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ABSTRACT
Objective: Recent studies have shown that cerebral ischaemia causes not only local, but also systemic
oxidative stress. This leads to oxidation of thiol-containing compounds, including low-molecular-
weight thiols (cysteine, glutathione, homocysteine and others). Therefore, the aim of this work was
to verify the hypothesis that the thiol/disulphide homeostasis of low-molecular-weight thiols is
disturbed in the early stages of cerebral ischaemia.
Methods: Two experimental rat models of ischaemia were used: a global model of vascular ischaemia
(clamping the common carotid arteries + haemorrhage) and focal ischaemia (middle cerebral artery
occlusion). The total levels of thiols and their reduced forms were measured before surgery and
after 40 minutes of reperfusion (global) or 3 hours (focal) ischaemia.
Results: The global ischaemia model caused a marked (2.5–4 times, P < 0.01) decrease in the plasma
thiol/disulphide redox state, and focal ischaemia caused an even larger decrease (30–80 times,
P < 0.001).
Discussion: These results suggest that plasma low-molecular-weight thiols are actively involved in
oxidation reactions at early stages of cerebral ischaemia; therefore, their reduced forms or redox
state may serve as a sensitive indicator of acute cerebrovascular insufficiency.
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Introduction

Oxidative stress plays an important role in thepathophysiology
of cardiovascular diseases, particularly in cerebral ischaemia
[1–3]. Oxidative modifications of neurons are one of the key
factors of their dysfunction and may lead to necrosis or apop-
tosis during ischaemia and cerebral reperfusion [4,5]. Further-
more, acute ischaemic injury causes systemic oxidative stress,
which is associated with inflammatory responses in peripheral
arteries [3,6]. As a result, blood plasma vasoconstrictor activity
is elevated because of the massive release of reactive oxygen
species (ROS) and cytokines [5,7,8]. It has been suggested
that this contributes to a hypertensive state and has negative
effects on the course and outcome of stroke [9,10].

It has previously been shown that global cerebral ischae-
mia–reperfusion causes a rapid and continuous (up to 10–
30 days) decrease in sulfhydryl (SH) groups and an increase
in the products of lipid peroxidation in rat plasma [11]. Conco-
mitantly, the total content of thiol groups may not reflect the
full dynamics and intensity of oxidative stress, because of the
contribution of albumin, which has a lifetime of about 20 days
and an abnormally low pK (∼5) for its free SH group [12].
Despite the fact that a decrease in blood plasma SH groups
has also been shown in clinical studies, and that, in some
cases, its correlation with the severity, type, volume and
outcome of stroke has been demonstrated, conclusions
about the diagnostic and prognostic value of this parameter
remain contradictory [13–17].

Low-molecular-weight thiols (LMWTs: cysteine [Cys], gluta-
thione [GSH], homocysteine [Hcy] and others) are part of the

antioxidant system of blood plasma. They are in a state of
dynamic equilibrium between the disulphide and reduced
forms. The ratio of reduced form to the total aminothiol
content represents its redox status (RS) [18]. The disulphide
forms are located predominantly in blood plasma, and the
reduced fractions account for only 1–5% of the total ami-
nothiol content in humans [19]. LMWTs have a high turnover
rate (1–2 minutes [20,21]) and exhibit reactivity with ROS.
Thus, we assume that the LMWT redox status in the blood
plasma may be a more sensitive indicator of oxidative stress
levels than the total level of SH groups.

Therefore, the aim of this work was to verify the hypothesis
that the thiol/disulphide homeostasis of LMWTs is disturbed
in the early stages of cerebral ischaemia. We used two
models of cerebral ischaemia: focal ischaemia (middle cer-
ebral artery occlusion [MCAO]) and global ischaemia (bilateral
occlusion of the common carotid arteries [BCAO]). Plasma
total and reduced thiol levels (Cys, GSH and Hcy) were deter-
mined and compared with cerebral tissue thiols, hemody-
namic changes and histological data.

Material and methods

Reagents and equipment

Acetonitrile Ultra Gradient (RCI Labscan, Poland) 99.9%; Iodoa-
cetamide SigmaUltra, N-ethylmaleimide >98%, 5,5′-dithiobis
(2-nitrobenzoic acid) or DTNB, trifluoroacetic acid 99.0%
(Sigma-Aldrich, U.S.A); 5-sulfosalicylic acid dehydrate (Sigma,
South Korea), L-Cys 97% (Aldrich, U.S.A), GSH 99% (Sigma-
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Aldrich, Japan); sodium citrate dehydrate (Sigma, U.S.A);
NaH2PO4·2H2O 98–100.5%, Na2HPO4·2H2O 98–101%
(Panreac, Spain); NaOH (Dia-M, Russia); EDTA disodium salt
dihydrate 99% (Labteh, Russia); Chloral hydrate >99.5%, D-
penicillamine or PA (Sigma, Germany), DL-dithiothreitol
>99.5% (Fluka, India), DL-Hcy >95% (Sigma, UK), ethanol
96% (Reahim, Russia).

The Waters ACQUITY system (Waters, Milford, MA, U.S.A)
equipped with a PDA λ UV detector (absorption, 330 nm; res-
olution, 10.8 nm; freq., 5 s−1) and an Agilent Poroshell 120 SB-
C18 (2.8 µm, 150 × 2 mm) column (Agilent, Santa Clara, CA,
U.S.A) were used for high-performance liquid chromato-
graphy (HPLC) analysis. The temperature of the column and
samples was held at 50 and 10°C, respectively. A vacuum con-
centrator (Eppendorf Concentrator plus, Hamburg, Germany)
was used for liquid extraction and sample preparation for
HPLC.

Blood flow was recorded, and a spectral wavelet analysis of
blood flow oscillations was performed using a LAKK-02 blood
flow analyzer (version 2.2.0.507; LAZMA, Russia, Moscow), as
described previously [22].

Animals and operation technique

The experiment was performed on 36 adult (2–3 months of
age) outbred white male rats weighing 260–300 g. The proto-
col used in the research project and all experimental protocols
were approved by the Ethics Committee of the Federal State
Budgetary Scientific Institution ‘Institute of General Pathology
and Pathophysiology’.

The operations were performed under general anaesthesia
(chloral hydrate given intraperitoneally at a dose of 300 mg/
kg). To measure systemic blood pressure and to sample
blood, both femoral arteries were isolated and cannulated
(heparin was administered intra-arterially, 500 U/kg). To regis-
ter the blood flow using a cylindrical sensor, a metal frame
surrounding the craniotomy area was fixed to the skull as a
means to hold the head of animal rigidly and the parietal
bone was trephined (5 × 3 mm) without impairing the integ-
rity of the dura mater (coordinates: AP, 5 mm; L, 3 mm). Cer-
ebral blood flow recording was started 30 minutes after
completion of all surgical procedures at an ambient tempera-
ture of 20–21°C.

MCAO
Cerebral focal ischaemia was induced using the MCAO model
as described previously [22], with somemodifications. A surgi-
cal 4-00 polypropylene thread (22 mm long; Ethicon, U.S.A)
treated with silicone and poly-L-lysine was inserted retrogra-
dely into the left external carotid artery and then carried
through the bifurcation of the common carotid artery and
the internal carotid artery to the mouth of the middle cerebral
artery to block it. Rats in the sham-operated control groups
underwent the same operation without artery occlusion.

BCAO
Global ischaemia was induced as described previously [23],
with some modifications. Systemic blood pressure was
reduced by 40–45 mm Hg by inducing haemorrhage (∼30%
of blood volume, or 2.5 ± 0.2 ml/100 g of body weight). This
was followed by bilateral occlusion of the common carotid
arteries for 10 minutes and re-infusion of blood and
removal of the carotid artery clips. In the control group, the

procedure was performed similarly with the exception of
blood loss and compression of blood vessels.

Blood and brain tissue samples
Control blood samples (1 ml) were obtained at the beginning
of the operation and after 40 minutes of reperfusion (for
BCAO) and 3 hours after MCAO. Venous blood was collected
into tubes with sodium citrate and centrifuged at 3000×g for
3 minutes. The plasma for the total thiol assay was collected,
frozen at −20°C, and stored until analysis. Plasma (100 µl)
was added to 25 µl of 5-sulfosalicylic acid solution (230 g/l)
immediately after isolation, for reduced LMWT analysis. The
samples were mixed thoroughly, frozen and stored at −80°C.

Rats were decapitated after surgery and the brains were
removed and promptly placed on ice for 5 minutes. Sub-
sequently, forebrain slices (50–100 mg) were prepared and
homogenized in acetonitrile (10 mkl of extragent per 1 mg of
tissue). We used 20 mmol/l DTNB with 2.5 µmol/l PA and
1 mmol/l iodoacetamide solutions for reduced and oxidized
thiol determination, respectively. Probes were centrifuged 5
minutes at 15,000×g and the supernatant was stored at−80°C.

Morphological examination
In anesthetized rats, the thorax was opened and perfusion of
the brain was performed transcardially through the left ventri-
cle using 20 ml of isotonic sodium chloride followed by 20 ml
of 2.5% glutaraldehyde in phosphate-buffered saline. Tissues
were sampled from the left primary somatosensory cortex
cut at a distance of 1 mm from the bregma in the rostral direc-
tion (field S1FL) [24]. Samples were embedded in epoxy resin.
One-micrometre sections were cut with an ultramicrotome
(Leica EM UC6, Austria), stained with 1% toluidine blue sol-
ution and 0.5% solution of borax and analyzed with an
Olympus BX51 light microscope. Photography and image
analysis were performed using the Imaging Software for Life
Science Microscopy Cell F (Olympus, Japan). The sections for
electron microscopy (50 nm) were obtained using an ultrami-
crotome (Leica EM UC6 Austria) and were contrasted using a
Leica EM AC20 apparatus (Austria) with uranyl acetate and
lead citrate solutions (Ultrastain no. 2, Lot 09/138, Laurylab,
France). The sections were then analyzed using an electron
microscope (Leo 912AB Omega, Germany).

Biochemical assay

Total plasma thiol levels were measured as described pre-
viously [25]. Reduced thiol levels were measured as described
previously [26], with some modifications. Before derivatiza-
tion, the samples were centrifuged for 5 minutes at
15000×g. Next, 40 µl of supernatant was mixed with 40 µl of
20 mmol/l DTNB with 2.5 µmol/l of PA (internal standard) in
0.4 mol/l Na-phosphate buffer (pH 8.0). Then, 10 µl of 1 mol/l
NaOH was added, the solution was mixed for 5 seconds and
12.5 µl of 1 mol/l HCl with 20 mmol/l N-ethylmaleimide was
added to stop the reaction.

For reduced thiol determination, 100 µl of brain tissue
extract was evaporated (30 minutes, 60°C), and the pellet
was re-suspended in the same volume of 0.1 mol/l Na-phos-
phate buffer (pH 7.4). For oxidized thiol determination, 10 µl
of 50 mmol/l dithiothreitol and 10 µl of 250 µmol/l PA were
added to 100 µl of brain extract. Probes were incubated at
37°C for 15 minutes, and then 200 µl of 25 mmol/l DTNB in
0.2 mol/l Na-phosphate buffer pH 8.0 was added.
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The HPLC injection volume was 10 µl and the flow rate was
0.2 ml/minute. Eluent A was 0.1 mol/l NH4Ac with 0.12% (v/v)
HCOOH, and eluent B was acetonitrile. Chromatography was
performed using a linear gradient elution of B from 2.5 to
10% for 5 minutes. Regeneration was performed with 70% B
for 1.5 minutes, and equilibration with 2.5% B for 4 minutes.

Data analysis

Primary processing of chromatograms (detection and inte-
gration of peak areas) was performed using MassLynx4.1
(Waters Milford, MA, U.S.A). Calibration data plotting and stat-
istical analysis were performed using Microsoft Excel 2003.
Where appropriate, data are presented as the mean with
the variation expressed as standard deviation (±). Paired
and unpaired t-tests were used to compare the results
between initial/after ischaemia and between ischaemia/
control groups, respectively. The comparison of group disper-
sions (homoscedasticity) was performed using the Fisher–
Snedecor test at a significance level of α = 0.05. For analyses,
a two-sided P value <0.05 was considered statistically
significant.

Results

Changes in cerebral blood flow and mean arterial pressure
(MAP) are shown in Figure 1. Cerebral blood flow in the neo-
cortical area declined by nearly half, from 33.4 ± 2.1 to
18.0 ± 1.0 perfusion units after 3 hours of MCAO (P < 0.001;
n = 6). MAP declined slowly from 102.8 ± 1.6 to
83.2 ± 1.2 mmHg in this case. BCAO caused a greater decrease
in cerebral blood flow and MAP, by about 70%, from
30.8 ± 1.9 to 8.9 ± 0.9 perfusion units and from 85.3 ± 1.2 to
43.4 ± 0.6 mm Hg, respectively (P < 0.001; n = 6).

Morphological examination in light and electron
microscopy not found noticeable differences in the samples
obtained from sham-operated animals in comparison with
the samples after global and focal ischaemia (Figures 2 and 3).

Brain tissue LMWT levels are presented in Table 1. The level
of Hcy in the brain was too low to allow quantitative determi-
nation. As seen in Table 1, reduced GSH and RS of Cys were
approximately equal in all groups. The reduction of GSH and
RS of Cys was approximately equal in all groups. Oxidized
GSH level was significantly increased after MCAO and BCAO;
thus, its RS decreased by 5–7 times. During focal ischaemia,
brain Cys levels increased by about 20–30%, but the RS
remained unchanged.

Total and reduced plasma LMWT levels and their RS are
shown in Table 2. No significant differences were observed
in the total LMWT baseline levels between all groups. In
addition, no differences were seen between the initial
LMWT levels and the levels recorded after operations in the
control groups. A small decrease in total Cys (20–30%,
P < 0.01) and a less significant increase in total GSH levels
were found after MCAO and BCAO. The variability of total
GSH was increased significantly in both groups (ВСАО, 7–
30 µmol/l; МСАО, 7.9–22 µmol/l).

Reduced LMWT forms were decreased dramatically after
BCAO and MCAO, but not in the control groups (Table 2).
Typical chromatograms of plasma reduced thiols are shown
in Figure 4. Thus, changes in thiol RS were determined by
their reduced (but not oxidized) forms in global and focal cer-
ebral ischaemia. As shown in Table 2, thiol RS decreased mark-
edly, by about 30–80 times, afterMCAO. This effectwas smaller,
but still significant, in the global cerebral ischaemia model.
Thiol RS was decreased 2–4.5 times on average in this case.

Discussion

Currently, there are many derivatization agents for LMWT
determination [27]. However, only a few of these are suitable
for reduced thiol analysis. Previously, Katrusiak et al. [26] pro-
posed a simple and sensitive HPLC-UV method with DTNB

Figure 1. Example of experimental curves of cerebral blood flow (CBF) and
mean arterial pressure (MAP) at global (A) and focal (B) cerebral ischaemia in
rats. Arrow down – the beginning of ischaemia, arrow up – the end of ischaemia.

Figure 2. Images of rat brain tissues. (A) Control (sham-operated); (B) bilateral occlusion of the common carotid arteries (BCAO); (C) middle cerebral artery occlusion
(MCAO). The scale bar is 15 μm.
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derivatization. However, the reaction between DTNB and
thiols leads to the formation of 2-nitro-5-thiobenzoate
(TNB–), which slowly reacts with the oxidized forms of thiols.
This can lead to non-reproducible results in blood plasma.
To solve this problem, we used N-ethylmaleimide, which
rapidly and irreversibly blocks the TNB–. Our preliminary
experiments showed that this reagent significantly sup-
pressed by-product reactions [28].

According to the literature, the levels of total plasma LMWT
in rats are 75–200 µmol/l (Cys), 5–22 µmol/l (GSH) and 3.2–
14.4 µmol/l (Hcy) [29–31]. It should be noted that age and
diet (B9, fatty acid consumption) have a great impact on the
total LMWT levels [30,32]. The levels of reduced forms of
Cys, GSH and Hcy are about 17, 11 and >0.5 µmol/l, respect-
ively, in rat plasma [32,33]. We obtained similar results, and
the total level of Hcy was near the lower threshold, indicating
the presence of a sufficient amount of folate in the diet of rats.

We used two models of acute cerebral ischaemia caused
by hypoperfusion: a short-time (10 minutes) global and a
continuous (3 hours) focal ischaemia. In the first case,

ischaemia was caused by the combined effect of hypoper-
fusion and hypovolemia. As shown previously, the organism
increases the production of antioxidants (ascorbic acid, uric
acid) in response to brain ischaemia [34]. The lowering of
total plasma Cys and the uptrend of total GSH at MCAO
and BCAO may be caused by the activation of GSH syn-
thesis aimed at ROS neutralization. Concomitantly, the util-
ization of Cys increases. RS and reduced LMWT in blood
plasma were dramatically decreased in both cases, but
this effect was most pronounced in the case of focal
ischaemia.

MCAO and BCAO induce a decrease in GSH RS in brain
tissues. However, unlike what is observed in blood plasma,
this effect is caused by the increase in oxidized GSH
levels, rather than by the decrease in its reduced fraction.
Cys RS does not occur in the brain. These results indicate
that GSH homeostasis is disturbed in cerebral ischaemia;
however, there is a temporary adaptation of its metabolism
to hypoxia. More severe ischaemia models associated
with the stopping of blood flow cause not only an increase

Table 1. Brain tissue low-molecular-weight thiol (LMWT) levels (nmol/g).

Group

GSH Cys

Reduced Oxidized Ox/red Reduced Oxidized Ox/red

Control 592 ± 28 38 ± 4 0.065 ± 0.01 36 ± 2 6.6 ± 1.1 0.19 ± 0.04
BCAO 575 ± 24 279 ± 20* 0.49 ± 0.06* 36 ± 2 5.9 ± 1.4 0.16 ± 0.05
MCAO 593 ± 35 204 ± 22* 0.34 ± 0.02* 44 ± 1.5* 8.5 ± 1.4* 0.19 ± 0.04

Data are mean ± SD values for six animals in each group, expressed in nanomole per gram of brain tissue.
*P < 0.001 (compared with the control).

Figure 3. Electron microscopic examination of somatosensory cortex with global and focal ischaemia. Splitting myelin sheaths (arrow) is present in all samples. The
scale bar is 2 μm. (A) Control (sham-operated); (B) bilateral occlusion of the common carotid arteries (BCAO); (C) middle cerebral artery occlusion (MCAO).

Table 2. LMWTs in rat plasma before and after focal medial cerebral arterial occlusion and global cerebral ischaemia.

Model Fraction

Thiols (µmol/l) and redox status (RS, %)

Cys GSH Hcy

* ** * ** * **

MCAO control Total 104 ± 20 82 ± 24 13.5 ± 4.5 10.5 ± 2.2 4.1 ± 0.6 4.6 ± 1.2
Reduced 15.3 ± 5.5 12.2 ± 4.9 3.35 ± 1.2 2.5 ± 0.7 0.4 ± 0.2 0.35 ± 0.17
RS 15.7 ± 4.5 15 ± 6 27 ± 4 24 ± 6 8.0 ± 2.5 8.5 ± 3.5

MCAO ischaemia Total 98 ± 19 80 ± 18a 11.0 ± 2.0 13.5 ± 5.0 3.3 ± 1.1 3.8 ± 0.8
Reduced 13.2 ± 5.1 0.46 ± 0.06b 4.1 ± 1.5 0.21 ± 0.1b 0.44 ± 0.15 0.013 ± 0.006b

RS 13.3 ± 5.7 0.6 ± 0.15b 37 ± 15 0.75 ± 0.15b 14 ± 4 0.36 ± 0.19b

BCAO control Total 67 ± 15 70 ± 7.0 11.2 ± 2.8 10.0 ± 3.6 3.2 ± 1.1 4.0 ± 1.8
Reduced 8.0 ± 2.4 7.3 ± 2.0 2.6 ± 0.9 2.5 ± 1.1 0.38 ± 0.13 0.36 ± 0.11
RS 12.0 ± 2.7 10.5 ± 2.7 23 ± 6.8 24.4 ± 6.1 12 ± 3.5 10.7 ± 5.9

BCAO ischaemia Total 64 ± 26 47 ± 22 11 ± 4 14 ± 8 3.7 ± 1.2 3.2 ± 1.3
Reduced 8.9 ± 2.6 2.1 ± 1.9b 3.0 ± 1.1 1.5 ± 1.3c 0.4 ± 0.1 0.13 ± 0.09b

RS 15 ± 4 4.3 ± 3.3b 29 ± 9 10.4 ± 9.6b 12 ± 4 4.2 ± 3.5b

Data are mean ± SD values for 10 animals in each group, expressed in µmol/l.
* Initial level.
** After ischaemia.
Different from the initial level (aP < 0.01, bP < 0.001, cP < 0.05).
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in oxidized GSH, but also a decrease in its reduced fraction
[35–37].

In both cases, histological examination did not reveal
characteristics of necrosis or apoptosis of neurons; this
finding is consistent with previous studies [38]. This indicates
that the decrease in LMWT levels in plasma is connected to
the brain response to ischaemia and precedes stroke for-
mation. Apparently, this effect is driven by the activation of
the sympathetic–adrenal system; i.e. it is based on mechan-
isms that are common in a wide range of systemic biochemi-
cal changes observed during brain injury.

It is obvious that the decline in reduced LMWT was associ-
ated with ROS release in the blood rather than with thiol redis-
tribution between cells and plasma. The lack of correlation
between the changes of thiols in plasma and brain in MCAO
and BCAO suggests that different mechanisms are involved
in the regulation of these redox systems. Previously, it was
hypothesized that the main factor that contributes to redu-
cing plasma SH is the formation of ROS in the brain tissue
in the reperfusion phase [11]. However, it was later shown
that endothelial dysfunction of peripheral vessels plays the
leading role in the generalization of oxidative stress during
cerebral ischaemia [6]. Key enzymes have been identified
that are responsible for the production of ROS (cyclooxigen-
ase-2, arginase and endothelial NO synthase) [6–8]. Despite
the fact that thiols are part of the antioxidant system, as
noted above, their oxidation products are cytotoxic. In par-
ticular, Hcy and Cys acidic derivatives can activate neuronal
and endothelium receptors, causing a so-called ischaemic
cascade in neurons [39,40]. Therefore, the vasoactive and oxi-
dative properties of acute stroke serum potentially contribute
to the pathogenesis of reperfusion brain damage.

Thus, cerebral ischaemia induces rapid and significant
changes in the LMWT thiol/disulphide homeostasis, not only

in the area of ischaemia, but also in the systemic blood circula-
tion. Despite the fact that the levels of reduced LMWTs in
plasma do not reflect the intracellular concentration of
reduced GSH and are not associated with organic neuronal
damage, they were highly sensitive to cerebral ischaemia per
se. This finding allows us to suggest the redox status of
plasma LMWT as an early indicator of the global oxidative
stress caused by cerebral ischaemia.
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