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the availability of pyramidal glutamate neurons within the postnatal medial PFC in mice[173]. Overall, 
these studies indicate that the teratogenic effects of nicotine can affect glutamate signaling in different 
brain regions, which could affect both pre- and postsynaptic mechanisms in neuronal circuits.

Our studies in the LDT extend the observations of PNE effects on glutamate functionality. When the 
effects of PNE treatment in the NMRI model in male offspring were examined, early life exposure to 
nicotine was associated with larger, AMPA receptor-mediated intracellular calcium rises and inward 
currents in LDT cells (Figure 3)[174]. Pharmacological examination suggested a delayed switching of 
GluA2-lacking AMPA receptors in PNE LDT neurons, suggesting a time lag in appropriate 
development of AMPA receptors associated with early exposure to nicotine. Presynaptic release of 
glutamate was lower in PNE LDT cells, which would contribute to reductions in postsynaptic 
excitability of these neurons[174]. Notably, an unpublished observation in our group was that, despite 
the finding that PNE LDT neurons exhibited significantly higher AMPAR-stimulated current 
amplitudes, enhanced membrane responsiveness was not sufficient to activate these neurons to fire 
action potentials to the same extent as observed in control cells, further suggesting reduced excitability. 
NMDA receptors in the LDT were also shown to be associated with alterations in functionality 
following PNE. Our data indicated that PNE was associated with changes in both synaptic and 
extrasynaptic NMDAR function, which was cell-type specific. In putatively GABAergic inhibitory LDT 
cells, PNE treatment was associated with higher functional presence of GluN2B-containing synaptic 
NMDARs and higher levels of silent synapses, without major functional effects detected in 
extrasynaptic NMDARs. Further, putatively cholinergic cells displayed reduced functional presence of 
GluN2B subunits in synaptic NMDARs, and changes in extrasynaptic NMDARs[175]. Our electro-
physiological findings were in line with a previous calcium imaging study conducted in our group that 
did not include electrophysiology, suggesting lower intracellular calcium increases upon a second bath 
application of NMDA, which was interpreted to reflect a shift in properties of NMDARs in LDT cells 
following PNE treatment[176].

Membrane property differences leading to alterations in excitability
Passive and active properties of cholinergic neurons of the LDT were also examined in the PNE as 
membrane properties underlie cellular excitability. Lower neuronal excitability among LDT cells in PNE 
mice was exhibited in several different paradigms. PNE LDT neurons exhibited a higher rheobase, 
which is defined as the minimum amount of current necessary to elicit an action potential[177], and 
smaller activity-induced rises in calcium putatively due to PNE-associated alterations in voltage-
operated calcium channels, although this point was not directly examined[174]. Examination of the 
action potential revealed a broader spike in the PNE, due to a slower decay slope that was likely 
reflective of differences in ionic conductance underlying the kinetics of the rise and decay times. Further 
studies revealed data consistent with a reduction in function of K+-channels activated by Ca+2[174]. In 
addition, the amplitude of the afterhyperpolarization was significantly larger in the PNE, which also 
suggested alterations in ionic conductance[153]. When taken together, the effects on the kinetics of the 
action potential and the amplitude of the afterhyperpolarization would likely result in a limitation in the 
firing frequency.

Summary of the impact of cellular changes associated with PNE in the LDT
In summary, our studies of PNE LDT neurons found reductions in membrane excitability, effects on the 
action potential kinetics and the amplitude of the afterhyperpolarization that likely resulted in 
limitations in firing frequency, reductions in nAChR-induced calcium rises suggestive of a reduction in 
excitability mediated by nAChRs, and changes in glutamate signaling that would lead to decreases in 
excitability in cholinergic neurons, with concurrent increases in activity of GABAergic cells, which could 
be local or projection neurons. Interestingly, some of these changes were present in young animals but 
did not persist into adulthood, suggesting that nicotine-associated alterations in development of LDT 
transmission would result in changes in output that would participate differentially across ontogeny 
and thereby, affect neuronal excitability differentially across age. When taken together, our studies have 
led us to the working hypothesis that PNE is associated with a hypofunctioning LDT, which would lead 
to reductions in output of excitatory neurotransmitters onto projection targets, including those within 
the VTA, NAc, and thalamus.

LDT TARGETS INVOLVED IN DA-MEDIATED BEHAVIORS: RELEVANCE TO THE HIGHER 
RISK OF DRUG DEPENDENCE AND ADHD AFTER PNE
Reductions in cholinergic transmission from the LDT to target areas would be expected to have a 
significant effect on behaviors controlled by those target regions. Data from the oral NMRI PNE model 
have led to our development of the ‘hypocholinergic hypothesis’, and predictions from this hypothesis 
could mechanistically play a role in adverse behavioral outcomes associated with PNE.
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Figure 3 Overview of input sourcing from cognitive and limbic regions synapsing within the Laterodorsal tegmental nucleus. PFC: 
Prefrontal cortex; Hippoc: Hippocampus; NAc: Nucleus accumbens; VTA: Ventral tegmental area; LDT: Laterodorsal tegmental nucleus.

Drug dependence and the hypocholinergic hypothesis
PNE has been associated with a higher risk of later life development of drug dependence, especially to 
nicotine as well as a higher risk of drug experimentation and abuse, which is an association seen in 
studies correcting for confounds such as maternal cigarette consumption after birth[2-5]. Importantly, 
an increased risk for nicotine dependence was also seen in investigations including sibling-pairs 
discordant for prenatal tobacco exposure that were controlled for such confounds as postnatal maternal 
smoking, which linked prenatal cigarette exposure with increased liability for nicotine addiction[178-
180]. Gestational exposure to nicotine has been associated with a higher likelihood for abusing drugs, 
particularly during the adolescent time, including marijuana and cocaine, which is only explained in 
part by increased experimentation during the adolescent period and incomplete development of cortical 
regions of the brain[6,181]. An association has also been found during adulthood, in which 
gestationally-exposed young adults displayed significantly higher rates of cigarette smoking and 
nicotine dependence, which has been shown in independent studies[3,182].

As burst firing in mesoaccumbal circuits leads to behaviorally relevant levels and temporal patterns 
of DA in the NAc, which signal salience and engender continued usage of drugs, if PNE was associated 
with alterations in DA VTA burst firing engendered by exposure to drugs of abuse, or endogenous 
rewarding stimuli, this could alter coding of salience to the triggering stimuli. Interestingly, PNE was 
associated with alterations in the burst firing pattern of DA-VTA neurons of adolescent rats who were 
exposed to nicotine prenatally via mini-pump implantation[183], and several different models have 
identified an association between PNE treatment with lower DA release within the striatum[149,151,
184]. When findings from these and other PNE cellular studies conducted in the VTA are taken together 
with our PNE LDT data, it is tempting to speculate that since the LDT is a critical modulator of burst 
firing in the VTA[77], PNE-associated alterations in LDT excitability are likely involved in differences 
seen in VTA neuronal firing in PNE. As a working hypothesis, our LDT cellular data have led us to 
propose that the alterations seen in the PNE LDT would result in a reduced cholinergic tone into target 
brain areas upon activation of the LDT following exposure to drugs of abuse. As ACh is excitatory to 
DA VTA neurons, among other consequences, a hypocholinergic tone from the LDT in PNE individuals 
would be expected to reduce, or at least drastically alter, behaviorally relevant, excitatory drive 
mediated, phasic DA VTA firing in response to stimuli. This hypothesis is also in line with very recent 
findings that inhibition of cholinergic transmission from the LDT influences neuronal firing of striatal 
neurons, associated with blockade of goal-directed behaviors, resulting in a more habitually-directed 
brain reflective of reduced flexibility in development of action strategies[18]. This hypothesis is 
somewhat in line with the ‘hypoexcitability hypothesis’ of drug dependence, which postulates that 
individuals with a higher liability for drug dependence possess a hypodopaminergic function within the 
mesolimbic circuit, a condition that could be due to genetic and epigenetic factors as well as in utero 
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insults, including drug exposure[178,185-188]. Arguably, hypodopaminergic functioning within the 
mesoaccumbal circuit could lead to a bias towards coding a relatively higher reward value upon drug 
intake when compared to natural rewards, or when compared to coding conferred by normal 
functioning of the mesolimbic circuit[189], and this higher reinforcement could underlie continuous 
usage and engender escalation in drug consumption[190,191]. Further, a progressive development 
towards a switch to habitual and non-flexible responses to stimuli, rather than development of novel 
adaptive strategies integrated within experienced behaviors, has been noted as a feature of drug 
dependence, although drug dependency can be seen perhaps more correctly as an imbalance between 
habit and goal-directed behaviors[192]. Neuroimaging studies are in line with our hypothesis, since a 
weaker response in striatum to reward anticipation was noted in adolescents born to smoking mothers, 
which was suggested to contribute to an increased risk factor for substance dependence[193]. Although 
our hypothesis requires experimental validation, it places the PNE-associated changes in the LDT as 
critically involved in the negative behavioral outcomes related to a higher risk of drug dependence in 
this population.

ADHD and the hypocholinergic hypothesis
PNE has also been associated with a higher risk of later life development of ADHD-like behaviors. 
Modulation of catecholamine levels within the PFC has provided compelling experimental evidence of 
the role of DA pathways in impulsivity and attention deficits in behavioral performances[87,89,90]. 
Studies employing the PNE model in which nicotine was delivered via drinking water reported a 
reduced DA content in the PFC of adolescent male PNE mice[151], which corroborates findings of lower 
levels of DA in the cortex associated with PNE induced by minipump nicotine delivery model, an effect 
more pronounced at juvenile and adolescent stages[184], but which does not support findings in a later 
study with the minipump method in which DA levels were greater in the PFC of males and female 
offspring; however, the turnover ratio from DA to the DA metabolite homovanillic acid (HVA) was 
reduced only in the PNE males, suggestive of a sex-based PFC DA alteration[194]. Gestational tobacco 
smoke exposure was associated with a reduction in the DA and tyrosine hydroxylase levels within the 
striatum of PTE adult mice[149]. In adult PNE mice born to mothers exposed to nicotine via the drinking 
water, microdialysis of medial PFC showed reduced basal extracellular levels of DA[151]. Reductions in 
tyrosine hydroxylase, which catalyzes the conversion of L-tyrosine to L-DOPA, a precursor of DA, were 
detected using immunohistochemistry in DA-positive cells in the medial PFC and in the NAc core and 
shell in PNE animals[151].

As further evidence that alterations in DA signaling might be a common outcome following PNE, 
diminished levels of HVA were noted in the PFC in the mouse and rat PNE[151,195], which 
interestingly, while seen in the males of another study, was not noted in the female mice in that same 
work[194]. As lower HVA levels in spinal fluid and urine has been seen in clinical studies with both 
children and adult ADHD patients[196,197], alterations in DA turnover in the PFC could represent a 
common signaling dysfunction in both PNE and ADHD individuals. Accordingly, alterations in DA 
levels within the PFC seen in PNE rodents could underlie the higher risk of ADHD-type behaviors 
following early life exposure to nicotine. While it remains to be explored, alterations in LDT output to 
the DA cells of the mesocortical pathway could be involved in alterations of DA release in the PFC and 
NAc, which could represent a circuit-based alteration with great relevance for the heightened risks seen 
in PNE individuals to the development of ADHD. In line with this possibility, imaging studies on 
ADHD individuals have reported reduced activation of the ventral striatum in response to rewards, 
which is a similar response detected following PTE[193,198].

The thalamus and the hypocholinergic hypothesis
The ascending cholinergic projections which encompass LDT output to thalamic regions suggest that 
the LDT could play a role in cognitive functions by modulating cortico-projecting thalamic neurons. 
Therefore, changes induced by gestational nicotine associated with synaptic alterations in the LDT could 
lead to alterations in cholinergic output terminating in the thalamus, which could also play a role in 
ADHD-like phenotypes associated with PNE. Interestingly, it has been hypothesized that alterations in 
cholinergic signaling in corticothalamic circuits induced by PNE could underlie deficits in sensory 
processing, contributing to the behavioral alterations seen in these individuals in response to environ-
mental stimuli, including ADHD related behaviors[199]. The majority of studies of effects of PNE on 
cholinergic transmission in cognition-associated regions have focused on alterations in nAChRs; 
however, deficits suggestive of reduced cholinergic transmission were noted in cerebral regions[145,
199]. When taken together, PNE-induced alterations in neuronal excitability and cholinergic and 
glutamate signaling within the LDT nucleus presumably affect LDT cholinergic input to thalamic relay 
nuclei. Our working hypothesis is that cholinergic output from the LDT to targets including those 
within the thalamo-cortical circuit is reduced in PNE, altering cortical activation in this network, leading 
to higher risks in this population of negative, cognitive behaviors controlled by the cortex. This 
conclusion is paralleled by findings of a reduced activation of the thalamus seen in conditions exhibiting 
poor impulse control characteristic of both ADHD and drug dependence[108]. Interestingly, PNE-
associated alterations in cortical transmission were found to be sex-dependent, with a striking effect in 
males[145]. Although females were not as affected, PNE appeared to sensitize females to a greater 
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extent as they exhibited poorer cognitive outcomes upon later life exposure to nicotine when compared 
to those in males[145]. In summary, PNE-induced alterations in excitability, cholinergic, and glutamate 
signaling within the LDT nucleus would presumably affect LDT cholinergic tone present in thalamic 
centers leading to a dysfunction in thalamo-cortical brain circuits. This dysfunction in input could lead 
to altered processing of sensory stimuli and to cognitive deficits seen in ADHD present in those 
gestationally exposed to nicotine. Further, while this effect might be more prominent in males, early life 
exposure appears to leave behind a liability in females, in that later life exposure to nicotine could result 
in reductions in cholinergic transmission, which could have deleterious behavioral consequences on 
processes controlled by cortico-thalamic loops.

CONCLUSION
While the brain stem might not be the obvious neural target in studies interested in cognitive 
processing, or in studies focused on cognitively-based disorders, over time, irrefutable evidence of the 
role the LDT plays in cognitive processes has been provided, and accordingly, alterations in LDT 
neuronal output could play a significant role in dysfunctions of cognitively-based behaviors. As regions 
of the brain known to modulate psychomotor, reward, memory, and attentional behaviors[93,200-202] 
are altered in PNE, and since the LDT exerts direct or indirect control over these regions, it would be 
expected that changes in glutamate and cholinergic receptor signaling, as well as in excitatory 
membrane processes in this nucleus seen in experimental models of gestational exposure to nicotine, 
would lead to reductions in excitatory cholinergic and glutamatergic output from the LDT to target 
regions. This scenario would lead in the PNE to a hypodopaminergic midbrain function, lower 
cholinergic tone in the NAc, and reduced cholinergic strength within ascending reticular activating 
system participating pathways to thalamic relay centers. Many of the regions targeted by LDT afferent 
input are DA releasing, which strongly suggests that DA release would be altered, as has been seen in 
the PNE brain. In addition, ACh stimulatory input to thalamic nuclei that control the cortex, including 
the PFC, would be altered, implying that changes in DA are also likely to be accompanied by non-DA 
changes due to PNE-associated differences in cholinergic tone within cortico-thalamic circuits. Finally, 
resulting postsynaptic processing of afferent input to the LDT would be altered, as cellular changes 
impacting on synaptic integration would likely be affected in this nucleus. Given the neural regions 
under control by activity of the LDT, PNE-associated alterations in LDT function would likely 
contribute to the enhanced risk of drug dependence and ADHD-like behaviors seen in PNE individuals, 
placing the brain stem as notably involved in these cognitively-based risks following PNE.

Increases in magnetic strength is allowing functional magnetic resonance imaging to reveal 
unprecedented details of the human brain, and as improvements are made in spatial resolution, it may 
become possible to conduct studies in humans to evaluate potential structural changes in LDT in PNE. 
Moreover, powerful in vivo electrophysiological techniques such as utilization of Neuropixels probes 
have emerged, allowing unprecedented recordings of deep brain structures in rodent models. Future 
studies employing in vivo electrophysiology, pharmacology, and optogenetic approaches in animal 
models should be used to determine the extent of LDT involvement in demonstrated PNE-induced 
alterations of midbrain DA functioning. Such studies could also dissect the effects of the LDT-thalamo-
cortical pathway in cognitive and behavioral control. If our working hypothesis of PNE-associated 
reductions in ACh transmission sourcing from the LDT is confirmed, data obtained from future studies 
could identify a target brain substrate for therapeutic interventions involving cholinergic function 
within the LDT to VTA, NAc, and thalamic circuits in order to ameliorate drug dependence and ADHD-
like associated behaviors, such as those seen in PNE individuals.
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