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ABSTRACT
Objectives: The objective of the present study was to evaluate oxidative/nitrative stress in the plasma
of 50 patients suffering from the secondary progressive course of multiple sclerosis (MS), and to verify
its correlation with physical and mental disability as assessed by the Expanded Disability Status Scale
(EDSS), and the Beck Depression Inventory (BDI).
Methods: Oxidative and nitrative damage to proteins was determined by the level of carbonyl groups
and 3-nitrotyrosine using ELISA test. Based on the reaction with Ellman’s reagent, we estimated the
concentration of oxidized thiol groups. Additionally, we measured the level of lipid peroxidation.
Results: In plasma drawn from MS patients, we observed a significantly higher level of 3-NT (92%;
P < 0.0003), carbonyl groups (29%; P < 0.0001) and thiobarbituric acid reactive substances (73%;
P < 0.0001), as well as a lower concentration of thiol groups (33%; P < 0.0001), in comparison to
healthy subjects. We noted positive correlations between the level of carbonyl groups or 3-NT and both
diagnostic parameters, EDSS and BDI. Negative correlations were observed between concentration
of -SH groups and EDSS and BDI.
Conclusion: Our results indicate that impaired red-ox balance can significantly promote
neurodegeneration in secondary progressive MS.
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1. Introduction

Multiple sclerosis (MS) is a complex disease with several
pathophysiological processes: inflammation, demyelination,
oxidative stress, axonal damage and the repair mechanisms
that occur in this disorder [1–3]. These processes are not uni-
formly represented in patient populations, but can selectively
predominate in individual patients. Therefore, heterogeneity
in phenotypic expression of MS has an effect on prognosis,
and the therapeutic response of MS patients [4]. The early
stage of MS is dominated by the inflammation, whereas the
chronic phase of the disease is characterized by neurodegen-
eration and many other interacting processes [1]. The most
common clinical form of MS is relapsing-remitting (RR MS),
in which fluctuating relapses and remissions are observed.
After about 10–20 years of the disease, RR MS (approximately
80% of cases) converts into another subtype of MS – second-
ary progressive disease (SP MS), which is characterized by irre-
versible progression of the disability [5–7]. Still, most
researchers conduct their studies on the early stages of MS.
Our study focused on a selected group of MS patients –
only those in the secondary progressive stage of the disease.

Owing to the complexity of MS, it is difficult to predict the
course of the disease and determine which pathological pro-
cesses will dominate in a particular patient [4]. Immune cells
play a central role in the initiation and propagation of this
disease [6,7]. Their activation leads to accumulation of macro-
phages (microglia in the brain) and lymphocytes in the central
nervous system (CNS), causing demyelination and destruction
of axons, accompanied by generation of reactive oxygen
species (ROS) [8–10]. Pro-inflammatory mechanisms in micro-
glia can favour the disease’s progression [11]. However, some

activated immune cells remain in the blood, and these are
responsible for the respiratory burst and oxidative imbalance
in plasma [11]. The concentrations of ROS can excessively
increase under inflammatory conditions in patients with MS.
There is growing evidence that oxidative stress is an impor-
tant component in the pathogenesis of MS [12–15]. The
imbalance between the cellular production of free radicals
and cell antioxidant ability is a crucial mechanism, responsible
for neuronal damage [16,17] and contributing to the clinical
symptoms [16]. It should be considered that oxidative stress
might be the primary mechanism in the pathogenesis of
MS. Myelin proteins with structural damage could be targets
for immune cells, which recognize themas foreign antigens.

The nervous system (brain, spinal cord, peripheral nerves)
is rich in unsaturated fatty acids, iron and catecholamines
(adrenaline, noradrenaline, dopamine), and this makes it sus-
ceptible to oxidative damage [18–20]. What is more, the brain
is particularly sensitive to oxidation because of its high
oxygen consumption and relatively low level of endogenous
antioxidants [20,21].

So far, most proteomic studies of MS patients have focused
on the composition of their cerebrospinal fluid (CSF) [21,22].
Using proteomic techniques on the CSF and serums of RR,
PP, and SP MS patients, Teunissen et al. [23] found small pro-
teins and peptides which seem to be promising biomarkers
for the diagnosis and disease progression of MS.

In our opinion, there are several reasons that the markers
of oxidative/nitrative stress in MS should be determined
from plasma. We primarily measure the level of protein bio-
markers of oxidative/nitrative damage to plasma, because it
contains thousands of proteins and peptides in a total
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concentration range of >1015, while myelin contains approxi-
mately 80% lipids and about 20% proteins [24]. Therefore,
protein biomarkers of oxidative stress achieve higher concen-
tration in plasma than in CSF, even though MS is a disease that
mainly affects the CNS [25,26]. The inflammatory cells (the
reactive T-lymphocytes) mainly migrate across the blood–
brain barrier (BBB) into the CNS, but a large number of
immune cells remain in the blood and play a crucial role in
the inflammatory processes [27,28]. Additionally, determi-
nation of circulating oxidative stress biomarkers in the
plasma is a non-invasive method [29].

The aim of this study was to evaluate the level of oxi-
dative-/nitrative-modified plasma proteins and lipids in the
course of SP MS, and to establish a correlation between bio-
markers of oxidative stress and two diagnostic scores. These
are the Expanded Disability Status Scale (EDSS), a well-
known method of quantifying disability in MS and monitoring
changes in the level of disability over time that is widely used
in clinical trials and in the assessment of patients with MS, and
the Beck Depression Inventory (BDI), which is commonly used
as a depression screening tool.

Understanding the molecular and biochemical basis of MS
pathogenesis is crucial to the development of potential neu-
roprotective therapies for MS and other neurodegenerative
diseases. Monitoring the levels of oxidative stress biomarkers
might be useful in following disease progression, and also for
assessing the efficacy of antioxidant treatments.

2. Material and methods

2.1. Demographic and clinical characteristics

Blood samples were collected from 50 patients suffering
from SP MS, observed for a year beforehand and diagnosed
according to the revised McDonald criteria [30]. The status
of their MS as the secondary progressive course of the
disease was ascertained according to Lubin and Reingold
[31]. The initial relapsing-remitting phase of SP MS is fol-
lowed by progression, with or without incidental relapses,
remissions and plateaux. The patients were under Neuroreh-
abilitation Ward control for 3 months, in which time they
did not receive any immunostimulators, immunomodulators,
hormones, minerals, vitamins or any other substitutions with
an antioxidative effect. They were not treated with immuno-
modulating in this progressive stage of their MS for almost
a year. These inclusion criteria allowed us to rule out inter-
ference with the effects of these drugs on oxidative stress
parameters.

The clinical parameters of the patients (Table 1) were as
follows: mean age 48.2 ± 15.2 years; EDSS score 5.5 ± 1.8;
BDI score 9.6 ± 4.6, and mean disease duration of 14.3 ± 8.3
years. In our studies, we used BDI cut-off scores according
to the Beck et al. [32], which are categorized as: normal
(1–10); moderate (17–30); severe (31–40); extreme depression

(over 40). Blood samples were taken at the Neurological Reha-
bilitation Division III General Hospital in Lodz, Poland.

Control human blood samples were derived from 50
healthy volunteers, not taking any medication, who had
never been diagnosed with MS or other chronic diseases
and were without any neurological, hormonal illness or
chronic inflammation. The control group and the MS group
were matched by the age and sex.

The study protocol and all procedures were followed in
accordance with the Helsinki Declaration and were approved
by the Bioethics Committee of the Medical University of Lodz,
Poland, with Resolution No. RNN/260/08/KB.

2.1.1. Isolation of plasma
The human blood samples were collected into citrate phos-
phate dextrose adenine-1, taken from a peripheral vein
between 8 and 9 am and immediately centrifuged (1.500×g,
15 minutes, at 25°C) to get the plasma.

2.1.2. Measurement of carbonyl groups in human blood
plasma
Carbonyl groups were detected using the ELISA method in
plasma, and estimated as adducts of 2,4-dinitrophenylhydra-
zine (DNPH), according to the method described by Buss
et al. [33] and modified by Alamdari et al. [34]. First, the micro-
plates were incubated overnight at 4°C to allow the plasma
proteins to be non-specifically adsorbed into the ELISA
plates. Second, the wells were washed with 300 µL PBS and
then human plasma proteins given to reaction with substrate
DNPH (0.05 mM, 200 µl, pH 6.2). The plate was incubated for
45 minutes at room temperature. After incubation, all wells
were washed five times with 300 μl PBS:ethanol (1:1, v/v),
and for a last time with 300 μl PBS. The carbonyl groups
were detected by the anti-DNP antibodies, and then by the
antibodies conjugated with horseradish peroxidase. The oxi-
dized albumin was used for the preparation of a standard
curve, expressed as nmol of carbonyl groups/mg of the
albumin that was required to confirm the linearity of the
ELISA method. The level of carbonyl groups was determined
spectrophotometrically (λ = 316 nm), according to Levine
et al. [35].

2.1.3. Evaluation of lipid peroxidation level
Plasma samples were mixed with an equal volume of 15%
(w/v) cold trichloroacetic acid in 0.25 M HCl, and with an
equal volume of 0.37% (w/v) thiobarbituric acid in 0.25 M
HCl. All samples were immersed in a boiling water bath for
10 minutes. After cooling, the samples were centrifuged and
then the absorbance of thiobarbituric acid reactive sub-
stances (TBARS) was measured at λ = 535 nm, following the
method described by Placer et al. [36]. Lipid peroxidation
was calculated on the basis of a molar extinction coefficient
of malondialdehyde, a reliable marker of lipid peroxidation
(ε = 1.56 × 105 M−1 cm−1).

2.1.4. Determination of 3-nitrotyrosine in the plasma
proteins
Detection of 3-NT in the plasma proteins was performed,
according to Khan et al. [37], using a competitive ELISA test.
Concentrations of nitrated plasma proteins was assessed
based on a standard curve of 3-nitrotyrosine containing
fibrinogen (3-NT-Fg). To receive the 3-NT-Fg, the human
fibrinogen was treated with peroxynitrite in a final

Table 1. Baseline characteristics of SP MS patients.

SP MS (n = 50)

Age (years) 48.2 ± 15.2
% Female 61%
MS duration (years) 14.3 ± 8.3
BMI (kg m−2) 23.0 ± 3.5
EDSS 5.5 ± 1.8
BDI 9.6 ± 4.6

548 A. MOREL ET AL.



concentration of 1 mM. The amount of 3-NT in the fibrinogen
was determined spectrophotometrically (λ = 430 nm; ε =
4.400 M−1 cm−1). After the spectrophotometric measurement
was obtained, nitro-fibrinogen was used to prepare the

standard curve, ranging from 10 to 1000 nM/l of 3-nitrotyro-
sine–fibrinogen equivalent.

2.1.5. Measurement of thiol groups
The total pot of sulfhydryl groups was measured using a
method originally described by Ellman [38] and modified by
Hu [39]. In this method, thiol compounds interact with the
5,5’dithiobis-(2-nitrobenzonic acid), forming the coloured
anion 2-nitro-5-thiobenzoate (TNB−) [40]. TNB− ionizes to
yellow TNB2− di-anion, which is quantified after 1 hour’s incu-
bation in 37°C by measuring the absorbance at 412 nm. The
concentration of sulfhydryl groups is expressed as µmol/l.

3. Statistical analysis

The statistical analysis was performed using the Stats Direct
statistical software V. 2.7.2. All values in this study were
expressed as mean ± SD. The results obtained were analysed
for normality with a Shapiro–Wilk test. The significance of
the differences between the values was determined by nor-
mality using an unpaired t-Student test (for data with
normal distribution), or a Mann–Whitney U-test (for data
with abnormal distribution).

Correlations between the parameters of oxidative stress
biomarkers and the EDSS and BDI scores were made using
Spearman’s rank correlation [41]. A level of P < 0.05 was
accepted as statistically significant.

4. Results

In our study, we determined the changes of plasma oxidative/
nitrative stress parameters in SP MS patients. We noted that all
of the analysed biomarkers were significantly higher in SP MS
patients than in healthy subjects. Our findings clearly demon-
strate a statistically significant increase in the level of: carbo-
nyl groups P < 0.0001 (Figure 1(A)); 3-NT P < 0.0003 (Figure 1
(B)) in plasma proteins, and lipid peroxidation (expressed as
TBARS) P < 0.0001 (Figure 1(D)). We also saw a statistically sig-
nificant decrease in the level of thiol groups P < 0.0001 (Figure
1(C)) in plasma obtained from SP MS patients, in comparison
to the control group. In addition, we evaluated the corre-
lations between oxidative/nitrative biomarkers and the EDSS
or BDI scores assessed in SP MS patients. We saw significant
positive correlations between carbonyl group concentration
and the EDSS score (Figure 2(A); Table 2), and BDI score
(Figure 2(B); Table 1) and similarly between the concentration
of 3-NT and the EDSS score (Figure 3(A); Table 2), and BDI
score (Figure 3(B); Table 2). Significant negative correlations
were observed between the level of –SH groups, and EDSS
and BDI scores (Figure 4(A,B); Table 2).

5. Discussion

Oxidative stress is part of both the inflammatory and neurode-
generative pathomechanisms of MS. Recently, the opinion has
arisen that MS, as a complex disease, can be divided into
inflammatory RR and degenerative SP phases, because in
the majority of cases, oxidative stress dominates in this
stage of MS [42]. The evidence for oxidative/nitrative stress
in RR MS indicates both lipid peroxidation [3,26,43] and
protein peroxide formation (carbonylation) [5,6,25], as well
as nitrotyrosine formation (as a marker of peroxynitrite
activity) [7]. This suggests the importance of the role of

Figure 1. The level of carbonyl groups (n = 50, P < 0.0001) (A); 3-NT (n = 40, P <
0.0003) (B); –SH groups (n = 50, P < 0.0001) (C); TBARS (n = 35, P < 0.0001) (D) in
plasma obtained from SP MS patients and control subjects.
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oxidative stress in the pathogenesis of MS. The tendency for
increased presence of oxidative markers is mainly observed
in cortical tissues and CSF [9,21,22], as the chemical

composition of human CSF is considered to reflect brain
metabolism [8,44]. However, recent reports indicate that
plasma can be as a good source of oxidative stress markers
as CSF. The increased level of ROS could be the result of con-
siderably lower plasma concentrations of several key antioxi-
dants and the reduced activity of antioxidant enzymes [16].
Lukáč et al. [45] confirmed the decreased level of total antiox-
idant status in the plasma of RR MS patients. To present the
overall level of antioxidant capacity in SP MS patients, we eval-
uated total antioxidant status and showed it to be significantly
reduced in the plasma of SP MS patients, in comparison to a
healthy control group [46]. The decreased activity of low mol-
ecular weight antioxidants suggests their high consumption
by free radicals. This could be related to their increased pro-oxi-
dative status, due to persistent micro-inflammatory processes
in the CNS, which are intensified by free radicals.

The results presented in here are a continuation of our pre-
vious research in this field of study – the involvement of oxi-
dative stress in MS [47].

Figure 2. The positive correlation between carbonyl group level in plasma obtained from SP MS patients and clinical parameters: EDSS (A) and BDI (B) scores.

Table 2. Correlation coefficient values obtained for oxidative stress biomarkers
and EDSS and BDI scores.

Carbonyl
groups 3-Nitrotyrosine

−SH
groups TBARS

EDSS
Spearman’s rank
correlation
coefficient (Rho)

0.567397 0.536638 −0.634374 0.061674

Probability of
correlation

P < 0.0001 P < 0.003 P < 0.0001 P < 0.3615

BDI
Spearman’s rank
correlation
coefficient (Rho)

0.561886 0.422319 −0.438609 −0.007201

Probability for
correlation

P < 0.0001 P < 0.0044 P < 0.0018 P < 0.4837

Notes: Correlations were analysed using Spearman’s rank correlation method.
Table shows Spearman’s rank correlation coefficient (Rho) and probability of
correlation (P).
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Lukáč et al. [45] demonstrated elevated concentrations in
protein markers of oxidative/nitrative damages in the
plasma of RR MS patients. The authors showed significantly
increased concentrations of carbonyl groups and 3-nitrotyro-
sine in comparison to a healthy control group. However,
Fiorini et al. [48] proved that oxidative damage mainly
increases in the relapse phase of MS. They found higher
total protein carbonyl levels in serum during the relapse
phase of MS patients, in comparison to remission and
healthy groups.

In the present study, we showed that protein oxidation
can be crucial in the progression of SP MS. Mechanisms
exist by which oxidative/nitrative products can accelerate
progression in MS. The oxidative/nitrative products can
inhibit several of the enzymes involved in respiration,
thereby disturbing mitochondrial function and reducing
ATP content, as demonstrated by neurons exposed to NO
[17,49]. These products disrupt the transport of ATP along
the axon and consequently contribute to neurodegenera-
tion [4,16]. Furthermore, the oxidative/nitrative products in
white matter plaques cause mitochondrial gene deletions,
and the transport of defective mitochondria, in a retrograde
manner, into the cell body of cortical neurons. With electron

leakage from defective mitochondria, this process can
further amplify oxidative injury [19]. It is believed that oxi-
dation leads to the production of epitopes, which may
provoke autoimmune responses [28]. Moreover, ROS/RNS
are responsible for oxidation of fibrinogen – an abundant
plasma coagulation factor – which favours enhanced risk
of thrombotic diseases that reduce physical and mental per-
formance in patients with MS, such as brain stroke and
cardiac ischemia [50–54].

In our studies, oxidative damage to plasma proteins in SP
MS patients has been expressed as an increased level of car-
bonyl groups (Figure 1(A)). Our studies are consistent with
reports indicating an elevated level of carbonyl proteins in
demyelinating diseases [15]. Oxidative stress accompanies
pathological changes in some other neurodegenerative dis-
eases, and is considered as a major upstream factor in the
pathogenesis of these diseases. Several studies have demon-
strated that in Alzheimer’s patients the level of protein carbo-
nyl group and TBARS concentration in serum or plasma, are
significantly higher than in healthy control groups [55–57].
The elevated level of carbonyl groups is also higher in
plasma obtained from patients with Parkinson’s disease [58].
These findings show that the oxidative/nitrative biomarkers

Figure 3. The positive correlation between 3-nitrotyrosine level in plasma obtained from SP MS patients and clinical parameters: EDSS (A) and BDI (B) scores.
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might be of particular utility of neurodegenerative process.
However, for the first time, we demonstrated the statistically
significant positive correlations between the intensity of the
protein carbonylation process and the parameters of the
EDSS score (Figure 2(A)) and BDI score (Figure 2(B)). This
clearly indicates that the scale of the oxidative damage to pro-
teins is referenced in the physical and mental functioning of
the patients in SP MS. The positive correlation between carbo-
nyl group concentration and disease severity as assessed by
the EDSS score confirms that this parameter can be used as
a useful qualitative and quantitative plasma biomarker of
the progress of neurodegenerative complications. Depression
is associated with increased disability and decreased cogni-
tive impairment, and leads to delays in the rehabilitation
process due to the deterioration of motivation and low
mood. As demonstrated here, a significant positive correlation
between the level of protein carbonylation and BDI scores
indicates that carbonyl groups can serve as a significant prog-
nostic parameter.

What is more, our findings show that the level of thiol
groups in the plasma of SP MS patients was lower (approxi-
mately 30%) than in healthy controls (Figure 1(C)). These

results are consistent with earlier studies that demonstrated
the decreased level of thiol groups in plasma and CSF
obtained from RR MS patients. Moreover, we noted a negative
correlation between the thiol group level and EDSS and BDI
scores (Figure 4(A,B)). We proved that the clinical parameters
in MS of the level of disability and depression syndrome are
associated with the extent of the oxidative damage of
plasma proteins in vivo.

It is well known that peroxynitrite – a strong oxidant – is
responsible for 3-NT formation in vivo [19,59] and that as a
compound it is highly damaging to neurons in MS [15]. It is
produced extremely quickly in the CNS, mainly by activated
macrophages and microglia, which are responsible for axon
disruption and the demyelination process [3]. Peroxynitrite
plays a crucial role in the interruption of the BBB and pro-
motion of the infiltration of inflammatory cells into the CNS
[60]. So, peroxynitrite is an important pathogenetic factor in
MS, which causes increased activity of the inflammatory
processes [61]. High levels of reactive oxidative/nitrative
species, such as nitric oxide, superoxide ions and peroxyni-
trite, have all been presented in CSF drawn from MS patients.
Nitric oxide is generated in the CNS in response to the

Figure 4. The negative correlation between-SH group level in plasma obtained from SP MS patients and clinical parameters: EDSS (A) and BDI (B) scores.
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induction of inflammatory nitric oxide synthase [4]. Yuceyar
et al. [62] showed increased serum and CSF levels of the
stable end-products of nitric oxide (nitrite (NO2

−) and nitrate
(NO3

−)) in MS patients, compared with control subjects. They
observed that the levels of NO2

− and NO3
− in CSF and serum

were significantly higher in both RR and SP subtypes of MS,
in comparison to a healthy control with non-inflammatory
neurological disease. However, the difference between con-
centrations of NO metabolites in RR and SP MS patients was
not significant.

In our studies, we have shown the elevated level of 3-NT in
the proteins of plasma derived from SP MS patients, in com-
parison to a healthy control group (Figure 1(B)). Moreover,
we confirmed that an increased level of 3-NT correlates with
the EDSS score, as well as with the BDI score, in SP MS
patients. The significant positive correlations are indicated in
Figure 3(A,B) and Table 2. For the first time then, our study
revealed the possible association between not only oxidative
but also nitrative damage of plasma proteins, and their partici-
pation in the development of depression and physical disabil-
ity in SP MS patients.

Lipid peroxidation has been implicated in the pathogen-
esis of MS, and this free radical process is well known for its
involvement in the breakdown of the myelin sheath [63,64].
The most widely used marker of lipid peroxidation is TBARS
[36]. The studies described previously in this paper noted a
significant increase (more than 80%) in the serum level of
TBARS in RR MS patients, in comparison to the control
groups [13,65]. Our results are in line with the studies by
Karlík et al. [13], which proved the increased concentration
of TBARS in plasma samples obtained from MS patients.
They also demonstrated the significantly higher salivary
level of TBARS in MS patients (about 50%), in comparison to
healthy subjects [13]. Our findings demonstrate that the
TBARS generation in plasma from SP MS patients is signifi-
cantly higher (by 60%), than in healthy controls (Figure 1(D)).

Our data on SP MS patients are characterized by the irre-
versible progression of MS, and are surprisingly consistent
with earlier research carried out on RR MS patients who had
been in a period of recovery in at least the last three
months prior to enrolment in the study [35]. The authors of
that research demonstrated increased levels of oxidative
stress biomarkers – lipid peroxidation products, carbonylated
proteins – as well as a decreased level of sulfhydryl groups, in
the plasma of patients with RR MS. They also presented the
correlations between oxidative stress markers and disability,
assessed by the EDSS score in RR MS patients [35]. In turn,
our paper is the first report revealing the association
between the level of oxidative/nitrative stress parameters
and EDSS and BDI scores in insufficiently investigated types
of SP MS. Although both our research and Oliveira et al.’s
[66] are focused on two different subtypes of MS, a significant
consistency in the results can be observed. However, it should
be emphasized that we have not observed the relationship
between plasma lipid peroxidation and the clinical par-
ameters describing the progression of the disease. This
might strongly suggest that it is primarily the level of
protein oxidative/nitrative damages, not lipid peroxidation,
that should be considered suitable plasma biomarkers. This
could be due to a significantly higher protein concentration
in the plasma, versus a large quantitative lipid predominance
in nervous tissue. In our study, the concentrations of different
investigated biochemical parameters (3-NT, carbonyl groups,

thiol groups) correlate with the revised degrees of physical
and mental disability determined on the basis of the EDSS
and BDI scores. Therefore, the number of oxidative/nitrative
protein damage markers could be used as a rating for non-
invasive evaluation of oxidative stress in vivo, as well as of
the progression of SP MS.

These findings make oxidative/nitrative biomarkers a
specific marker of neurodegenerative process. Moreover, in
the future these biological markers could determine the use
of specific antioxidative/anti-nitrative therapies in the course
of neurodegenerative diseases.
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